
24th Canadian Conference
on Computational Geometry

August 8-10, 2012
Charlottetown, Canada

24th Canadian Conference on Computational Geometry, 2012

2

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Preface
This volume contains the official proceedings of the 24th Canadian Conference on Computational Geometry
(CCCG’12), held in Charlottetown on August 8-10, 2012. These papers are also available electronically at
http://www.cccg.ca and at http://2012.cccg.ca.

We thank the staff at Holland College, and in particular Tina Lesyk, Marsha Doiron and Tracey Campbell, for
preparing the conference site.

We are grateful to the Program Committee for agreeing to a rigorous review process. They, and other reviewers,
thoroughly examined all submissions and provided excellent feedback. Out of 75 papers submitted, 49 are contained
in these proceedings. We thank the authors of all submitted papers, all those who have registered, and in particular
Günter Ziegler, Pankaj Agarwal and Joseph Mitchell for presenting plenary lectures.

We also thank Sébastien Collette, who prepared these proceedings, as well as Perouz Taslakian and Narbeh
Bedrossian who designed the conference logo.

Last but not least, we are grateful for sponsorship from AARMS, the Mprime Network, PIMS and the Fields
Institute. Their financial support has helped us to cover many costs as well as provide significant funding to over 50
students and postdocs, including waivers of their registration fees.

Greg Aloupis and David Bremner
(Conference Organizers)

pims

Copyrights of the articles in these proceedings are maintained by their respective authors.
More information about this conference and about previous and future editions is available online at

http://cccg.ca

3

24th Canadian Conference on Computational Geometry, 2012

Invited Speakers

• Pankaj Agarwal (Duke U.)

• Joseph Mitchell (Stony Brook U.)

• Günter Ziegler (Freie Universität Berlin) – Erdős
memorial lecture

Organizing Committee

• Greg Aloupis (U. Libre de Bruxelles)

• David Bremner (U. New Brunswick)

Program Committee

• Oswin Aichholzer (T.U. Graz)

• Greg Aloupis (U. Libre de Bruxelles)

• Therese Biedl (U. Waterloo)

• David Bremner (U. New Brunswick)

• Mark de Berg (TU Eindhoven)

• Jeff Erickson (U. Illinois at Urbana-Champaign)

• Ferran Hurtado (U. Politecnica de Catalunya)

• John Iacono (Polytechnic Institute of New York
U.)

• Mark Keil (U. Saskatchewan)

• David Kirkpatrick (U. British Columbia)

• Stefan Langerman (U. Libre de Bruxelles)

• Alex López-Ortiz (U. Waterloo)

• Anil Maheshwari (Carleton U.)

• Michael McAllister (Dalhousie U.)

• Pat Morin (Carleton U.)

• Bradford Nickerson (U. New Brunswick)

• Diane Souvaine (Tufts U.)

• Csaba Tóth (U. Calgary)

• Godfried Toussaint (New York U. Abu Dhabi)

• Ryuhei Uehara (JAIST)

• Steve Wismath (U. Lethbridge)

• Hamid Zarrabi-Zadeh (Sharif U. of Technology)

• Norbert Zeh (Dalhousie U.)

4

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Other Reviewers

• Mohammad Ali Abam

• Victor Alvarez

• Jasine Babu

• Aritra Banik

• Luis Felipe Barba Flores

• Gregory Bint

• Nicolas Broutin

• Javier Cano

• Paz Carmi

• Mirela Damian

• Pooya Davoodi

• Stephane Durocher

• Ehsan Emam-Jomeh-Zadeh

• Ruy Fabila

• Eli Fox-Epstein

• Robert Fraser

• Alfredo Garcia

• Amin Gheibi

• Omid Gheibi

• Alexander Gilbers

• Sathish Govindarajan

• Thomas Hackl

• Masud Hasan

• Meng He

• John Howat

• Minghui Jiang

• James King

• Rolf Klein

• Matias Korman

• Sonal Kumari

• Stuart MacGillivray

• Jonas Martinez

• Paul Nigsch

• Mostafa Nouri Baygi

• Belen Palop

• Alexander Pilz

• Bodhayan Roy

• Sasanka Roy

• Alejandro Salinger

• Stefan Schirra

• Raimund Seidel

• Rodrigo Silveira

• Matthew Skala

• Michiel Smid

• Bettina Speckmann

• Svetlana Stolpner

• Perouz Taslakian

• Constantinos Tsirogiannis

• Birgit Vogtenhuber

• Gernot Walzl

• Andrew Winslow

• David R. Wood

• Stefanie Wuhrer

• Sadra Yazdanbod

5

24th Canadian Conference on Computational Geometry, 2012

Contents

Invited paper: Algorithms for Geometric Similarity
Pankaj Agarwal, Duke University 9

Visibility-Monotonic Polygon Deflation
Prosenjit Bose, Vida Dujmovic, Nima Hoda and Pat Morin 11

Common Developments of Three Different Orthogonal Boxes
Toshihiro Shirakawa and Ryuhei Uehara 17

Unfolding Rectangle-Faced Orthostacks
Erin Chambers, Kyle Sykes and Cynthia Traub 23

A Data Structure Supporting Exclusion Persistence Range Search
Stuart Macgillivray and Bradford Nickerson 29

xy-Monotone Path Existence Queries in a Rectilinear Environment
Gregory Bint, Anil Maheshwari and Michiel Smid 35

Covering Points with Disjoint Unit Disks
Greg Aloupis, Robert Hearn, Hirokazu Iwasawa and Ryuhei Uehara 41

The Approximability and Integrality Gap of Interval Stabbing and Independence Problems
Shalev Ben-David, Elyot Grant, Will Ma and Malcolm Sharpe 47

The Within-Strip Discrete Unit Disk Cover Problem
Robert Fraser and Alejandro López-Ortiz 53

The Cover Contact Graph of Discs Touching a Line
Stephane Durocher, Saeed Mehrabi, Matthew Skala and Mohammad Abdul Wahid 59

On Piercing (Pseudo)Lines and Boxes
Subramanya Bharadwaj, Chintan Rao, Pradeesha Ashok and Sathish Govindarajan 65

Adaptive Techniques to find Optimal Planar Boxes
Jérémy Barbay, Pablo Pérez-Lantero and Gonzalo Navarro 71

A Fast Dimension-Sweep Algorithm for the Hypervolume Indicator in Four Dimensions
Andreia P. Guerreiro, Carlos M. Fonseca and Michael T. M. Emmerich 77

An Efficient Transformation for Klee’s Measure Problem in the Streaming Model
Gokarna Sharma, Costas Busch, Ramachandran Vaidyanathan, Suresh Rai and Jerry Trahan 83

Finding Shadows among Disks
Natasa Jovanovic, Jan Korst, Zharko Aleksovski, Wil Michiels, Johan Lukkien and Emile Aarts 89

Computing the Coverage of an Opaque Forest
Alexis Beingessner and Michiel Smid 95

Open Problems from CCCG 2011
Erik D. Demaine and Joseph O’Rourke 101

Disk Constrained 1-Center Queries
Luis Barba 107

6

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Circle Separability Queries in Logarithmic Time
Greg Aloupis, Luis Barba and Stefan Langerman 113

Flip Distance Between Two Triangulations of a Point-Set is NP-complete
Anna Lubiw and Vinayak Pathak 119

Steiner Reducing Sets of Minimum Weight Triangulations
Cynthia Traub 125

On the Space-Efficiency of the ”Ultimate Planar Convex Hull Algorithm”
Jan Vahrenhold 131

Divide-and-Conquer 3D Convex Hulls on the GPU
Jeffrey White and Kevin Wortman 137

Basis Enumeration of Hyperplane Arrangements Up to Symmetries
Aaron Moss and David Bremner 143

Hardness Results for Computing Optimal Locally Gabriel Graphs
Abhijeet Khopkar and Sathish Govindarajan 149

Edge Guards for Polyhedra in 3-Space
Javier Cano, Csaba Toth and Jorge Urrutia 155

Hidden Mobile Guards in Simple Polygons
Sarah Cannon, Diane Souvaine and Andrew Winslow 161

The Complexity of Guarding Monotone Polygons
Erik Krohn and Bengt Nilsson 167

Kinematic Joint Recognition in CAD Constraint Systems
Audrey Lee-St.John 173

Computing Motorcycle Graphs Based on Kinetic Triangulations
Willi Mann, Martin Held and Stefan Huber 179

Variable Radii Poisson-Disk Sampling
Scott Mitchell, Alexander Rand, Mohamed Ebeida and Chandrajit Bajaj 185

Invited paper: Cannons at Sparrows
Günter Ziegler, Freie Universität Berlin 191

A Note on Interference in Random Networks
Luc Devroye and Pat Morin 193

On Farthest-Point Information in Networks
Prosenjit Bose, Jean-Lou De Carufel, Carsten Grimm, Anil Maheshwari and Michiel Smid 199

Tight Linear Lower Memory Bound for Local Routing in Planar Digraphs
Maia Fraser 205

Packing Trominoes is NP-Complete, #P-Complete and ASP-Complete
Takashi Horiyama, Takehiro Ito, Keita Nakatsuka, Akira Suzuki and Ryuhei Uehara 211

Tiling Polyhedra with Tetrahedra
Braxton Carrigan and Andras Bezdek 217

Point-Set Embedding in Three Dimensions
Steve Wismath and Henk Meijer 223

7

24th Canadian Conference on Computational Geometry, 2012

Approximating Majority Depth
Dan Chen and Pat Morin 229

Flexible Crystal Frameworks
Ciprian Borcea and Ileana Streinu 235

Characterizing Delaunay Graphs via Fixed Point Theorem
Tomomi Matsui and Yuichiro Miyamoto 241

Lower Bounds for the Number of Small Convex k-Holes
Oswin Aichholzer, Ruy Fabila-Monroy, Thomas Hackl, Clemens Huemer, Alexander Pilz and Birgit Vogten-
huber 247

What makes a Tree a Straight Skeleton?
Oswin Aichholzer, Howard Cheng, Satyan L. Devadoss, Thomas Hackl, Stefan Huber, Brian Li and Andrej
Risteski 253

3D Skeletonization as an Optimization Problem
Denis Khromov and Leonid Mestetskiy 259

Dynamic Computational Topology for Piecewise Linear Curves
Hugh Cassidy, Thomas Peters and Kirk Jordan 265

Finding a Lost Treasure in Convex Hull of Points From Known Distances
Bahman Kalantari 271

Optimal Average Case Strategy for Looking Around a Corner
Selim Tawfik, Alejandro López-Ortiz and Reza Dorrigiv 277

Invited paper: Computational Geometry in Air Traffic Management
Joseph Mitchell, Stony Brook University 283

Competitive Routing on a Bounded-Degree Plane Spanner
Prosenjit Bose, Rolf Fagerberg, André Van Renssen and Sander Verdonschot 285

Optimal Bounds on Theta-Graphs: More is not Always Better
Prosenjit Bose, Jean-Lou De Carufel, Pat Morin, André Van Renssen and Sander Verdonschot 291

Near-Linear-Time Deterministic Plane Steiner Spanners and TSP Approximation for Well-Spaced Point
Sets
Glencora Borradaile and David Eppstein 297

On the Strengthening of Topological Signals in Persistent Homology through Vector Bundle Based Maps
Eric Hanson, Francis Motta, Chris Peterson and Lori Ziegelmeier 303

A Multicover Nerve for Geometric Inference
Donald Sheehy 309

8

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Algorithms for Geometric Similarity

Pankaj K. Agarwal∗

A basic problem in classifying, or searching for similar objects in, a large set of geometric objects is computing
similarity between two objects. This has led to extensive work on computing geometric similarity between two objects.
This talk discusses some old and some new geometric-similarity algorithms, with an emphasis on transportation
distance (also called earth mover’s distance) and Frechet distance. The talk will also touch upon a few open problems
in this area.

∗Duke University.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

9

24th Canadian Conference on Computational Geometry, 2012

10

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Visibility-Monotonic Polygon Deflation∗

Prosenjit Bose Vida Dujmović Nima Hoda Pat Morin

Abstract

A deflated polygon is a polygon with no visibility cross-
ings. We answer a question posed by Devadoss et
al. (2012) by presenting a polygon that cannot be
deformed via continuous visibility-decreasing motion
into a deflated polygon. In order to demonstrate non-
deflatability, we use a new combinatorial structure for
polygons, the directed dual, which encodes the visibility
properties of deflated polygons. We also show that any
two deflated polygons with the same directed dual can
be deformed, one into the other, through a visibility-
preserving deformation.

1 Introduction

Much work has been done on visibilities of polygons
[6, 8] as well as on their convexification, including work
on convexification through continuous motions [4]. De-
vadoss et al. [5] combine these two areas in asking
the following two questions: (1) Can every polygon be
convexified through a deformation in which visibilities
monotonically increase? (2) Can every polygon be de-
flated (i.e. lose all its visibility crossings) through a de-
formation in which visibilities monotonically decrease?

The first of these questions was answered in the af-
firmative at CCCG 2011 by Aichholzer et al. [2]. In
this paper we resolve the second question in the nega-
tive. We also introduce a combinatorial structure, the
directed dual, which captures the visibility properties
of deflated polygons and we show that a deflated poly-
gon may be monotonically deformed into any deflated
polygon with the same directed dual.

2 Preliminaries

We begin by presenting some definitions. Here and
throughout the paper, unless qualified otherwise, we
take polygon to mean simple polygon on the plane.

A triangulation, T , of a polygon, P , with vertex set V
is a partition of P into triangles with vertices in V . The
edges of T are the edges of these triangles and we call
such an edge a polygon edge if it belongs to the polygon
or, else, a diagonal. A triangle of T with exactly one

∗The full version of this paper is available at http://arxiv.

org/abs/1206.1982v1. School of Computer Science, Carleton
University, {jit, vida, nhoda, morin}@scs.carleton.ca

diagonal edge is an ear and the helix of an ear is its
vertex not incident to any other triangle of T .

Let w and uv be a vertex and edge, respectively, of a
polygon, P , such that u and v are seen in that order in a
counter-clockwise walk along the boundary of P . Then
uv is facing w if (u, v, w) is a left turn. Two vertices or
a vertex and an edge of a polygon are visible or see each
other if there exists a closed line segment contained in-
side the closed polygon joining them. If such a segment
exists that intersects some other line segment then they
are visible through the latter segment. We say that a
polygon is in general position if the open line segment
joining any of its visible pairs of vertices is contained in
the open polygon.

(a) (b)

Figure 1: (a) A polygon and (b) its visibility graph.

The visibility graph of a polygon is the geometric
graph on the plane with the same vertex set as the
polygon and in which two vertices are connected by a
straight open line segment if they are visible (e.g. see
Figure 1).

2.1 Polygon Deflation

A deformation of a polygon, P , is a continuous,
time-varying, simplicity-preserving transformation of P .
Specifically, to each vertex, v, of P , a deformation as-
signs a continuous mapping t 7→ vt from the closed in-
terval [0, 1] ⊂ R to the plane such that v0 = v. Ad-
ditionally, for t ∈ [0, 1], P t is simple, where P t is the
polygon joining the images of t in these mappings as
their respective vertices are joined in P .

A monotonic deformation of P is one in which no
two vertices ever become visible, i.e., there do not exist
u and v in the vertex set of P and s, t ∈ [0, 1], with
s < t, such that ut and vt are visible in P t but us and
vs are not visible in P s.

A polygon is deflated if its visibility graph has no edge
intersections. Note that a deflated polygon is in general

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

11

24th Canadian Conference on Computational Geometry, 2012

position and that its visibility graph is its unique tri-
angulation. Because of this uniqueness and for conve-
nience, we, at times, refer to a deflated polygon and its
triangulation interchangeably. A deflation of a polygon,
P , is a monotonic deformation t 7→ P t of P such that
P 1 is deflated. If such a deformation exists, then P is
deflatable.

2.2 Dual Trees of Polygon Triangulations

(a) (b)

(c)

Figure 2: (a) A polygon triangulation, (b) its dual tree
and (c) its directed dual. Triangle and terminal nodes
are indicated with disks and tees, respectively.

The dual tree, D, of a polygon triangulation, T , is a
plane tree with a triangle node for each triangle of T , a
terminal node for each polygon edge of T and where two
nodes are adjacent if their correspondents in T share a
common edge. The dual tree preserves edge orderings
of T in the following sense. If a triangle, a, of T has
edges e, f and g in counter-clockwise order then the
corresponding edges of its correspondent, aD, in D are
ordered eD, fD and gD in counter-clockwise order (e.g.
see Figure 2b).

Note that the terminal and triangle nodes of a dual
tree have degrees one and three, respectively. We call
the edges of terminal nodes terminal edges.

An ordered pair of adjacent triangles (a, b) of a poly-
gon triangulation, T , is right-reflex if the quadrilateral
union of a and b has a reflex vertex, v, situated on the
right-hand side of a single segment path from a to b
contained in the open quadrilateral. We call v the reflex
endpoint of the edge shared by a and b (see Figure 3).

The directed dual, D, of a polygon triangulation, T ,
is a dual tree of T that is partially directed such that,
for every right-reflex pair of adjacent triangles (a, b) in
T , the edge joining the triangle nodes of a and b in D
is directed a→ b (e.g. see Figure 2c). Note that if P is
deflated, then for every pair of adjacent triangles, (a, b),
of T one of (a, b) or (b, a) is right-reflex and so every
non-terminal edge in D is directed.

Throughout this paper, as above, we use superscripts

a

b
f

v

u

e

Figure 3: A pair of triangles, a and b, sharing an edge,
e, such that their quadrilateral union has a reflex vertex
and a single segment path from a to b contained in the
open quadrilateral. The reflex endpoint, v, of e is to the
right of the path and so the pair (a, b) is right-reflex.

to denote corresponding objects in associated struc-
tures. For example, if a is a triangle of the triangu-
lation, T , of a polygon and b is a triangle node in the
dual tree, D, of T then aD and bT denote the node cor-
responding to a in D and the triangle corresponding to
b in T , respectively.

3 Directed Duals of Deflated Polygons

In this section, we derive some properties of deflated
polygons and use them to relate the visibilities of de-
flated polygons to paths in their directed duals. We also
show that two deflated polygons with the same directed
dual can be monotonically deformed into one another.
The proofs of Lemmas 1, 3 and 4 are not difficult and
can be found in the full version of this paper [3].

Lemma 1 Let P be a deflated polygon, let a be an ear
of P and let P ′ be the polygon resulting from removing
a from P . Then P ′ is deflated.

Corollary 2 If the union of a subset of the triangles of
a deflated polygon triangulation is a polygon, then it is
deflated.

Lemma 3 If u is a vertex opposite a closed edge, e,
in a triangle of a deflated polygon triangulation, then u
sees exactly one polygon edge through e.

Let u be the vertex of a deflated polygon triangula-
tion, T , and let e be an edge opposite u in a triangle of
T . An induced sequence of u through e is the sequence of
edges through which u sees a polygon edge, f , through
e. This sequence is ordered by the proximity to u of
their intersections with a closed line segment joining u
and f that is interior to the open polygon everywhere
but at its endpoints (e.g. see Figure 4b).

Lemma 4 Suppose u is a vertex opposite a closed non-
polygon edge, e, in a triangle, a, of a deflated polygon

24th Canadian Conference on Computational Geometry, 2012

12

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

xi

xi−1

r`

(a)

vu
fe
g h

(b)

a b

c

d
hT

(c)

Figure 4: (a) A node xi of a directed dual and its neigh-
bours xi−1, r and ` in an iteration of the construction of
a visibility path, (b) a deflated polygon triangulation,
T , wherein the induced sequence of the vertex u through
the edge e is (e, f , g, h) and (c) the directed dual, T ,
in which the visibility path of the directed dual starting
with nodes (a, b) is (a, b, c, d, hT).

triangulation. Let v be the reflex endpoint of e and let
f be the edge opposite v in the triangle sharing e with
a (see Figure 3). Then u sees the same polygon edge
through e as v sees through f .

Corollary 5 If u, v, e and f are as in Lemma 4, then
the induced sequence of u through e is equal to that of v
through f prepended with e.

3.1 Directed Duals and Visibility

A visibility path, (x1, x2, . . . , xn), of the directed dual,
D, of a deflated polygon is a sequence of nodes in D
meeting the following conditions. x1 is a triangle node
adjacent to x2 and, for i ∈ {2, . . . , n}, if xi is a ter-
minal node, then it is xn—the final node of the path.
Otherwise, let the neighbours of xi be xi−1, r and ` in
counter-clockwise order (see Figure 4a). Then

xi+1 =

{
r if edge {xi−1, xi} is directed xi−1 ← xi

` if edge {xi−1, xi} is directed xi−1 → xi

(e.g. see Figure 4c).

Lemma 6 Let (a, b, c) be a simple path in the directed
dual, D, of a deflated polygon triangulation, T , where
a and b are triangle nodes joined by the edge e. Let
u be the vertex opposite eT in aT , let v be the reflex
endpoint of eT and let f be the edge opposite v in bT (see
Figure 4b). Then (a, b, c) is the substring of a visibility
path if and only if fD joins b and c in D.

Proof. Suppose (a, b, c) is the substring of a visibility
path and let x be the neighbour of b not a nor c and
let x′ be the edge of bT not eT nor f . We consider
the case where the neighbours of b are a, x and c in
counter-clockwise order—the argument is symmetric in
the other case. Then (a, b) is right-reflex and so bT has
counter-clockwise edge ordering: eT , x′, f . Then, since
edge orderings are preserved in the directed dual, fD

joins b and c as required. Reversing the argument gives
the converse. �

Corollary 7 Let D, T , a, b, e and u be as in Lemma 6.
The induced sequence of u through e is equal to the se-
quence of correspondents in T of edges traversed by the
visibility path starting with (a, b) in D. The final node of
this visibility path corresponds to the edge u sees through
eT .

Theorem 8 A vertex, u, and edge, g, of a deflated
polygon, P , are visible if and only if there is a visi-
bility path in the directed dual, D, of the triangulation,
T , of P starting on a triangle node corresponding to a
triangle incident to u and ending on gD.

Proof. Assume u sees g. If g is an edge of a triangle,
a, incident to u then (aD, gD) is the required visibility
path. Otherwise u sees g through some edge, e, and
the existence of the required visibility path follows from
Corollary 7.

Assume, now, that the visibility path exists. If its
triangle nodes all correspond to triangles incident to u
then g is incident to one of these triangles and so visible
to u. Otherwise, let e be the first edge the path traverses
from a node, a, corresponding to a triangle incident to
u to a node, b, corresponding to a triangle not incident
to u.

Then, by Corollary 7, the induced sequence of u
through eT corresponds to a visibility path starting with
(a, b) and this visibility path ends on a node correspond-
ing to the edge u sees through e. Since two consecu-
tive nodes of a visibility path determine all subsequent
nodes, these visibility paths end on the same node, gD,
and so u sees g. �

n1
n2

n3

n4

n5

t1

t2

t3 t4 t5

t6

t7

Figure 5: A plane tree with the following maximal outer
paths: (t7, n5, n1, n2, t1), (t1, n2, n3, t2), (t2, n3, t3),
(t3, n3, n2, n1, n4, t4), (t4, n4, t5), (t5, n4, n1, n5, t6),
(t6, n5, t7).

An outer path of a plane tree, D, is the sequence of
nodes visited in a counter-clockwise walk along its outer

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

13

24th Canadian Conference on Computational Geometry, 2012

face in which no node is visited twice. An outer path
is maximal if it is not a proper substring of any other
outer path (e.g. see Figure 5). Note that an outer path,
(x1, x2, . . . , xn), of the directed dual of a polygon tri-
angulation, T , corresponds to a triangle fan in T where
the triangles have clockwise order xT1 , x

T
2 , . . . , x

T
n about

their shared vertex.

Theorem 9 A pair of vertices, u and v, of a deflated
polygon P are visible if and only if, in the directed dual,
D, of the triangulation, T , of P , their corresponding
maximal outer paths share a node.

Proof. The maximal outer paths of u and v share a
node in D if and only if they are incident to a common
triangle in T and, since P is deflated, this is the case if
and only if u and v are visible. �

3.2 Directed Dual Equivalence

In this section, we show that if two deflated polygons
have the same directed dual, then one can be monoton-
ically deformed into the other. First, we fully charac-
terize the directed duals of deflated polygons.

xn

xn−1

xi

x2

x1

(a)

x1

x2

xi

xn−1

xn

(b)

Figure 6: If (a) the tree with outer path (x1, x2, . . . , xn)
were a subtree of the directed dual of a polygon triangu-
lation, T , then (b) the triangles corresponding to nodes
x1, x2, xn−1 and xn in T would overlap, contradicting
the simplicity of the polygon.

Theorem 10 A partially directed plane tree, D, in
which every non-terminal node has degree three and
where an edge is directed if and only if it joins two non-
terminal nodes of degree three is the directed dual of a
deflated polygon if and only if it does not contain an
outer path, (x1, x2, . . . , xn), with n ≥ 4, such that the
edges from x1 and xn−1 are both forward directed (i.e.
x1 → x2 and xn−1 → xn).

Henceforth, we call such a path an illegal path.

Proof. Suppose D contains an illegal path, (x1, x2, . . . ,
xn). If D is the directed dual of a polygon triangulation,
T , then xT1 , xT2 , xTn−1 and xTn share a common vertex
reflex in both quadrilaterals xT1 ∪xT2 and xTn−1∪xTn (see

y1
y2

. .
.

yn

a

b
β
α γ

Figure 7: The inductive polygon in the proof of Theo-
rem 10 or a polygon from the inductive deformation in
the proof of Theorem 11.

Figure 6). This contradicts the disjointness of these
quadrilaterals.

Suppose, now, that D has no illegal paths. We prove
the converse with a construction of a polygon triangu-
lation having D as its directed dual. Let b be a ter-
minal node in the subtree of D induced by its non-
terminal nodes. Then b has two terminal neighbours
and one non-terminal neighbour, a. Let D′ be the tree
resulting from replacing a and its terminal neighbours
with a single terminal node, x, connected to b with an
undirected edge. By induction on the number of non-
terminal nodes, there exists a deflated polygon triangu-
lation, T , having D′ as its directed dual.

Assume, without loss of generality, that the edge join-
ing a and b is directed a → b. Let u be the endpoint
of xT pointing in a clockwise direction in the boundary
of T and let (y1, y2, . . . , yn) be the outer path of D
corresponding to the triangles other than bT in T inci-
dent to u (see Figure 7). Note that (yi, yi+1, . . . , yn,
a, b) is an outer path of D and so, by hypothesis, for
all i ∈ {1, 2, . . . , n − 1}, the edge joining yi and yi+1 is
directed yi ← yi+1.

Then, to show that a triangle may be appended to
T to form the required triangulation, it suffices to show
that the sum of the angles at u of the triangles yT1 ,
yT2 , . . . , yTn is less than π, which, in turn, follows from
the backward directedness of the edges of (y1, y2, . . . ,
yn). �

Theorem 11 If the deflated polygons P and P ′ have
the same directed dual, D, then P can be monotonically
deformed into P ′.

Proof. Let b be an ear of the triangulation, T , of P
and let b′ be the triangle corresponding to bD in the
triangulation, T ′, of P ′. By induction on the number of
triangles in T , there is a monotonic deformation t 7→ Qt

from Q = P \ b to Q′ = P ′ \ b′. Note that replacing
bD and its terminal nodes in D with a single terminal
node gives the directed dual, D′, of Q. Then, since Q

24th Canadian Conference on Computational Geometry, 2012

14

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

is deflated (Lemma 1) and t 7→ Qt is monotonic, for all
t ∈ [0, 1], Qt is deflated and has directed dual D′.

Let v be the helix of b, let a be the triangle sharing an
edge, e, with b and let u be the reflex endpoint of e. We
need to show that there is a continuous map t 7→ vt that,
combined with t 7→ Q, gives a monotonic deformation
of a polygon with directed dual D. For t ∈ [0, 1], let αt

be the angle of at at ut in Qt and let γt be the sum of
the angles at ut of the triangles, yt1, yt2, . . . , ytn, other
than at of the triangulation of Qt incident to ut (see
Figure 7).

Then, since v may be brought arbitrarily close to u in
a monotonic deformation of P , it suffices to show that
there is a continuous map t 7→ βt specifying an angle
for bt at ut such that, for all t ∈ [0, 1], 0 < βt < π,
αt + βt > π and αt + βt + γt < 2π. The latter two
conditions are equivalent to

π − αt < βt < (π − αt) + (π − γt) .

It follows from Theorem 10 that the outer path (yD
′

1 ,
yD

′
2 , . . . , yD

′
n) is left-directed and so that γt < π. Then

βt = π − (αt + γt)/2 satisfies all required conditions.
Now, let t 7→ Rt be the monotonic deformation from

a polygon with directed dual D combining t 7→ Qt and
the map t 7→ vt defined by a fixed distance between ut

and vt of r ∈ R>0 and an angle for bt at ut of βt.
Prepending t 7→ Rt with a deformation of P in which

v is brought to the distance r from u and then rotated
about u to an angle of β0; then appending a deformation
comprising similar motions ending at P ′; and, finally,
scaling in time gives a continuous map, t 7→ P t, with
P 0 = P and P 1 = P ′. Since, for all t ∈ [0, 1], Qt is
simple, a small enough r can be chosen such that t 7→ P t

is simplicity-preserving. Then, by the properties of t 7→
βt, t 7→ P t is the required monotonic deformation. �

4 Deflatability of Polygons

In this section, we show how deflatable polygons may
be related combinatorially to their deflation targets and
use this result to present a polygon that cannot be de-
flated. We also show that vertex-vertex visibilities do
not determine deflatability. These results depend on the
following Lemma.

Lemma 12 Let t 7→ P t be a monotonic deformation of
a polygon, P , in general position. Then a vertex and an
edge are visible in P 1 only if they are visible in P .

The proof, which is available in the full version of this
paper [3], uses analytic arguments similar to those used
by Ábrego et al. [1].

A compatible directed dual of a polygon, P , in gen-
eral position is the directed dual of a deflated polygon,
P ′, such that, under an order- and chirality-preserving

bijection between the vertices of P and P ′, a vertex-
edge or vertex-vertex pair are visible in P ′ only if their
correspondents are visible in P . By chirality-preserving
bijection, we mean one under which a counter-clockwise
walk on the boundary of P corresponds to a counter-
clockwise walk on the boundary of P ′.

Theorem 13 A polygon, P , in general position with no
compatible directed dual is not deflatable.

Proof. It follows from Lemma 12 that if P is mono-
tonically deformable to a deflated polygon P ′, then the
directed dual of P ′ is compatible with P . �

Lemma 14 Suppose a polygon, P , in general position
has a compatible directed dual, D. Let P ′ be the deflated
polygon with directed dual D whose vertex-vertex and
vertex-edge visibilities are a subset of those of P under
an order- and chirality-preserving bijection. Then the
unique triangulation, T ′, of P ′ is a triangulation, T , of
P under the bijection and D can be constructed by di-
recting the undirected non-terminal edges of the directed
dual of T .

Proof. Note that T ′ is the visibility graph of P ′. Then,
since P is in general position and has the same vertex
count as P ′, it follows from the vertex-vertex visibility
subset property of P ′ that T ′ triangulates P under the
bijection.

It remains to show that, for every non-terminal edge
of the directed dual of T , either the edge is undirected or
it is directed as in D or, equivalently, that for every pair
of adjacent triangles, a and b, in T corresponding to the
triangles a′ and b′ in T ′, if (a, b) is right-reflex then so is
(a′, b′). Suppose, instead, that (b′, a′) is right-reflex. Let
e′ be the edge shared by a′ and b′, let u′ be the vertex
of a′ opposite e′ and let f ′ be the edge of b′ opposite
the reflex endpoint of e′. Then, by Lemma 4, u′ sees
an edge through f ′ but the corresponding visibility is
not present in P , contradicting the vertex-edge visibility
subset property of P ′. �

Theorem 15 There exists a polygon that cannot be de-
flated.

Proof. We show that the general position polygon, P ,
in Figure 8a has no compatible directed dual and so, by
Lemma 13, is not deflatable. Assume that the directed
dual, D, of a deflated polygon, P ′, is compatible with P .
Then, by Lemma 14, D can be constructed by directing
the undirected non-terminal edges of the directed dual
of some triangulation of P . Up to symmetry, P has a
single triangulation, its directed dual has a single undi-
rected non-terminal edge and there is a single way to
direct this edge. Then we may assume, without loss of
generality, that D is the tree shown in Figure 8b and, by

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

15

24th Canadian Conference on Computational Geometry, 2012

e

v

d

(a)

eD

dD

(b)

Figure 8: (a) A non-deflatable polygon, P , with its only
triangulation, up to symmetry, indicated with dashed
lines and (b) its only candidate for a compatible directed
dual, D, up to symmetry.

Theorem 8, the correspondents of the vertex v and edge
e in P ′ are visible. This contradicts the compatibility
of D. �

Note that, although the non-deflatability of P can
be shown using ad hoc arguments, the combinatorial
technique used here can be applied to other polygons.
See the full version of this paper [3] for examples.

f
u

Figure 9: A deflatable polygon with the same vertex-
vertex visibilities as the non-deflatable polygon shown
in Figure 8a.

Theorem 16 The vertex-vertex visibilities of a polygon
do not determine its deflatability.

Proof. The polygon in Figure 9 has the same vertex-
vertex visibilities as the non-deflatable polygon in Fig-
ure 8a and yet can be deflated by moving the vertex u
through the diagonal f . �

5 Summary and Conclusion

We presented the directed dual and showed that it cap-
tures the visibility properties of deflated polygons. We
then showed that two deflated polygons with the same
directed dual can be monotonically deformed into one

another. Next, we showed that directed duals can be
used to reason combinatorially, via directed dual com-
patibility, about the deflatability of polygons. Finally,
we presented a polygon that cannot be deflated and
showed that the vertex-vertex visibilities of a polygon
do not determine its deflatability.

A full characterization of deflatable polygons still re-
mains to be found. If the converse of Theorem 13 is
true, then the existence of a compatible directed dual
gives such a characterization. We conjecture the follow-
ing weaker statement.

Conjecture 1 The vertex-edge visibilities of a polygon
in general position determine its deflatability.

We conclude, however, by noting that, in light of
Mnev’s Universality Theorem [7], it is unknown if even
the order type of a polygon’s vertex set determines its
deflatability.

6 Acknowledgements

This research was partly funded by NSERC and by Car-
leton University through an I-CUREUS internship. We
would also like to thank Joseph O’Rourke for informing
us of a property of point set order types.

References

[1] B. Ábrego, M. Cetina, J. Leaños, and G. Salazar.
Visibility-preserving convexifications using single-vertex
moves. Information Processing Letters, 112(5):161–163,
2012.

[2] O. Aichholzer, G. Aloupis, E. D. Demaine, M. L. De-
maine, V. Dujmović, F. Hurtado, A. Lubiw, G. Rote,
A. Schulz, D. L. Souvaine, and A. Winslow. Convexi-
fying polygons without losing visibilities. In Proc. 23rd
Annual Canadian Conference on Computational Geom-
etry (CCCG), pages 229–234, 2011.

[3] P. Bose, V. Dujmović, N. Hoda, and P. Morin. Visibility-
monotonic polygon deflation. arXiv:1206.1982v1.

[4] R. Connelly, E. Demaine, and G. Rote. Straightening
polygonal arcs and convexifying polygonal cycles. In
Foundations of Computer Science, 2000. Proceedings.
41st Annual Symposium on, pages 432–442, 2000.

[5] S. Devadoss, R. Shah, X. Shao, and E. Winston. Defor-
mations of associahedra and visibility graphs. Contribu-
tions to Discrete Mathematics, 7(1):68–81, 2012.

[6] S. K. Ghosh. Visibility Algorithms in the Plane. Cam-
bridge University Press, 2007.

[7] N. Mnev. The universality theorems on the classification
problem of configuration varieties and convex polytopes
varieties. In O. Viro and A. Vershik, editors, Topology
and Geometry – Rohlin Seminar, volume 1346 of Lecture
Notes in Mathematics, pages 527–543. Springer Berlin /
Heidelberg, 1988. 10.1007/BFb0082792.

[8] J. O’Rourke. Art Gallery Theorems and Algorithms. Ox-
ford University Press, 1987.

24th Canadian Conference on Computational Geometry, 2012

16

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Common Developments of Three Different Orthogonal Boxes

Toshihiro Shirakawa Ryuhei Uehara∗

Abstract

We investigate common developments that can fold into
plural incongruent orthogonal boxes. It was shown that
there are infinitely many orthogonal polygons that fold
into two incongruent orthogonal boxes in 2008. In 2011,
it was shown that there exists an orthogonal polygon
that folds into three boxes of size 1 × 1 × 5, 1 × 2 × 3,
and 0×1×11. It remained open whether there exists an
orthogonal polygon that folds into three boxes of posi-
tive volume. We give an affirmative answer to this open
problem: there exists an orthogonal polygon that folds
into three boxes of size 7 × 8 × 56, 7 × 14 × 38, and
2 × 13 × 58. The construction idea can be generalized,
and hence there exists an infinite number of orthogo-
nal polygons that fold into three incongruent orthogonal
boxes.

1 Introduction

Since Lubiw and O’Rourke posed the problem in 1996
[5], polygons that can fold into a (convex) polyhedron
have been investigated. In the book on geometric fold-
ing algorithms by Demaine and O’Rourke in 2007, many
results about such polygons are given [4, Chapter 25].
Such polygons have many applications including toys
and puzzles. For example, the puzzle “cubigami” (Fig-
ure 1) is developed by Miller and Knuth, and it is a com-
mon development of all tetracubes except one (since the
last one has surface area 16, while the others have sur-
face area 18). One of the many interesting problems in
this area is whether there exists a polygon that folds into
plural incongruent orthogonal boxes. Biedl et al. gave
two polygons that fold into two incongruent orthogonal
boxes [3] (see also [4, Figure 25.53]). Later, Mitani and
Uehara constructed infinite families of orthogonal poly-
gons that fold into two incongruent orthogonal boxes
[6]. Last year, Abel et al. showed an orthogonal polygon
that folds into three boxes of size 1 × 1 × 5, 1 × 2 × 3,
and 0 × 1 × 11 [1]. However, the last “box” has vol-
ume zero; this is a so called “doubly covered rectangle”
(e.g., [2]). Therefore, it remains open to show whether
there is a polygon that can fold into three or more boxes
of positive volume.

We give an affirmative answer to this open problem;
there exists an orthogonal polygon that can fold into

∗School of Information Science, JAIST, Asahidai 1-1, Nomi,
Ishikawa 923-1292, Japan. uehara@jaist.ac.jp

Figure 1: Cubigami.

three incongruent orthogonal boxes of size 7 × 8 × 56,
7 × 14 × 38, and 2 × 13 × 58 (Figure 2)1.

The construction idea can be generalized. Therefore,
we conclude that there exist infinitely many orthogonal
polygons that can fold into three incongruent orthogo-
nal boxes.

2 Construction of the common development

The definition of the development of a solid can be found
in [4, Chap. 21]. Roughly, the development is the un-
folding obtained by slicing the surface of the solid, and
it forms a single connected simple polygon without self-
overlap. The common development of two (or more)
solids is the development that can fold into the solids.
In this paper, as developments, we only consider orthog-
onal polygons that consist of unit squares.

Intuitively, the basic construction idea is simple. We
first choose a common development of two different
boxes of size a × b × c and a′ × b′ × c′. We select one
of these two boxes; let it have size a × b × c. We cut
the two rectangles of size a × b (one at the top, and an-
other at the bottom of the box) into two pieces of size
a × b/2 each. Then we squash the box and make these
two rectangles of size a × b into two rectangles of size
(a + b/2) × b/2 = 2a × b/2 (Figure 3). However, this
simple idea immediately comes to a dead end; this op-
eration can be done properly if and only if a = b/2, and
hence we only change the rectangle of size 1×2 into the

1This figure is also available at http://www.jaist.ac.jp/

~uehara/etc/puzzle/nets/3box.pdf for ease to cut and fold.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

17

24th Canadian Conference on Computational Geometry, 2012

2x13x58

7x14x38

7x8x56

+

+

Figure 2: A common development of three different boxes of size 7 × 8 × 56, 7 × 14 × 38, and 2 × 13 × 58.

24th Canadian Conference on Computational Geometry, 2012

18

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Cut lines

New creases

Figure 3: Basic idea: squash the box.

other rectangle of size 2 × 1, which are congruent.

A

B

AB

a b c

d

a
b

c

d

(a)

(b)

Figure 4: Squash the box: cut and fold.

The main trick to avoid this problem is to move pieces
of the rectangles of size a × b of the box to the side
rectangles of size b×c and a×c. That is, after the squash
operation above, the surface areas of the resultant top
and bottom rectangles decrease, and the side rectangles
grow a little. A specific example is given in Figure 4;
in this example, the rectangle of size 8 × 7 is split into
two congruent pieces by a mid zig-zag line; each piece
in turn is divided into one central piece (labeled A, B
in Figure 4). The result is a rectangle of size 13×2. (In
Figure 4(a), the bold lines are cut lines, and dotted lines
are folding lines to obtain (b). The lines a, b, c, and d
are corresponding, and the gray triangles indicate how
two squares are arranged by the operation.) Among

the 56 squares, 56 − 26 = 30 squares are moved to the
four sides. We note that the perimeter of these two
rectangles is not changed since 7 + 8 + 7 + 8 = 2 + 13 +
2 + 13 = 30.

a
a/2

b

a

Figure 5: The base common development of two boxes
of size a × b × 8a and a × 2a × (2a + 3b).

To apply this idea, we choose a common development
of two boxes of size a × b × 8a and a × 2a × (2a +
3b) in Figure 5. This is a modification of the common
development of two boxes of size 1 × 1 × 8 and 1 × 2 ×
5 in [6, Figure 5]. To apply the idea, we cut each of
the top and bottom rectangles of size a × b into two
congruent rectangles of size a/2 × b. For any integers a
and b, the orthogonal polygon in Figure 5 is a common
development of two boxes of size a× b×8a and a×2a×
(2a + 3b) (the two folding ways are drawn in bold lines
in Figure 6).

The development in Figure 5 has useful properties for
applying the idea in Figure 3: (1) we can adjust the size
of the top and bottom rectangles to an arbitrary size,
and (2) two folding ways share several folding lines. Es-
pecially, in Figure 6, each of the two connected gray
areas is folded in the same way in both folding ways.
Thus we attach the gadget from Figure 3 at this area
letting a = 7 and b = 8. That is, we replace the rectan-
gles of size a/2×b by the rectangles A and B surrounded
by the zig-zag lines in Figure 4.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

19

24th Canadian Conference on Computational Geometry, 2012

(a)

(b)

Figure 6: Some properties of the common development
of two boxes of size a × b × 8a and a × 2a × (2a + 3b).

The only problem when applying the gadget is that
the zig-zag lines propagate themselves according to the
folding ways. That is, the zig-zag lines are glued to
the different edges in some folding. For example, a zig-
zag line at black triangle in Figure 6(a) is attached to
the edge at black triangle in the folding way in Fig-
ure 6(b). Thus, these edges must consist of the same
zig-zag pattern. On the other hand, this edge is at-
tached to the edge at the black square in the folding way
in Figure 6(a), which is attached to the black square in
Figure 6(b). Thus, they also must have the same zig-
zag pattern. Then the last edge is again attached to
the edge with the black circle in Figure 6(a), and this
is attached to the two edges with the smaller black cir-
cles in Figure 6(b). Then the loop of the propagation is
closed, and we obtain the set of the edges that have to
be represented by the zig-zag pattern.

Checking all the propagations, we finally obtain a

common development of three different boxes of size
7 × 8 × 56, 7 × 14 × 38, and 2 × 13 × 58 in Figure 2.

3 Generalization

12

15

11

108

7

Figure 7: Generalization of the zig-zag cut.

In Section 2, we set a = 7 and b = 8, and change the
rectangle of size 7 × 8 into 2 × 13. It is straightforward
to generalize this method. For example, setting a = 11
and b = 10, we can change the rectangle of size 11 × 10
into 4 × 17 (see Figure 7). In general, for each integer
k = 0, 1, 2, . . ., setting a = 4k+7 and b = 2(k+4), we can
change the rectangle of size a× b to 2(k +1)× (4k +13)
in the same way as in Figure 4. The difference here
from Figure 2 is in the number of turns of the zig-zags.
Therefore, we have the following theorem immediately:

Theorem 1 For each integer k = 0, 1, 2, . . ., there is a
common development that can fold into three different
boxes of size (4k+7)×2(k+4)×8(4k+7), (4k+7)×2(4k+
7) × 2(7k + 19), and 2(k + 1) × (4k + 13) × 2(16k + 29).

That is, there exists an infinite number of orthogonal
polygons that can fold into three incongruent orthogo-
nal boxes.

4 Concluding remarks

It is an open question if a polygon exists that can fold
into four or more orthogonal boxes such that all of them
have positive volume.

When two boxes of size a× b× c and a′ × b′ × c′ share
a common development, they satisfy a simple necessary
condition ab+ bc+ ca = a′b′ + b′c′ + c′a′ since they have
the same surface area. According to the experiments
in [6], this necessary condition seems also sufficient for
two boxes: for each pair of 3-tuples of integers satisfying
the condition, there exist many common developments
of two boxes of these size [6]. In this sense, the smallest
possible surface area that can fold into three different
boxes is 46; the area can produce three boxes of size
(1, 1, 11), (1, 2, 7), and (1, 3, 5). On the other hand, our
construction produces a polygon of large surface area.
The polygon in Figure 2 has area 1792. Applying the
same idea to the different common development in [6],
we also construct another smaller development of area

24th Canadian Conference on Computational Geometry, 2012

20

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

7x8x14

2x4x43

2x13x16

Figure 8: Another polygon that can fold into three boxes of size 7 × 8 × 14, 2 × 4 × 43, and 2 × 13 × 16.

532 (Figure 8). Comparing to the results for two boxes,
finding much smaller polygons would be a future work.
Especially, is there a common development of area 46
that can fold into three boxes of size (1, 1, 11), (1, 2, 7),
and (1, 3, 5)?

References

[1] Z. Abel, E. Demaine, M. Demaine, H. Matsui, G. Rote,
and R. Uehara. Common Development of Several Dif-
ferent Orthogonal Boxes. In 23rd Canadian Conference
on Computational Geometry (CCCG 2011), pages 77–82,
2011.

[2] J. Akiyama. Tile-Makers and Semi-Tile-Makers. The
Mathematical Association of Amerika, Monthly 114:602–
609, August-September 2007.

[3] T. Biedl, T. Chan, E. Demaine, M. Demaine, A. Lubiw,
J. I. Munro, and J. Shallit. Notes from the University

of Waterloo Algorithmic Problem Session. September 8
1999.

[4] E. D. Demaine and J. O’Rourke. Geometric Folding
Algorithms: Linkages, Origami, Polyhedra. Cambridge
University Press, 2007.

[5] A. Lubiw and J. O’Rourke. When Can a Polygon Fold
to a Polytope? Technical Report Technical Report 048,
Department of Computer Science, Smith College, 1996.

[6] J. Mitani and R. Uehara. Polygons Folding to Plural
Incongruent Orthogonal Boxes. In Canadian Conference
on Computational Geometry (CCCG 2008), pages 39–42,
2008.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

21

24th Canadian Conference on Computational Geometry, 2012

22

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Unfolding Rectangle-Faced Orthostacks

Erin W. Chambers∗ Kyle A. Sykes† Cynthia M. Traub‡

Abstract

We prove that rectangle-faced orthostacks, a restricted
class of orthostacks, can be grid-edge unfolded without
additional refinement. We prove several lemmas appli-
cable to larger classes of orthostacks, and construct an
example to illustrate that our algorithm does not di-
rectly extend to more general classes of orthostacks.

1 Introduction

An unfolding of a polyhedron is a cutting of the surface
of the polyhedron such that the surface may be unfolded
into the plane as a simple polygon where the interior
of any two faces does not overlap. An edge unfolding
considers only cuts made along edges, while general un-
foldings allow cuts anywhere on the surface.

There are many open questions relating to polyhe-
dral unfoldings. For example, while it is known that
not every nonconvex polyhedron has an edge-unfolding,
it is still open whether every polyhedron has a gen-
eral unfolding. In general, progress has been made on
this problem by considering restricted classes of poly-
hedra [2, 3, 10, 5] or by varying the type of cuts that
are allowed, such as vertex unfoldings [7, 6, 4] or star
unfoldings [1, 9]. See [8, 11] for surveys of this area.

We will consider an unrefined grid-edge unfolding of a
class of axis-orthogonal polyhedra known as orthostacks
(formally defined in Section 2). An unrefined grid-edge
unfolding creates new edges on the surface of a poly-
hedron by intersecting the surface with planes parallel
to the x, y, z−axes through every vertex of the polyhe-
dron. Any of the edges from the original polyhedral
surface as well as these new edges are now available for
cutting. The technique of grid-edge refinement can be
generalized by further dividing every rectangle of the
surface into k × l rectangles. An unrefined grid-edge
unfolding is thus a 1 × 1 refinement. It is known that
every orthostack can be grid-edge unfolded with a 1× 2
refinement [2]. In this paper we prove that a certain
class of orthostacks (which we call “rectangle-faced or-

∗Department of Mathematics and Computer Science, Saint
Louis University, echambe5@slu.edu. Research supported in part
by the NSF under Grant No. CCF 1054779.
†Department of Mathematics and Computer Science, Saint

Louis University, ksykes2@slu.edu
‡Department of Mathematics and Statistics, Southern Illinois

University Edwardsville, cytraub@siue.edu

Figure 1: (a) An example of an orthostack. (b) A
rectangle-faced orthostack.

thostacks”) can be grid-edge unfolded without further
refinement of the surface.

Our algorithm is a natural one given the structure
of orthostacks, where we unfold each layer of the or-
thostack and connect them via “bridges” between the
layers. It has a similar setup to the one for the 1 × 2
refinement [2], although theirs cannot choose bridges
in the same fashion; they instead cut each band verti-
cally in half to ”shift” the bridge-rectangle to the top
position. Unfortunately, our algorithm will not extend
to general orthostacks; in section 5 we present a (non-
rectangular-faced) orthostack which our algorithm fails
to unfold. We conclude with a discussion of how our
structural results may be useful for computing 1 × 1
unfoldings of more general classes of orthostacks.

2 Definitions

An orthostack P is a genus-zero axis-orthogonal poly-
hedron with the property that that in at least one di-
mension, each distinct cross section of P is an orthog-

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

23

24th Canadian Conference on Computational Geometry, 2012

onal polygon that is both connected and simply con-
nected (containing no holes). Without loss of gener-
ality, assume this dimension is the z−dimension. Fol-
lowing the terminology used in [2], we name the faces
of the orthostack according to the axis to which they
are orthogonal, thus giving rise to x−, y− and z−faces.
Changes in the z−cross sections of an orthostack occur
at finitely many z−coordinates z0, z1, . . . , zk. We call
the i-th band Bi the collection of x− and y−faces that
form the boundary of the orthostack for zi−1 ≤ z ≤ zi,
where i ranges from 1 to k. So the faces of the or-
thostack P are therefore partitioned into bands Bi

(1 ≤ i ≤ k) and the z−faces that occur in the planes
z = z0, z = z1, . . . , z = zk. Note that the z−faces oc-
cur at the “top” and “bottom” of the orthostack as well
as in the layers forming transitions between bands. We
will also let layer Li be the subset of the orthostack
with zi−1 ≤ z ≤ zi, which is the 3-dimensional solid
bounded by Bi, z = zi−1, and z = zi.

We call an orthostack rectangle-faced if every z−face
is a rectangle, excluding the z−faces on the top of bot-
tom of the orthostack, and edges of these z-faces are en-
tirely along one band or another (with no edge belonging
to both adjacent bands). Examples of orthostacks with
and without the rectangle-faced property are shown in
Figure 1.

3 Structural results

We begin with several structural lemmas regarding or-
thostacks. Note that these results apply to any or-
thostack, not just rectangle-faced ones, and may be of
use for more general classes of orthostacks.

Lemma 1 Any z-face at height z = zi, 1 ≤ i ≤ k − 1,
must be incident to both Bi and Bi+1.

Proof. Suppose to the contrary that some z-face, R,
at height z = zi has edges only incident to one band,
which we assume without loss of generality is Bi. The
face R does not occur at z = z0 or z = zk due to our
initial assumption on i, so there must exist a subset
of Bi ∩ (z = zi) that is not incident to R. (Else, the
orthostack will not continue past the face R, a contra-
diction.) The intersection produced by slicing the or-
thostack with a plane z = zi − ε for a sufficiently small
value of ε will either be disconnected or a degenerate
polygon consisting of (at least) two polygons attached
at a single vertex. Both situations contradict the defini-
tion of an orthostack, since each z-slice must be a simply
connected polygon. Therefore, R must have edges inci-
dent to both Bi and Bi+1. �

Lemma 2 The perimeter of any z-face at height z = zi,
1 ≤ i ≤ k − 1, is partitioned into two contiguous com-
ponents, one incident to band Bi and the other incident

to Bi+1. Moreover, some pair of opposite edges a and
b of the face will have edge e1 containing a segment in-
cident to Bi and edge e2 containing a segment incident
to Bi+1.

Proof. Assume that the boundary of a z-face R is
partitioned into more than two contiguous components
from bands Bi and Bi+1; see Figure 2. At this zi layer,
the rectangle must be visible; this happens due to a
change in the layers of the orthostack. Namely, the
cross-sections above and below z = zi are distinguished
by which cross-section includes R. Thinking of R in
terms of x and y coordinates, we assume without loss
of generality that, for sufficiently small ε, R× [zi− ε, zi]
is contained in layer Li and R× [zi, zi + ε] is exterior to
layer Li+1.

Figure 2: A 3-dimensional view of how rectangle R
(shaded darker) appears in the orthostack; the adjacent
portions of Bi and Bi+1 that border R are shown red
(striped) and blue (solid).

Since each intersection of the orthostack with a z-
plane is one simply connected polygon, the two or more
connected components of R ∩ Bi+1 must be pathwise
connected to one another via Bi+1 ∩ (z = zi), a curve
we color solid blue in Figure 3. Moreover, since the blue
curve is the boundary of a simply connected polygon in
the z = zi plane, it will not self intersect.

Two possible orientations of these paths are given in
Figure 3, where the rectangle boundaries shaded in red
come from band Bi and those from Bi+1 are shaded in
blue. In case 1 (Figure 3, left), there is a region (il-
lustrated near the upper right corner of the rectangle)
exterior to the cross section of the rectangular face but
completely surrounded by the union of the rectangle
with the area bounded by the solid blue curve. This
forms a cross-section at z = zi in the orthostack which
fails to be simply connected, contradicting the defini-
tion of orthostack. In case 2 (Figure 3, right), the blue
curve represents an “inner” boundary of Bi+1, which
means that the cross section at z = zi will also fail to be
simply connected (since there is a gap between the rect-
angle and the blue curve marking the inner boundary

24th Canadian Conference on Computational Geometry, 2012

24

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Figure 3: Two possible visualizations for our face R,
where the red (dashed) component of the boundary is
adjacent to band Bi and the blue (solid) is adjacent to
band Bi+1.

of Bi+1). In either case, we contradict the assumption
that the original object was an orthostack and therefore
had simply connected orthogonal cross sections.

Note that in either of the two cases, the contradic-
tion appears between two components of the boundary
of R induced by Bi+1 that appear sequentially around
the boundary of R. While our image only shows 2
connected components total, the same contradiction is
present even if more than two connected components
are present along the boundary of R. �

We will use lemma 2 in the next section to set up
“bridges” between the unfolded bands in our algorithm,
but we also need to characterize the order in which the
z-faces are encountered before proceeding with our al-
gorithm.

Lemma 3 For any orthostack, the cyclic ordering of
the rectangles at height z = zi, given by tracing around
the band Bi counterclockwise and numbering z-faces by
the order in which they are encountered, is the same
as the cyclic ordering given by tracing the band Bi+1

counterclockwise.

Proof. Begin by fixing 1 ≤ i ≤ k − 1. First suppose
that the bands Bi and Bi+1 do not share any common
point. If there are any z-faces, then using the previous
lemma, we know that the z-face must form an annulus
bounded by Bi on one side and Bi+1 on the other, since
any other configuration will either result in a common
point or non-contiguous components adjacent to Bi or
Bi+1. Moreover, this must be the only z-face at this
level, since otherwise the band must stop tracing the
boundary of the z-face and later re-enter it after tracing
around another z-face, which results in that layer not
being simply connected. Since there is only one z-face,
the statement of the lemma holds trivially.

Now if Bi and Bi+1 have some common point, pick
any one of them as a start point. Proceed counterclock-
wise on a path along the boundary at cross section zi

shared by both bands until the bands diverge, which
must happen if there is any z-face at height zi. When
the path diverges, you have met a z-face α at a bound-
ary point where Bi and Bi+1 meet. One path will trace
the boundary of α shared with Bi and the other will
trace the boundary of α shared with Bi+1. Note that
neither band can move away from α and then return,
since by Lemma 2 we know that each band stays adja-
cent to the face in a single connected component along
the boundary of the α. Label this z-face as α1. The
paths continue tracing their respective boundaries un-
til they intersect at a point shared by both boundaries,
which again follows from Lemma 2. At this point, the
paths merge into a single path again and continue trac-
ing counterclockwise along a portion adjacent to both
bands (which possibly consists of only a single point, if
we meet the next z-face immediate). We can continue
following the bands counterclockwise along the shared
boundary at height zi, with the bands diverging only
when they meet the same new z-face. We will label
these z-faces in the order we meet them. Proceeding in
this manner around the perimeter of both bands gives a
unique labeling of all the z-faces as α1, α2, . . . , αk which
is common to both bands, so the clockwise ordering is
identical. �

4 Algorithm

In this section, we restrict our attention to rectangle-
faced orthostacks, where the z-faces are rectangles whose
edges entirely belong to the boundary of Bi or Bi+1, but
not both.

Our unfolding algorithm proceeds as follows. We
will unfold into an xz-plane, in order of increasing z-
coordinate. References to x-coordinates will refer to
the unfolded shape in this plane. Start by unfolding
band B1 arbitrarily. Attach the z0-face arbitrarily be-
low band B1. Loop through the following steps for i = 1
to k − 1.

1. Consider all the rectangles from layer z = zi. We
know these must attach to both Bi and Bi+1 on
some opposite pair of edges by Lemma 2. We con-
sider only these opposite edges as possible attach-
ments for these z-faces, and attach them arbitrarily
to the band Bi.

2. Now among the attached rectangles, choose the
one which has the highest x-coordinate; this is our
“bridge” between Bi and Bi+1. We then attach
band Bi+1 to the bridge rectangle and unfold Bi+1

“upward” into the increasing x direction.

Lastly, we can glue zk-face to the final band arbitrar-
ily, since there is no “next” band to conflict with any
possible attachment point.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

25

24th Canadian Conference on Computational Geometry, 2012

Figure 4: Top: An example of a rectangle-faced or-
thostack. Bottom: The same orthostack when viewed
looking towards the −z direction. A solid red dot indi-
cates where we choose our initial cut for band B1 (Red,
bottom layer in top picture), a blue X indicates where
the band B2 (Blue, middle layer) is cut, and the hollow
green point indicates where the band B3 (Green, top
layer) is cut.

5 Conclusion & Further Work

It remains to be shown whether every orthostack can
be grid-unfolded with a 1x1 refinement. Recall that the
structural lemmas in Section 3 extend to orthostacks
in general, and might lend insight to the more general
problem. In particular, even with rectangles that are
not rectangle-faced, if the faces are rectangular then a
version of Lemma 2 applies, and there must be a pair of
edges which at least partially border the two adjacent
bands.

The obvious extension of our algorithm to orthostacks

x

z

Figure 5: An partial unfolding of the orthostack in Fig-
ure 1(b). The bands are not to scale, and only the
z−faces where z = z1 between B1 and B2 are shown
attached to B1.

with only rectangular faces between the bands would be
to again choose the bridge rectangle which has the high-
est x-coordinate, and unfold the adjacent band in the
increasing x direction. However, in this case, since the
bridge may not have an entire edge which is adjacent to

24th Canadian Conference on Computational Geometry, 2012

26

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Bi+1, we lose the fact that we can arbitrarily glue rect-
angles as in step 1. This insight leads to an example
of a rectangular orthostack (where all z-faces are rect-
angles but may have edges adjacent to each band) on
which our algorithm will fail; see Figure 6. Note that
in this example, the faces shaded red will overlap when
unfolded via our algorithm.

Figure 6: A rectangular orthostack (that is not
rectangle-faced) where our algorithm fails to unfold into
a planar polygon.

As an alternative, we propose the following algorithm.
Instead of choosing the rectangle with the largest x-
coordinate as our “bridge” between Bi and Bi+1 in
step 2, we could instead choose the rectangle which has
the greatest width (measured so that this width has
a component of Bi along one side and Bi+1 along the
opposite side, so that it could serve as a bridge). In-
tuitively, this rectangle separates the bands as much as
possible, so that every other rectangle would have some
point of attachment along the bands where it would fit
without overlapping the neighboring band. The prob-
lem which remains is to show that none of the rectan-
gles would overlap each other, since these rectangles are
not rectangle-faced. This reduces to almost a type of
matching argument; each rectangle has several possible
attachment points, and we must find a selection so that
no two overlap. It seems likely that Lemma 3 may prove
useful here, since it provides a strong ordering on where
the faces can be attached.

Extending this type of algorithm to non-rectangular
orthostacks seems more difficult, since the notion of a
good bridge would necessarily be more complex when z-
faces are not simple rectangles. Choosing such a bridge
would involve search for all possible ways that the z-
faces could attach to the bands, and somehow finding
the best (either “highest” or “widest”) such bridge, as
well as dealing with more complex overlap between z-
faces when attached to the bands.

References

[1] B. Aronov and J. O’Rourke. Nonoverlap of the star
unfolding. Discrete Comput. Geom., 8:219–250, 1992.

[2] T. Biedl, E. D. Demaine, M. L. Demaine, A. Lubiw,
J. O’Rourke, M. Overmars, S. Robbins, and S. White-
sides. Unfolding some classes of orthogonal polyhedra.
In Proc. 10th Canad. Conf. Comput. Geom., pages 70–
71, 1998.

[3] M. Damian, R. Flatland, H. Meijer, and J. O’Rourke.
Unfolding well-separated orthotrees. In 15th Annu. Fall
Workshop Comput. Geom., pages 23–25, Nov. 2005.

[4] M. Damian, R. Flatland, and J. O’Rourke. Grid vertex-
unfolding orthogonal polyhedra. In Proc. 23rd Sympos.
Theoret. Aspects Comput. Sci., volume 3884 of Lecture
Notes Comput. Sci., pages 264–276. Springer-Verlag,
2006.

[5] M. Damian, R. Flatland, and J. O’Rourke. Epsilon-
unfolding orthogonal polyhedra. Graphs and Combi-
natorics, 23[Suppl]:179–194, 2007. Akiyama-Chvátal
Festschrift.

[6] E. Demaine, J. Iacono, and S. Langerman. Grid vertex-
unfolding orthostacks. In J. Akiyama, M. Kano, and
X. Tan, editors, Discrete and Computational Geome-
try, volume 3742 of Lecture Notes in Computer Science,
pages 76–82. Springer Berlin / Heidelberg, 2005.

[7] E. D. Demaine, D. Eppstein, J. Erickson, G. W. Hart,
and J. O’Rourke. Vertex-unfoldings of simplicial man-
ifolds. In A. Bezdek, editor, Discrete Geometry, pages
215–228. Marcel Dekker, 2003.

[8] E. D. Demaine and J. O’Rourke. Geometric Folding
Algorithms: Linkages, Origami, Polyhedra. Cambridge
University Press, 2007.

[9] J. Itoh, J. O’Rourke, and C. Vı̂lcu. Star unfolding con-
vex polyhedra via quasigeodesic loops. Discrete Com-
put. Geom., 44:35–54, 2010.

[10] J. O’Rourke. Unfolding orthogonal terrains.
Technical Report 084, Smith College, July 2007.
arXiv:0707.0610v4 [cs.CG].

[11] J. O’Rourke. Unfolding orthogonal polyhedra. In
J. Goodman, J. Pach, and R. Pollack, editors, Proc.
Snowbird Conference Discrete and Computational Ge-
ometry: Twenty Years Later, pages 307–317. American
Mathematical Society, 2008.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

27

24th Canadian Conference on Computational Geometry, 2012

28

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

A Data Structure Supporting Exclusion Persistence Range Search

Stuart A. MacGillivray∗ Bradford G. Nickerson†

Abstract

We present a new type of query on spatiotemporal data,
termed ”exclusion persistence”. When bulk updates are
made to stored spatial data, all previous versions remain
accessible. A query returns the most recently observed
data intersecting the query region, while permitting the
exclusion of any subset of previous versions in areas
where data overlaps. We propose several solutions to
this new problem defined on a set of N points. For an
axis-aligned rectangular exclusion persistence query, we
give a 2-dimensional linear-space data structure that, af-

ter m updates, answers the query in O(
√

mN
B +m2+ K

B)

I/Os, where B is the number of points fitting in one disk
block, and K is the number of points in range.

1 Introduction

In most large scale earth observation systems, data is
gathered in short duration surveys of significantly sized
regions. To maintain up-to-date representations of the
covered area, successive surveys are performed. Sur-
veys normally cover different areas, resulting in overlap
as shown in Figure 1. These types of surveys usually
observe a massive number of data points for each up-
date. Queries are expected to return data intersect-
ing the query region from the most recent survey where
overlap occurs. The survey areas can be represented as
overlapping polygonal regions, where the newest data in
overlapping regions replaces older data.

When searching for up-to-date information, various
search options are possible. If the data is obtained from
multiple sources, we may wish to exclude all information
obtained from an unreliable source, or restrict search
only to those data sources we trust. A search that ex-
cludes all data in a specific time period is useful if un-
correctable errors are known to occur in data observed
during that period. Lastly, we may simply wish to ex-
amine the region as it was in some period before the
present time.

Given point data that maps to d-dimensional space,
we consider search on N data points added over the
course of m updates. Normally, N � m and we can

∗Faculty of Computer Science, University of New Brunswick,
t172q@unb.ca
†Faculty of Computer Science, University of New Brunswick,

bgn@unb.ca

assume that m < logN . This is a reasonable assump-
tion under all known earth observation applications; for
instance, LIDAR surveys can contain tens of millions of
points per update [5].

Figure 1: Overlapping updates and a query rectangle
R, showing Q = (R, 5, {3}) where the query time tq =
t5, the excluded points index set Te = {3}, and d =
2. Areas of overlap have multiple distinct accessible
versions.

2 Exclusion Persistence

These problems do not map cleanly to any existing
model of persistence as described by Tarjan et al [4]. To
resolve the issue, we define the idea of ”exclusion persis-
tence”. If we assume that new data in a spatial region
replaces older data in the same region, we can apply
exclusion persistence to support the types of searches
described above.

A data structure supporting exclusion persistence
maintains updates independent of one another, and
searches performed on the structure can omit any subset
of past updates from consideration. Formally, we have
m sets of d-dimensional data points S1...Sm, contained
in bounding regions B1...Bm and added to the structure
at times t1...tm, respectively.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

29

24th Canadian Conference on Computational Geometry, 2012

Figure 2: The 2m possible versions in exclusion per-
sistence with m = 5 updates, with the circled version
matching the example query from Figure 1.

Figure 3: Subregions for rectangular regions grow
quadratically in the worst case, as shown with m = 5.

We make the simplifying assumption that data is ob-
served at a single time epoch, representing the time pe-
riod the update covers. Given a convex query region

R to search, and a set Te of time epoch indices whose
matching data sets are excluded from consideration, we
define an exclusion persistence range search as follows.

An exclusion persistence range query is defined as
Q = (R, q, Te), which asks to find all points inter-
secting R whose time epoch ti ≤ tq, and whose time
epoch index i 6∈ Te. The result of such a query is
the union of data contained in queried regions Ci over

all non-excluded updates i, i.e.
q⋃

i=1
i 6∈Te

Ci ∩ Si, where

Ci = (Bi ∩R) \ (Bi ∩ (
q⋃

j=i+1
j 6∈Te

Cj).

This search will return all data in the valid sets added
on or before tq intersected by R, returning only the
newest data (whose time epoch ti ≤ tq, and whose time
epoch index i 6∈ Te) in areas where bounding regions
overlap. As any set may be excluded for a given query,
however, older data sets are still accessible and must be
maintained.

Informally, the problem can be summarized as fol-
lows. We have m updates, each of which is a spatial re-
gion Bi containing a set of data points Si added to our
structure at a time ti. We assume that new data takes
precedence over old data, meaning that in areas where
multiple regions overlap, we only return data from the
newest set. A structure not supporting any form of per-
sistence could thus simply delete all data falling within a
new region Bi before adding Si to the structure. While
partial persistence allows us to ignore all data newer
than the query time, an exclusion persistence search has
the ability to ignore any of the updates at the searcher’s
discretion.

While storing B points per disk block in the I/O
model [7], is there a linear space data structure using

O((N
B)

d−1
d + K

B) I/Os to answer an exclusion persistence
range search returning K points? If not, what tradeoffs
are possible? Henceforth, we restrict the query region
R to an axis-aligned rectangle.

3 Näıve Solutions

Two näıve solutions are possible. The first is to sim-
ply store each update completely independently, search
all appropriate data sets independently, and remove ex-
cluded data after the fact. In such a scenario, efficiency
can be obtained by storing each update in an optimal
linear-space structure such as the Priority R-Tree [3].
While this means that only linear storage space is re-
quired overall, searches will be highly redundant. As we
store no information about where overlap occurs, we re-
turn data from old updates even if they are completely
covered by newer ones. In the worst case, each update
region completely covers the previous, leaving us with a

worst case of O(m(N
B)

d−1
d + mK

B) search I/Os.

24th Canadian Conference on Computational Geometry, 2012

30

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

The second näıve approach is to use full persistence
to store every possible combination of sets as a different
version, and simply search the appropriate one. This
gives the desired search I/Os, but to cover all possi-
ble combinations the storage requirement increases by
a factor of 2m−1. This is evident by virtue of the fact
that m updates can be combined to produce 2m possible
versions, as shown in Figure 2, and that any given data
point will be part of half those combinations. For N
points, this requires O(2m−1N

B) disk blocks of storage,
as each data point is stored in 2m−1 versions.

4 Convex Regions Approach

Neither of the näıve solutions is acceptable; näıve linear
storage has highly redundant searches, and full persis-
tence is wasteful of space no matter what the value of
m is. An improved solution is to store the updates or
sets of points independently, and split data into subsets
based on spatial overlap of the updates. We do this
to avoid the problem of näıve linear storage, splitting
old updates according to how newer ones cover them.
We first consider the restricted case when all updates
have a bounding region consisting of a convex polygon;
our results are dependent on an upper bound f on the
number of faces per polygon.

Let a 2-d structure solving this problem be defined as
follows. In memory, we store an index of the m regions
covering the m data sets. We also store, for each polyg-
onal subregion created from the intersection of these
m regions, a stack of pointers to data structures on
disk. Each structure is guaranteed to contain data cov-
ering the subregion, meaning that only the topmost non-
excluded structure of the stack must be searched. The
structures on disk are any linear-space data structure
supporting range search in O((N

B)
1
2 + K

B) I/Os (e.g. a
Priority R-Tree [3]). A range search determines (in main
memory) which sub-regions are intersected, follows the
pointer from the stack to the most recent non-excluded
data structure in each intersected sub-region, and per-
forms an I/O-efficient range search independently on
each structure.

As the sub-regions are distinct, there is no redun-
dancy in this range search. The overall search cost is
reasonable for small m; an exclusion range search re-
quires O((mN

B)
1
2 + m2 + K

B) I/Os in the worst case, as
shown in Theorem 2. The m2 term will not dominate

unless m > 3

√
N
B . Our initial proof in Theorem 2 re-

quires that the regions be axis-aligned rectangles, but
Theorem 6 extends the result to f -sided convex polyg-
onal regions.

Lemma 1 Given xi ∈ R>0 such that
m∑
i=1

xi = N , then

m∑
i=1

√
xi has a maximum value of

√
mN when xi = N

m∀i.

Proof. Define a function C =
m∑
i=1

√
xi. As xi ∈ R>0

and
m∑
i=1

xi = N , this can be written as C =
m−1∑
i=1

√
xi +

√
N −

m−1∑
i=1

xi. For all xi where 1 ≤ i ≤ m − 1, we

take the partial derivative ∂C
∂xi

= 1
2
√
xi
− 1

2

√
N−

m−1∑
i=1

xi

.

We find the critical values of C by setting each partial
first derivative to zero, resulting in simultaneous equa-

tions xi = (N −
m−1∑
i=1

xi)∀i. A unique solution exists

where xi = N
m∀i. The second derivatives are ∂2C

∂xi∂xj
=

− 1

4

√
N−

m−1∑
i=1

xi

3 ∀i 6= j, and ∂2C
∂x2

i
= −1

4
√
xi

3 − 1

4

√
N−

m−1∑
i=1

xi

3 .

As these second derivatives are negative for all values
of xi, this critical value is a global maximum. In short,
C is maximized when xi = N

m∀i, and has a value of
m∑
i=1

√
N
m = m

√
N
m =

√
mN . �

Theorem 2 Assuming we have N 2-dimensional data
points from m updates, where each update is covered
by an axis-aligned rectangle, there exists a data struc-
ture that can perform a rectangular exclusion persistence
range search in O((mN

B)
1
2 +m2 + K

B) I/Os.

Proof. With m overlapping rectangles, the maximum
number of intersections between their subregions and
a horizontal or vertical line is 2m − 1; the number of
subregions intersecting each side of the query rectangle
R is, therefore, linear in m. Figure 3 shows that in
the worst case the number of subregions is quadratic
in m, meaning that at most O(m2) subregions can be
covered by R. For each of these O(m2) subregions, we
store a stack of pointers to linear space optimal I/O-
efficient structures on disk storing data covering that
subregion. At most one of these structures is searched
for each subregion intersecting R. The geometric index
structure describing each of the O(m2) subregions is
assumed to be in main memory, so the I/O cost to find
the intersected subregions is zero.

Our range search is an aggregate of range searches
over the intersected subregions, with each subregion i
containing xi points. The subregions intersecting the
sides require O(

√
xi

B + 1 + bKi

B c) I/Os to return Ki

points. Subregions entirely contained by the search re-
quire O(1 + bKi

B c) I/Os. The worst case occurs when
all N points are distributed among the n1 subregions
intersected by the sides of R and none are in the n2 sub-
regions contained by R (see the illustration in Figure 4).

This gives a total cost of O(
n1∑
i=1

√
xi

B +n1+n2+ K
B) I/Os

to return K points, and
n1∑
i=1

xi = N . Lemma 1 shows

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

31

24th Canadian Conference on Computational Geometry, 2012

that
n1∑
i=1

√
xi

B has a maximum value of
√

n1N
B , as in the

worst case,
n1∑
i=1

xi = N . As n1 is O(m) and n2 is O(m2),

the total search cost is O((mN
B)

1
2 +m2 + K

B) I/Os. �

Figure 4: A worst case query on m = 4 subregions
intersecting O(m) subregions with the potential to be
empty. Here, n1 = 12 and n2 = 0.

While the rectangular case is useful, we can gener-
alize. We still require that the query region R be an
axis-aligned rectangle, but the regions defining the data
sets can be any convex polygon of at most f sides.

Theorem 3 The intersection of m overlapping convex
polygons with at most f sides will produce at most fm2

subregions.

Proof. By the definition of convexity, a line intersect-
ing a convex polygon can intersect at most two of its
sides. When adding a new f -sided polygon to a set of
i−1 polygons, each side of the ith polygon can intersect
at most two sides from each previous polygon. These
intersections partition each new side into 2(i− 1) + 1 =
2i−1 line segments. Each of these line segments can be-
long to at most two subregions, and the addition of the
ith polygon can create at most one new subregion for
each segment. The addition of the ith polygon to the set
therefore creates at most f(2i−1) = 2if−f subregions.
A set of m polygons therefore has an upper bound of
m∑
i=1

2if−f = 2f(m(m+1)
2)−mf = fm2+mf−mf = fm2

subregions. �

Lemma 4 A straight line passing through a set of m
convex polygons can intersect at most 2m−1 subregions.

Proof. A straight line passing through a convex poly-
gon begins intersecting that polygon at one point, and

stops intersecting it at another. A straight line passing
through a set of m polygons therefore has at most 2m
intersections where it begins or stops passing through a
polygon. The straight line intersects a new subregion if
and only if one of those 2m intersections occurs, and the
last such intersection denotes where the line stops inter-
secting any of the m polygons; as such, it can intersect
at most 2m− 1 subregions. �

Lemma 5 The sides of a rectangular query region R
intersect O(m) subregions of a set of m convex polygons.

Proof. Lemma 4 shows that a straight line can inter-
sect at most 2m− 1 subregions from a set of m convex
polygons. Each side of R is a straight line, and as such
the sides of R can only intersect at most 8m− 4 subre-
gions. �

Theorem 6 Assuming we have N 2-dimensional data
points from m updates, where each update is covered
by a convex region with at most f sides, there exists a
data structure that can perform a rectangular exclusion
persistence range search in O((mN

B)
1
2 +fm2 + K

B) I/Os.

Proof. Lemma 5 shows that O(m) subregions will in-
tersect the sides of the query region R, and Theorem 3
shows that O(fm2) subregions can be contained by a
query. The proof of Theorem 2 therefore applies to the
general case, giving the desired I/O bound. �

5 Algorithms

Our convex regions solution to exclusion persistence
range search consists of a spatial partitioning of 2-
dimensional space into subregions, with each subregion
having a stack of pointers to spatial data structures on
disk. Each pointer is given a time stamp denoting what
update added its data. Space not covered by any update
is treated as a subregion with an empty stack. Figure 5
illustrates the structure, demonstrating a simple inser-
tion.

Algorithm 2 shows an implementation of exclusion
persistence range search. The repeat-until loop finds the
top non-excluded time epoch on the stack for each sub-
region. Lines 9-14 of Algorithm 2 are invoked at most
once per subregion. We apply the entire query region
R to each intersected subregion at line 13 for simplicity,
as each structure only contains data within its subre-
gion. The subregion shape could force a range search on
highly clustered data, which is still linear space optimal.
While our analysis of worst case range search requires
axis-aligned rectangular query regions, Algorithm 2 can
also be used with general polygonal queries. Algorithm
2 provides the correct exclusion persistence range search
result by specifying Te such that i ∈ Te∀ti > tq.

24th Canadian Conference on Computational Geometry, 2012

32

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Algorithm 1: Insert(P ,S,R,t,j)

Input : A convex regions data structure P , a set
S of new data points to be inserted, a
convex shape R that contains S, a time
epoch t associated with S, the index j for
time epoch t

Output: An updated convex regions data
structure P that includes S

1 begin
2 Use polygonal differences to find all subregions

Pi of P that intersect R;
3 for each subregion Pi ∈ P contained by R do
4 Search S for the points Si that fall within

Pi;
5 Keeping Si in memory, delete the points in

Si from S;
6 Bulk-load Si into a new linear-space data

structure Di stored on disk;
7 Push a pointer to Di stamped with time

(t, j) onto the stack for Pi;

8 for each subregion Pi ∈ P intersecting the edges
of R do

9 Update P with new subregions Pk formed
by the intersections of Pi and R;

10 for each pointer p in the stack for Pi, from
the bottom to the top do

11 Follow the pointer p to its data
structure Di, storing the time stamp
(ti, `) in memory;

12 for each new subregion Pk do
13 Search Di for the set of points Sk

that fall within Pk; Bulk-load Sk

into a new linear-space data
structure Dk stored on disk;

14 Push a pointer to Dk stamped with
time (ti, `) onto the stack for Pk;

15 Delete Di;

16 for each new subregion Pk do
17 Search S for the points Sk that fall

within Pk;
18 Keeping Sk in memory, delete the points

in Sk from S;
19 Bulk-load Sk into a new linear-space

data structure Dk stored on disk;
20 Push a pointer to Dk stamped with time

(t, j) onto the stack for Pk;

Our data structure has an update cost dependent on
the data structures used for the subregions. Our anal-
ysis requires a linear-space spatial data structure sup-

porting range search in O(
√

N
B + K

B) I/Os, such as the

Algorithm 2: Search(P ,R,Te)

Input : A convex regions data structure P , a
query region R, a set Te of time epoch
indices to be excluded

Output: A set K of points found by the exclusion
persistence query

1 begin
2 Use polygonal differences to find all subregions

Pi of P that intersect R;
3 for each subregion Pi ∈ P intersecting R do
4 repeat
5 Pop the top pointer pk from the stack

for Pi;
6 Let (tk, j) = the time stamp for pk;

7 until j 6∈ Te or the stack for Pi is empty ;
8 if j 6∈ Te then
9 Follow pk to its data structure Dk;

10 if Pi is contained by R then
11 Add all points in Dk to K;
12 else
13 Si = a range search on Dk over R;
14 Add the points in Si to K;

15 Push all popped pointers pk back onto the
stack for Pi with their respective time
stamps (tk, j);

bkd-tree [6] or Priority R-Tree [3]. From Theorem 2.4
of [3] we know that such a structure can be bulk-loaded
in O(N

B logM/B
N
B) I/Os. This leads to the following

theorem:

Theorem 7 Using Algorithm 1, the total insertion cost
of m updates into a convex regions data structure re-
quires O(mN

B logM/B
N
B) I/Os, where N is the total

number of points after all updates.

Proof. In the worst case, an update S that is inserted
into a structure that previously contained N−|S| points
intersects subregions containing O(N) of those points.
Each of the intersected subregions must be split, re-
quiring new data structures to be created. Loading
the affected structures will require O(N) I/Os. Struc-
tures must also be created for the |S| points from the
new update, for a total of j structures. Each new
structure Di, containing xi points, can be bulk-loaded

in O(xi

B logM/B
xi

B) I/Os. As
j∑

i=1

xi ≤ N , creating j

structures containing a total of O(N) points requires
O(N

B logM/B
N
B) I/Os, which dominates the cost. �

Figure 5 illustrates the result of the insertion process
described in Algorithm 1. A new update is added to
the set, intersecting one previously existing subregion

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

33

24th Canadian Conference on Computational Geometry, 2012

and the uncovered space. This results in data from the
first update being repartitioned, and part of that data
covered by a portion of the new update. Some of the
resulting subregions are non-convex, but the previously
proven search bounds apply regardless.

Figure 5: Subregions arising from m = 2 and m = 3
intersecting regions, with the data stored in each version
of each subregion.

6 Conclusion

We have presented the exclusion persistence problem in
spatiotemporal queries, along with a 2-dimensional so-
lution. For a set of N data points collected over a series
of m updates, where each update is bounded by a con-
vex region of at most f sides, our linear space solution
requires O((mN

B)
1
2 + fm2 + K

B) I/Os in the worst case
to perform an exclusion persistence range search, with
K points reported in range. While relaxing the space
requirement on the subregion structures could improve
search cost as shown by Afshani et al [1][2], this would
lead to the overall storage requirement becoming non-
linear. Experimental validation of the data structure
remains to be done.

Several interesting open problems remain. Is a linear
space data structure supporting exclusion persistence
range search in O((N

B)
1
2 + K

B) I/Os possible? What
worst case search complexity (in the I/O model) is pos-
sible for general convex query regions R in place of rect-
angles? Is there a non-trivial linear space data structure
storing d-dimensional points that can efficiently answer
exclusion persistence search queries? What I/O search
complexity arises when data updates are described by
non-convex boundaries?

References

[1] P. Afshani, L. Arge, and K. D. Larsen. Orthogonal
range reporting in three and higher dimensions. In
FOCS, pages 149–158. IEEE Computer Society, 2009.

[2] P. Afshani, L. Arge, and K. D. Larsen. Orthogonal
range reporting: query lower bounds, optimal struc-
tures in 3-d, and higher-dimensional improvements. In
J. Snoeyink, M. de Berg, J. S. B. Mitchell, G. Rote, and
M. Teillaud, editors, Symposium on Computational Ge-
ometry, pages 240–246. ACM, 2010.

[3] L. Arge, M. de Berg, H. Haverkort, and K. Yi. The pri-
ority R-tree: A practically efficient and worst-case op-
timal R-tree. ACM Trans. Algorithms, 4(1):1–30, 2008.

[4] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tar-
jan. Making data structures persistent. J. Comput.
Syst. Sci., 38(1):86–124, 1989.

[5] D. Latypov. Estimating relative lidar accuracy infor-
mation from overlapping flight lines. ISPRS Journal of
Photogrammetry and Remote Sensing, 56(4):236 – 245,
2002.

[6] O. Procopiuc, P. Agarwal, L. Arge, and J. Vitter. Bkd-
tree: A dynamic scalable kd-tree. In T. Hadzilacos, Y.
Manolopoulos, J. Roddick, and Y. Theodoridis, editors,
Advances in Spatial and Temporal Databases, volume
2750 of Lecture Notes in Computer Science, pages 46–
65. Springer Berlin / Heidelberg, 2003.

[7] J. S. Vitter. External memory algorithms and data
structures. ACM Comput. Surv., 33(2):209–271, 2001.

24th Canadian Conference on Computational Geometry, 2012

34

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

xy-Monotone Path Existence Queries in a Rectilinear Environment∗

Gregory Bint† Anil Maheshwari† Michiel Smid†

Abstract

Given a planar environment consisting of n disjoint axis-
aligned rectangles, we want to query on any two points
and find whether there is a north-east monotone path
between them. We present preprocessing and query al-
gorithms which translate the geometric problem into
a tree traversal problem and present a corresponding
tree structure that gives usO(n log n) construction time,
O(n) space, and O(log n) query time.

1 Introduction

Consider a closed planar environment which consists of
n disjoint axis-aligned rectangular obstacles. We want
to query this environment on any two points s and t
and determine whether a rectilinear north-east mono-
tone path exists between them. In this paper, we mean
rectilinear in the sense that all segments of a path are
axis-aligned and that adjacent segments of a path meet
at right angles. By north-east monotone, we mean that
each path segment extends either above or to the right
of the end of the previous segment (Figure 1).

s

t1

t2
t3

t4

Figure 1: An environment with 7 obstacles. From s,
there are north-east monotone paths to t2 and t3, but
not to t1 or t4.

This work is inspired by a single point query algo-
rithm for finding shortest paths in a similar environ-

∗This research was supported in part by the NSERC-USRA
program
†School of Computer Science, Carleton University {gbint,

anil, michiel}@scs.carleton.ca

ment by Rezende, Lee, and Wu [7]. Given a fixed point
s, they preprocess the environment to allow for queries
on any t. Our main contribution is to allow both s and t
to be specified at query time, extracting only the infor-
mation about north-east monotone path existence. We
summarize our work with the following theorem.

Theorem 1 Given a planar environment consisting of
n disjoint axis-aligned rectangular obstacles, we can
construct, in O(n log n) time, a data structure with size
O(n) with which we can query for the existence of a
north-east monotone path between any two query points
in O(log n) time.

The remainder of this paper details a data structure
and query method to satisfy this theorem. Section 2
covers some preliminary terminology and path construc-
tion techniques. Section 3 contains the main contribu-
tion of this work, showing how we can precalculate so-
called shared paths and use them to answer monotone
path existence queries. As our overall query requires the
ability to perform a planar point location query, Sec-
tion 4 reviews a particularly suitable method. Section 5
brings together the complete query algorithm with some
discussion on possible extensions. Finally, we conclude
in Section 6.

2 Preliminaries

In this section, we will review some construction tech-
niques and lemmas presented in Rezende, Lee, and Wu.
The proofs appear in their original paper.

Definition 1 Let a path π be defined by a sequence of
points p1, p2, ...pk, then π is an xy-path if, for every
adjacent pair of points pi, p(i+1), either p(i+1) is directly
above pi (i.e. p(i+1)x

= pix and p(i+1)y
> piy) or p(i+1)

is directly to the right of pi (i.e. p(i+1)x
> pix and

p(i+1)y
= piy). Following similar rules, we can define

x(−y)-paths, (−x)y-paths, and (−x)(−y)-paths. Ob-
serve that any such path is rectilinear.

Definition 2 A rectilinear north-east monotone path is
an xy-path.

If we assume that no two adjacent segments of a path
are co-linear, we observe that any vertical (horizontal)

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

35

24th Canadian Conference on Computational Geometry, 2012

line can intersect such a path through at most a sin-
gle point of one horizontal (vertical) segment or lie co-
linearly with at most one vertical (horizontal) segment.

When constructing xy-paths, we can prefer a direc-
tion of path extension by always travelling in a particu-
lar direction unless we need to route around an obstacle.

Definition 3 An x-preferred xy-path, π, is an xy-path
which extends east, in the +x, direction whenever pos-
sible. Let o be an obstacle with sides left(o), top(o),
right(o) and bottom(o). If π encounters left(o), a ver-
tical segment is added which continues north (in the
+y direction) to the vertex located at the incidence of
left(o) and top(o). From there, a horizontal segment is
added, which resumes travelling east along top(o), and
beyond, until the next obstacle is encountered (see Fig-
ure 2).

π1

π2

Figure 2: Two x-preferred xy-paths, one without, one
with obstacles.

In a similar way, π may be a y-preferred xy-path,
which travels north whenever possible, only travelling
east when moving around an obstacle. x(−y)-paths,
(−x)y-paths, and (−x)(−y)-paths can also be con-
structed with a preference for either of their two com-
ponent directions. For example, an x(−y)-path can be
x-preferred or (−y)-preferred.

Definition 4 Given a point s, if we extend both an x-
preferred xy-path and a (−x)-preferred (−x)y-path from
s, the area above the union of these paths is called the
y-region of s. In a similar fashion, the x-region of s
is the area to the right of the union of the y-preferred
xy-path and the (−y)-preferred x(−y)-path rooted at s.

Definition 5 The xy-region of s is the intersection of
the x-region of s and the y-region of s (Figure 3).

Using these definitions, Rezende, Lee, and Wu give
the following lemma which is of particular interest.

Lemma 2 There is a rectilinear north-east monotone
path from s to t if and only if t lies within the xy-region
of s.

From their lemma, and from the construction of the
xy-region of s, we derive the following additional lemma.

s

t

Figure 3: The complete xy-region of s with point t con-
tained within it.

Lemma 3 If t is in the xy-region of s, then, disregard-
ing all obstacles, a vertical line through t must intersect
the x-preferred xy-path rooted at s somewhere below t,
and a horizontal line through t must intersect the y-
preferred xy-path rooted at s somewhere left of t.

Rezende, Lee, and Wu’s algorithm constructs the xy-
region of s, which is then further refined into a rect-
angular subdivision. When a query point t is given,
they perform a point location on t within the rectan-
gular subdivision. Assuming t lies within the xy-region
of s, their subdivision stores enough information to al-
low them to construct a rectilinear north-east monotone
path between the two points. By Lemma 2, we know
that such a path is possible. Such a path is also a short-
est path, which was the goal of their work, however we
are only interested in the existence of it.

3 Shared Paths

Having seen how xy-paths are constructed around ob-
stacles, we now turn our attention to how multiple paths
will route around the same obstacle.

Lemma 4 Given an x-preferred xy-path π which meets
left(o) for some obstacle o, any other x-preferred xy-
path π′ which meets left(o) will have the same structure
as π from the corner of left(o) and top(o) and beyond.

The proof is apparent directly from construction.
It should be clear that this lemma holds for other
(±x)(±y)-paths, with either component direction as the
preferred direction.

3.1 Shared Path Tree

We can use these shared paths to aid us in identify-
ing the xy-region of any s during query time. As the
construction of x-regions and y-regions are similar, we
will consider only the y-region case. To do so, we will

24th Canadian Conference on Computational Geometry, 2012

36

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

pre-calculate paths from the top-left vertex of each ob-
stacle. Then, during query time, all that remains is to
find the first obstacle that an x-preferred xy-path from
s would hit. From that obstacle, we can follow the pre-
calculated xy-path from its top-left vertex. Specifically,
these shared paths will be stored in a tree, which is
constructed in the following way.

Imagine a bounding box that contains all of the obsta-
cles and all of the valid query range for s and t. Along
the right-hand side of this box is a vertical line segment
obstacle, labeled o0, whose top-left vertex is v0. All x-
preferred xy-paths must eventually meet this obstacle.

We sort the remaining obstacles from right to left,
top to bottom, according to their top-left vertices so
that we have a sequence of obstacles o1, ..., on with cor-
responding top-left vertices v1, ..., vn. Notice that on
is the leftmost obstacle, and that v1 is the rightmost
vertex to the left of v0.

Our tree, T , will store v0, ..., vn, with v0 at the root.
Then, processing v1, ..., vn in order starting with v1, we
process each vi in the following way. Let seg(vi) be a
horizontal line segment starting at vi, traveling east in
the +x-direction, and let oj be the obstacle impacted
on the left side by seg(vi). Note that j < i. From
oj , we obtain a pointer to vj , which must already exist
in T . We insert vi into T as a child of vj . Notice that
seg(vi) is the line segment (vix , viy)−(vjx , viy) and that
viy ≤ vjy . As a result of the insertion method, any
path of vertices in the tree will be ordered with respect
to their x components. See Figure 4 for an example
environment and corresponding T .

Reconstructing an xy-path based on T is simple:
given a pointer to a particular vertex vp1

in the
tree, if vp1

, vp2
, ..., vpk

is the sequence of vertices in
the path from vp1 to the root of the tree, then
seg(vp1), seg(vp2), ..., seg(vpk

) is the sequence of hori-
zontal line segments that make up the xy-path of vp1

1.
Construction of T takes O(n log n) time. We first

sort the vertices in the order given above. Next, for
each of the n obstacles, we maintain a line segment in-
tersection sweepline to find, in O(log n) time, the ob-
stacle which will be hit by a horizontal line segment
leaving the top-left vertex. Insertion into T takes only
O(1) as we acquire the parent pointer directly from the
sweepline structure. T has size O(n) as each top-left
obstacle vertex is inserted exactly once.

3.2 Querying the Shared Path Tree

From Lemma 3, we see that it is sufficient to show that
t is in the y-region of s by testing that t is above the

1We assume that the vertical segments of an x-preferred xy-
path have no width, and as a result, any vertical line through such
a path must impact some horizontal segment. As we will see, we
are only interested in performing vertical line tests on these paths,
so we can disregard the vertical path segments.

x-preferred xy-path rooted at s. Here, we refer only to
that portion of the y-region which is to the east of s,
since no other part of the y-region can contribute to the
xy-region of s. To that end, we will further assume that
t is also east of s.

The first step towards identifying the y-region of s is
to identify the obstacle which a horizontal ray leaving s
in the +x direction would hit. We label that obstacle as
os. We can use a point location data structure to find
this obstacle and return the pointer vs, corresponding
to an entry in T . Section 4 explores this in more detail,
but for now it suffices to assume that we can acquire vs.

With vs, we know that the first segment of the x-
preferred xy-path rooted at s is the horizontal segment
defined by (sx, sy)− (vsx , sy). The remaining segments
of the path are already stored in the tree, and so a simple
query method would be as follows.

Assume that t is north-east of s, otherwise the query
result is ‘no’. Let v(t) be the vertical line through t. If
v(t)x is within the x-interval of the first horizontal line
segment, then we test and return whether t is above it
and we are done.

Otherwise, let vs1 , vs2 , ..., vsk be the path through T
where vs1 = vs and vsk is the root of T . We test v(t)
against each seg(vsi) in order from 1 to k. If v(t)x is not
within the x-interval of a line segment, we advance to
the next segment by following the parent pointer of vsi .
If it is, we test and return whether t is above that seg-
ment, and we are done. Since we construct our environ-
ment such that the root node of T is farther right than
any other input, there must be some segment which v(t)
intersects. See Figure 4 for an example.

v1

v0

v2

v3

v4

v5

v6

v7

v1 v2v4v3

v5

v6

v7

T
v0

s

t1

t2

s

t1
t2

Figure 4: An environment and corresponding shared
path tree showing how s, t1, and t2 interact. Notice
that there is a north-east monotone path from s to t1,
but not from s to t2.

Performance of this query method is dependent on the
height of T . If we consider the case where all obstacles
are arranged in an ascending staircase such that a path
starting with the leftmost obstacle hits every remaining
obstacle on its way east, we see that T has a height
and query time of O(n), which is not sufficient for our
theorem.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

37

24th Canadian Conference on Computational Geometry, 2012

3.3 Augmenting the Shared Path Tree

In order to achieve O(log n) query time on T , we will
need to augment it. The augmentation we will use is
a method first discussed by Cole and Vishkin [3]. This
method was later illustrated by Narasimhan and Smid
[6] in a manner very similar to our own use.

In brief, the vertices in the tree are processed into
groups which have the property that we can follow a
path from any vertex to the root by looking at only
O(log n) groups.

The augmentation adds the following information to
T . For every vertex v, define m to be the number of
vertices in the subtree of v. We define l-value(v) to be
blogmc. We define a group to be a path of vertices that
share the same l-value. The head of this group is the
vertex closest to the root and is called the group parent
for all vertices in the group, a pointer to which is stored
at every v as gpar(v).

From the definitions given, observe the following
properties about groups. Every leaf will have an l-value
of 0 and will belong to a group consisting only of itself,
as its parent’s subtree size and thus its parent’s l-value
must be ≥ 2 and ≥ 1, respectively. We also see that
the root of the tree will have an l-value of blog nc. An
example is given in Figure 5.

Figure 5: A binary tree with grouped nodes indicated.

Note that l-values can only increase as we consider
vertices closer to the root, and that groups must be
paths. Thus, we can traverse from any v to the root of
the tree by following O(log n) gpar pointers.

With the groups configured, we will further augment
T at each group parent by creating an ordered group
array containing all the vertices of its corresponding
group. This array permits us to perform a binary search
on the group while examining the group parent. By
copying the children pointers in the appropriate order,
according to their orientation along the group path, we
can create this array in O(n) time over all groups.

The group number and group parent pointers of each
vertex, and the group arrays associated with each group
parent, can be calculated with a simple post-order
traversal of the tree in O(n) time and requires only O(1)

extra space per vertex. Note that since each vertex ap-
pears in exactly one group array, the total size of all
group arrays is O(n).

3.4 Querying the Augmented Shared Path Tree

Querying the augmented tree has the same goal as in
Section 3.2: to identify the eastern y-region of s and
determine if t is within it.

The initial parts of the query are performed identi-
cally. Again we assume that we have a point location
data structure that allows us to identify the first ob-
stacle to the right of s, labeled os, and which gives us
the corresponding pointer vs into T . From this, we can
define and test the first horizontal line segment of the
x-preferred xy-path at s.

Recall that v(t) is the vertical line through t. If v(t)
does not intersect that first horizontal segment, then
we follow vs into T . We immediately jump to the group
parent of vs, labeled gpar(vs). If v(t) is to the left of
(or at) gpar(vs), then we perform a binary search on the
array of vertices stored there, each of which correspond
to a horizontal line segment in the environment. v(t)
must intersect one of these segments, and we test and
return whether v(t) is above that segment.

If v(t) is to the right of gpar(vs), then we follow
gpar(vs)’s parent pointer, which brings us to some ver-
tex in the next group towards the root of T and repeat
the same procedure, jumping to the group parent, test-
ing the array contents there, and so on. Since we con-
struct our environment such that the root vertex of T
must be farther right than any other input, there must
be a group such that v(t) intersects one of its constituent
vertices.

In performing this query, we need to test at most
O(log n) group parent pointers. In one group, we will
also need to perform a binary search on the array stored
there, for a total query time of O(log n), as required by
our theorem.

4 Finding s

Before we can use T to identify the y-region of s, we
need to identify the first obstacle that an x-preferred
xy-path leaving s will impact.

4.1 Planar Subdivision

Step 1 is to create a horizontal subdivision of the en-
vironment into planar rectangles. Conceptually, this is
accomplished by extending a horizontal ray from each
obstacle vertex away from the obstacle until it strikes
another obstacle or the environment boundary. Every
such ray bisects the space it travels through into two
regions resulting in a subdivision of size O(n) (Figure

24th Canadian Conference on Computational Geometry, 2012

38

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Figure 6: example of a planar rectangular subdivision
of a set of obstacles in enclosing environment. note the
imaginary obstacle along the right-hand side.

6). We call each non-obstacle face of the subdivision a
cell.

Lemma 5 The right-hand boundary of a cell is defined
by a single obstacle.

The subdivision can be constructed using the same
horizontal sweepline used to build T . With each cell,
we store the appropriate pointer into T based on the
obstacle that the cell sees to its right.

4.2 Point Location Query

To find the cell that a particular point falls into, we will
use a Skewer Tree [4], a data structure by Edelsbrunner,
Haring, and Hilbert specifically for point location in a
collection of axis-aligned, non-overlapping rectangles.

Construction of a skewer tree follows a divide and
conquer approach. For a set, S, of rectangles, we place
a vertical line l through the median x-value. We divide
S into three subsets: S1 is the set of rectangles that
lie strictly to the left of l, S2 is the set of rectangles
intersected by l, and S3 is the set of rectangles that lie
strictly to the right of l, so that |S1|+ |S2|+ |S3| = |S|.
We create a node nS in the skewer tree which contains
the definition of l, the size of S2, and a balanced tree
containing the rectangles of S2, sorted by y-value.

If S1 is non-empty, we recurse on S1, attaching the
resulting subtree as the left child of nS . Similarly, if S3

is non-empty, we recurse on S3, attaching the resulting
subtree as the right child of nS .

Every rectangle appears exactly once in the skewer
tree, as it is attributed only to the first node whose
l intersected it and not passed down to deeper levels
of recursion. The skewer tree requires O(n) space and
O(n log n) construction time.

The query time is a bit more interesting. We start
at the root node and check if our query point s is con-
tained within one of the rectangles stored there, which
takes O(log n) time. If it is not, we compare l with sx
and decide whether we will next check the left or right

subtree. We repeat these steps at every level of the tree
until the rectangle containing s is found. The height of
the skewer tree is O(log n), so we need to make at most
that many queries for a total query time of O(log2 n)
time.

We can improve the query time to O(log n) with Frac-
tional Cascading [1, 2, 5, 8]. To help illustrate how, we
will refer to the outer nodes of the Skewer tree as the
line tree, and the trees of rectangles attached to each
node of the line tree as rectangle trees.

Every path through the line tree represents a sequence
of arrays of sorted values. Each array is queried over the
same range of keys, defined by the interval of y-values
covered by the bounding box of the environment.

Considering a single path through the line tree for
now, we will store extra pointers in each of the rectangle
trees so that a query on one tree can return not just the
successor to the search key value in that tree, but in
the next tree in the path as well. If this mechanism is
implemented in every rectangle tree, then we can answer
our query in every tree of the path by performing a
standard binary tree search on the root rectangle tree
in O(log n) time, and then continuing by walking along
O(log n) pointers through the path, each taking O(1)
time.

Because the line tree is a binary tree, we need to
store two sets of additional pointers in each rectangle
tree: one to use if we follow a line tree node’s left child,
and one to use if we follow its right child. See Chazelle
and Guibas [1, 2] for details on how these extra pointers
can be developed in linear time.

5 The Complete Algorithm

We now have all the tools we need to solve our query
problem.

5.1 Construction

The construction phase of the algorithm involves build-
ing both the shared path data structure and a point
location data structure.

When discussing shared path data structures, we have
primarily considered obstacles to the east of our query
point, and the resulting x-preferred xy-paths. We will
relabel that data structure as TE . We also need to
consider obstacles to the north and the associated y-
preferred xy-paths, which we do by creating a second
data structure labeled TN . The algorithms as written
in Section 3.1 for TE can easily be adapted for TN .

While performing the plane-sweeps needed to con-
struct TE and TN , we can also produce the rectangular
planar subdivisions used by the skewer trees.

Total construction time and space for TE , TN , and
the skewer trees, is O(n log n) and O(n), respectively,
as required by our theorem.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

39

24th Canadian Conference on Computational Geometry, 2012

5.2 Query

When a query is made, we are given s and t. Assume
that t is actually north-east of s, otherwise the query
result is ‘no’.

We first perform a point location query on s, iden-
tifying the obstacle to its right. We then follow the
procedure in Section 3.4 to determine whether t is in
the y-region of s.

Using the obstacle above s, we identify the x-region
of s, and again follow the procedure in Section 3.4 to
determine if it contains t. If both return true, then we
know that t is in the xy-region of s, and so by Lemma
2, there is a north-east monotone path from s to t. The
total query time is O(log n), as required by our theorem.

6 Conclusion

In this paper we have discussed a method for deciding
whether there exists a north-east monotone path be-
tween any two query points in the plane. We developed
the concept of shared paths and showed a method for
storing them in a tree, and for augmenting that tree to
allow for quick query time. We also reviewed a suitable
point location query method. Together, these methods
require O(n log n) preprocessing time, O(n) space, and
O(log n) query time.

One problem which remains open is the following. In
the event that a path is found to be possible, we would
like to report one such path in O(log n+k) time, where
k is the number of segments in the reported path, and
is within a constant factor of the minimum number of
segments among all such paths.

References

[1] B. Chazelle and L. Guibas. Fractional cascading: I.
a data structuring technique. Algorithmica, 1:133–162,
1986.

[2] B. Chazelle and L. Guibas. Fractional cascading: II.
applications. Algorithmica, 1:163–191, 1986.

[3] R. Cole and U. Vishkin. The accelerated centroid decom-
position technique for optimal parallel tree evaluation in
logarithmic time. Algorithmica, 3:329–346, 1988.

[4] H. Edelsbrunner, G. Haring, and D. Hilbert. Rectangular
point location in d dimensions with applications. The
Computer Journal, 29(1):76–82, 1986.

[5] K. Mehlhorn and S. Nher. Dynamic fractional cascading.
Algorithmica, 5:215–241, 1990.

[6] G. Narasimhan and M. Smid. Geometric Spanner Net-
works. Cambridge University Press, New York, NY,
USA, 2007.

[7] P. Rezende, D. Lee, and Y. Wu. Rectilinear shortest
paths in the presence of rectangular barriers. Discrete &
Computational Geometry, 4:41–53, 1989.

[8] M. Smid. Rectangular point location and the dynamic
closest pair problem. In W.-L. Hsu and R. Lee, edi-
tors, ISA’91 Algorithms, volume 557 of Lecture Notes
in Computer Science, pages 364–374. Springer Berlin /
Heidelberg, 1991.

24th Canadian Conference on Computational Geometry, 2012

40

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Covering Points with Disjoint Unit Disks

Greg Aloupis∗ Robert A. Hearn† Hirokazu Iwasawa‡ Ryuhei Uehara§

Abstract

We consider the following problem. How many points
must be placed in the plane so that no collection of
disjoint unit disks can cover them? The answer, k, is
already known to satisfy 11 ≤ k ≤ 53. Here, we im-
prove the lower bound to 13 and the upper bound to
50. We also provide a set of 45 points that apparently
cannot be covered, although this has been determined
via computer search.

1 Introduction

In 2008, Japanese puzzle designer Naoki Inaba proposed
and solved an interesting question [3, 4], which was to
determine if every given configuration of 10 points can
be covered by identical coins. Any number of coins can
be used, but they cannot overlap. That is, Inaba proved
the following lower bound.

Theorem 1 [Inaba] Any configuration of 10 points in
the plane can be covered by disjoint unit disks.

Inaba gave an interesting proof based on the prob-
abilistic method (see [6, 8]), and asked the natural
extension: How many points do we need to use, so that
their appropriate arrangement cannot be covered by
disjoint unit disks?

Let k be the size of the smallest point set that is
not coverable. Inaba’s theorem states that 11 ≤ k, and
trivially k is finite; if we place sufficiently many points
on a fine lattice, disjoint disks cannot cover them all
(see Figure 1). This problem gained popularity within
the puzzle society in 2010 (at the 9th Gathering 4 Gard-
ner). Winkler [7] proposed a configuration of 60 points
that cannot be covered by disjoint disks. Winkler also
suggested how to improve the lower bound in [8], but
this has not been settled1. Elser [1] improved the upper
bound to 55, and Okayama et. al [6] further improved
this to 53.

∗Départment d’Informatique, Université Libre de Bruxelles,
aloupis.greg@gmail.com
†H3 Labs, Portland, OR 97205, USA. bob@hearn.to
‡Kobo Iwahiro, iwahiro@bb.mbn.or.jp
§School of Information Science, Japan Advanced Institute of

Science and Technology, Ishikawa 923-1292, Japan. uehara@

jaist.ac.jp
1Personal communication with Peter Winkler.

C
A NA DA

C
A NA DA

C
A NA DA

Figure 1: A dense point set that cannot be covered by
disjoint unit disks.

In this paper, we improve the known bounds as fol-
lows.

Theorem 2 Let k be the size of the smallest point set
that is not coverable by disjoint unit disks. Then 13 ≤
k ≤ 45.

That is, we improve the lower bound from 11 to 13, and
the upper bound from 53 to 45.

For the lower bound, we give a refinement of Inaba’s
proof based on the probabilistic method. For the upper
bound, we have used two different approaches. First
we give a configuration of 50 points on a lattice, for
which an analytical proof exists. This is an improve-
ment over the solution in [6], from which we remove
three points. We also state a better upper bound of
45. The validity of this configuration has been deter-
mined via an exhaustive computer search, however we
note that a mathematically rigorous proof remains to
be shown. Finally we mention that it is NP -complete
to decide if a given set of n points can be covered [2].

2 Preliminaries

We say that a disk C is placed at (x, y) if its center is
placed at the point (x, y). This is sometimes denoted
by C(x, y). To simplify our arguments, let each unit
disk be open, so that it does not cover points on its
boundary. Using a perturbation technique, our results
can be applied to closed disks as well. We denote by
|A| the area of a bounded region A in the plane. A

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

41

24th Canadian Conference on Computational Geometry, 2012

(0,0) (2,0) (4,0)

(1, 3)

(3, 3)

(2,2 3)
(4,2 3)

Figure 2: An infinite configuration S(0, 0) of unit disks.

region S in the plane is periodic if there is a bounded
region A ⊂ R2 such that for any vector (x, y) ∈ R2 there
is a vector (a, b) ∈ A with S + (x, y) = S + (a, b). A
measurable minimum-area set A with this property is
then said to be a fundamental region for S. The density
ρ(S) of S is defined by

ρ(S) =
|S ∩A|
|A|

which is independent of the choice of A, if A is a funda-
mental region for S.

3 Lower bound

In this section, we show that 13 ≤ k. That is, any set of
12 points can be covered by disjoint unit disks. Let S be
the union of unit disks placed at (2i+ (j mod 2), j

√
3),

for i, j ∈ Z. (See Figure 2.) S is then periodic. Its
fundamental set is the regular hexagon H with vertices
at (±1,±

√
3/3) and (0,±2

√
3/3). Its density is thus

ρ(S) = |S ∩H|/|H| = π/
√

12 ∼ 0.9069. We will show
that any 12 points in the plane are covered by S+(x, y)
for some (x, y) ∈ H.

Inaba’s proof for 10 points notes that if (x, y) is chosen
uniformly from H then any fixed point in the plane is
covered by S + (x, y) with probability ρ(S) > 9/10.
Thus, of any 10 points, the expected number covered by
S+ (x, y) is greater than 9; it follows that with positive
probability S+(x, y) will cover all ten points. Of course,
only at most 10 of the disks in S + (x, y) are actually
needed to cover the points.

We refine Inaba’s method to show:

Lemma 3 Any configuration of 12 points can be cov-
ered by S + (x, y), for appropriate values of x and y.

Proof. (Outline) We denote by S + (x, y) the set of
points that are not covered by S + (x, y). Since (a, b) ∈
S + (x, y) if and only if (x, y) ∈ S − (a, b), we have:

Observation 1 Let X be a set of m points p1 =
(x1, y1), p2 = (x2, y2), . . . , pm = (xm, ym). Then the
following statements are equivalent.

1. For all (x, y) ∈ H, S + (x, y) fails to cover X.

2. ∪i=1,...,mS − (xi, yi) covers the plane;

3. ∪i=1,...,mS − (xi, yi) covers H.

For x ∈ [−1, 1], let P (x) be the vertical line segment
consisting of all points in H of x-coordinate x. Then

the ratio φ(x) =
∣∣∣S + (x, y) ∩ P (x)

∣∣∣/|P (x)| (where the

set-measure is now ordinary one-dimensional length) is
given by

φ(x) =
(√

3−
√

1− x2 −
√

2|x| − x2
)
/
√

3.

Thus, by Observation 1, to prove Lemma 3 it is sufficient
to establish that

min{φ(x)+φ(x−d1)+φ(x−d2)+ · · ·+φ(x−d11)} < 1

for any real numbers d1, d2, . . . , d11. Let
ψ(x; d1, d2, . . . , d11) = φ(x) + φ(x − d1) + φ(x −
d2) + · · · + φ(x − d11). We will prove that
max min{ψ(x; d1, . . . , d11) | 0 ≤ x ≤ 1} is given
when di = i/12 for i = 1, . . . , 11, and then
max min{ψ(x; d1, . . . , d11) | 0 ≤ x ≤ 1} ≈ 0.942809 < 1.
We omit the details of this calculation, which will be
given in the electronic proceedings. �

4 Upper bounds

In this section, we state two upper bounds, by providing
configurations of point sets that cannot be covered. Our
first set is simply a subset of 50 points taken from the
pattern in [6]. In fact this configuration is constrained
to a triangular lattice, which permits a concise proof.
The second set contains only 45 points and was checked
by a computer program that is based on a non-trivial
exhaustive search. Although disk placement is not a
finite process, we explain how this problem can be solved
in a discrete way.

4.1 50-point configuration on a triangular lattice

The configuration is given in Figure 3. This is based
on a triangular lattice; the smallest equilateral triangle
is on a circle of radius 2

√
3/3 − 1. Unless mentioned

otherwise, when we use the term “triangle”, we will be
referring to three points that are mutual neighbors on
the lattice, i.e., forming the equilateral triangle men-
tioned. The radius 2

√
3/3 − 1 was chosen to be the

largest value satisfying the following property:

Lemma 4 ([6]) The three points forming a triangle
cannot be covered by three disjoint unit disks.

24th Canadian Conference on Computational Geometry, 2012

42

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

c0

2- 3

l
1 l

10

p10

5

p10

1

c1
p1

5

p1

1

9(3-3/2)=2.08846

Figure 3: A 50-point configuration that cannot be cov-
ered by disjoint unit disks.

Thus, if our set of 50 points is to be covered by disjoint
unit disks, each triangle must be covered by either one or
two disks. We say that a disk partially covers a triangle
if it only covers one or two of its points. A chain is
a sequence of triangles t1, t2, . . . , th, with consecutive
triangles sharing a common edge.

Lemma 5 Suppose that the chain t1, t2, . . . , th is cov-
ered, and every disk involved only covers triangles par-
tially. Let C and C ′ be two disks that cover t1. Then
the entire chain is covered only by C and C ′.

Proof. By Lemma 4, without loss of generality assume
that two points p1, p2 of t1 are covered by C, and the
remaining point p3 is covered by C ′. Consider the first
two triangles (h = 2). By definition, t1 and t2 share
two points. It is not possible for t2 to share p1 and
p2, since C cannot cover both points without covering
either p3 or the third point of t2, which would contradict
the assumption about partial coverage by every disk.
Thus we can assume that the two triangles share p1
and p3, which as mentioned are covered by C and C ′

respectively. By Lemma 4, the third point of t2 must
be covered by C or C ′. Our claim follows by iterating
through adjacent pairs of triangles in the chain. Every
such pair must share two points that are not covered by
the same disk. �

Now we are ready to show the upper bound:

Theorem 6 The 50-point configuration in Figure 3
cannot be covered by disjoint unit disks.

Proof. In the configuration, there are 10 vertical
columns, each containing 5 points. The columns are
labeled `1 to `10 from left to right. Let pj1, p

j
2, p

j
3, p

j
4, p

j
5

be the five points on `j from top to bottom. Notice
that by rotating a half-turn, the same configuration is
obtained.

For the sake of contradiction, suppose that the config-
uration is covered. Let the centers of the configuration
be the points c0 = p63 and c1 = p53, as shown in Figure 3.
Let C0 be a unit disk that covers c0 or c1. (Choose ar-
bitrarily, if the two centers are covered by two different
disks.) It is easy to see that C0 cannot cover points both
in `1 and in `10 since the distance between `1 and `10
is around 2.08846. Without loss of generality, assume
that no point in `1 is covered by C0. More precisely,
suppose that the first r columns are not covered by C0.
Then we have 1 ≤ r ≤ 5.

Suppose that pr+1
1 and pr+1

5 are not covered by C0.
In other words, C0 covers all points pr+1

k1
, . . . , pr+1

k2
for

some 2 ≤ k1 ≤ k2 ≤ 4. Then, by Lemma 5, pr+1
k1−1

and pr+1
k2+1 must be covered by one disk, since a suitable

chain connecting the two always exists. However, by
convexity, this is impossible.

Therefore, C0 covers pr+1
1 or pr+1

5 . We first consider
the case that C0 covers pr+1

5 . We distinguish between
two subcases, depending on the parity of r as shown in
Figure 4 or Figure 5.

q0
q1 q3

q4

q5

q2

p4

5

C0

C1

q6

p3

5

Figure 4: Contradiction for r = 3.

Subcase r = 1, 3, 5: We consider a polyline L =
(q0, q1, q2, q3, q4, q5, q6) defined by q0 = pr1, q1 = pr+1

1 ,
q2 = pr+2

1 , q3 = pr+3
1 , q4 = pr+4

2 , q5 = pr+4
3 , and

q6 = pr+4
4 . Figure 4 illustrates the case for r = 3. Re-

call that C0 covers pr+1
5 and at least one of the two

centers c0 and c1, and does not cover any point in `r.
Given these restrictions, we claim that the boundary of
C0 must cross L. It suffices to show that some vertex
of L is contained in C0, since q0 is not. For r = 1, q6
lies on the segment joining pr+1

5 and c0. Also, q5 = c1.
Therefore regardless of which center is in C0, a vertex
of L is also in C0. For r = 3 and r = 5, C0 must cover
even more of L. Specifically, C0 cannot reach to cover
c0 or c1 while containing pr+1

5 and excluding q6.
Let z be the smallest index such that qz is contained in

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

43

24th Canadian Conference on Computational Geometry, 2012

C0. Given the convexity of C0 as well, we can determine
that there must exist a chain of triangles such that every
triangle is partially covered by C0. Furthermore this
chain starts with a triangle that has pr5, p

r+1
5 as an edge,

and ends with a triangle that has qz−1, qz as an edge.
By Lemma 5, qz−1 is covered by the same disk as pr5.

An example of a chain is illustrated in Figure 4. Each
triangle contains either one or two points covered by
C0. For any given placement of C0, the chain is easy
to determine. Regardless of the value of z, the coverage
requirement is geometrically impossible. For example,
in Figure 4, to achieve the smallest overlap, C1 passes
through p35 and q3, and C0 passes through p45 and q4
(precisely, C0 and C1 are closer since they are open
disks). In the case, the distance between the centers
of C0 and C1 is

√
3.57198 = 1.88997 < 2. (Letting p35 =

(0, 0), p45 = (2−
√

3, 0), q3 = ((2−
√

3)/2, 5(
√

3− 3/2)),
and q4 = (3(2−

√
3)/2, 5(

√
3−3/2)), we solve x21+y21 = 1

and (x1 − ((2 −
√

3)/2))2 + (y1 − (5(
√

3 − 3/2)))2 =
1 for C1(x1, y1), and (x0 − (2 −

√
3))2 + y20 = 1

and (x0 − (3(2 −
√

3)/2))2 + (y0 − (5(
√

3 − 3/2)))2 =
1 for C0(x0, y0). Then we have (x0, y0, x1, y1) =
(1.14135, 0.487011,−0.739421, 0.673243) and (x1 −
x0)2 + (y1 − y0)2 = 3.57198.) Therefore, C0 and C1

overlap in this case. All cases are summarized in Table
1. In each case, the distance is less than 2, and hence
the disks C0 and C1 overlap.

Case q0 ∈ C1, q1 ∈ C1, q2 ∈ C1,
q1 ∈ C0 q2 ∈ C0 q3 ∈ C0

Distance 1.92528 1.89161 1.88996

Case q3 ∈ C1, q4 ∈ C1, q5 ∈ C1,
q4 ∈ C0 q5 ∈ C0 q6 ∈ C0

Distance 1.88997 1.89160 1.88588

Table 1: Distance in each case (r:odd)

Subcase r = 2, 4: In this case, we just change the defi-
nition of the polyline L = (q0, q1, q2, q3, q4, q5) as shown
in Figure 5 (for r = 2). The distances between the two
disk centers are summarized in Table 2. In each case,
the distance is less than 2. Thus the disks C0 and C1

overlap.

Case q0 ∈ C1, q1 ∈ C1, q2 ∈ C1,
q1 ∈ C0 q2 ∈ C0 q3 ∈ C0

Distance 1.92528 1.89161 1.90467

Case q3 ∈ C1, q4 ∈ C1,
q4 ∈ C0 q5 ∈ C0

Distance 1.86166 1.81971

Table 2: Distance in each case (r:even)

The last case is that C0 covers pr+1
1 (We also know

q0

q1

q3

q4

q5

q2

p3

5

C0

C1

p2

5

Figure 5: Contradiction for r = 2.

that it does not cover pr+1
5 , although this does not affect

our analysis.) In this case we flip L as shown in Figure 6.
We also change how we handle the parity of r, since pr+1

1

is on the convex hull if and only if pr+1
5 is not.

Figure 6: Polylines for r = 2 and r = 5.

We conclude that in all cases it is impossible to cover
all points in Figure 3 with disjoint unit disks. �

4.2 45-point configuration

The configuration given in Figure 7 consists of 45 points
equally spaced on three concentric circles: 3 points on
the circle of radius 0.1, 21 points on the circle of radius
0.721, and 21 points on the circle of radius 1.0001. By
computer search, we have determined that this set can-

Figure 7: A 45-point configuration that cannot be cov-
ered by disjoint unit disks.

24th Canadian Conference on Computational Geometry, 2012

44

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

not be covered. This set was found heuristically, using
the search program interactively.2

The search program exhaustively considers all possi-
ble ways of covering the given points with disks. This is
not obviously a discrete combinatorial search problem
— there are an infinite number of possible disk place-
ments. Therefore, we describe here how the search al-
gorithm works.

The algorithm considers (in principle) all possible
ways of assigning points to disks that must cover them.
This is a discrete search. For each such partition of the
points, the algorithm proves conservative bounds for the
location of the center of each disk, represented as a rect-
angle that must contain the disk center. For example,
when a disk C is assigned its first point, its rectangle is
set to a square of size 2 centered on the point. As more
points are assigned to C, the rectangle can be shrunk:
no rectangle edge can be farther than 1 from any point
p that must be covered. Similar rectangle restrictions
may be applied based on the requirement that the disks
do not overlap. Sometimes a rectangle may be shrunk to
nonexistence, ruling out the current point assignment.
This pruning makes the search over all point partitions
tractable; most partitions are ruled out without ever
being considered explicitly.

If a point assignment survives this first stage of anal-
ysis, we are left with a “candidate solution”: an assign-
ment of points to disks, and for each disk, a correspond-
ing rectangle. The problem then is to find a solution
within this space, or prove that none exists.3 To do this,
we subdivide the largest rectangle, and recursively con-
sider each candidate solution. Eventually, all rectangles
are shrunk to the point where either a solution is easy to
find (by testing, for example, the rectangle centers), or
we can prove impossibility, via the same geometric rect-
angle restrictions used in the initial part of the search.
For example, if we have two disk rectangles that can
together be contained in a circle of radius < 2, we can
rule out this candidate, because any disk placement re-
specting these bounds will have overlapping disks (see
Figure 8).

Finally, we must mention numerical issues. Our pro-
gram uses IEEE double-precision floating point num-
bers. We must ensure that roundoff problems do not
cause us to miss a solution. The program uses an ad-
justable numerical tolerance ε for all of its geometrical
restrictions — all operations are performed conserva-
tively to this tolerance. (For example, if two points are
< 2 + ε apart, the program will not rule out the possi-
bility of coverage by a single disk.) This means that in
principle, the program could be unable to either find a

2This general family of configurations was suggested by Bram
Cohen.

3At this stage, the problem could also be treated as a quadrat-
ically constrained quadratic program, for which solvers exist (e.g.,
[5]). Our solution is optimized for this particular application.

Figure 8: A candidate solution that can be ruled out:
any placement will have overlapping disks.

solution or prove that none exists. However, this has not
been a problem for the configurations we have searched.
IEEE floating point is accurate to 15 decimal places, and
we have set ε = 10−5, giving us a high confidence that
our results are correct.

5 Concluding remarks

We provide lower and upper bounds for the size k of
the smallest point set that cannot be covered by dis-
joint unit disks. Our conclusion is that 13 ≤ k ≤ 45.
We conjecture that the true value lies closer to 45. For
the lower bound, we have restricted to considering only
the fixed configuration in Figure 2 and its translation.
By considering rotations and other arrangements of unit
disks, the bound might be improved. Moreover, since
the bound is (essentially) obtained via the probabilistic
method, it is not likely to be tight. We are currently
working on a concise mathematical proof for the con-
figuration of 45 points in Figure 7. Small perturbations
are not likely to yield improvements. For instance, if
the second radius is reduced to 0.720 from 0.721, our
program finds a covering. Also, our program has de-
termined that removing any points from the 50-point
configuration always yields a covering.

Acknowledgments

The authors are grateful to Peter Winkler for fruitful
discussions on this topic.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

45

24th Canadian Conference on Computational Geometry, 2012

References

[1] V. Elser. Packing-constrained point coverings. Ge-
ombinatorics, to appear.

[2] R. Hearn. Complexity of Inaba’s Coin-Covering
Problem. Manuscript in preparation, 2012.

[3] N. Inaba. http://inabapuzzle.com/hirameki/

suuri_4.html. (in Japanese), 2008.

[4] N. Inaba. http://inabapuzzle.com/hirameki/

suuri_ans4.html. (in Japanese), 2008.

[5] N. Lamba, M. Dietz, D. P. Johnson, and M. S.
Boddy. A method for global optimization of large
systems of quadratic constraints. In Proceedings of
the Second international conference on Global Op-
timization and Constraint Satisfaction, COCOS’03,
pages 61–70, Berlin, Heidelberg, 2005. Springer-
Verlag.

[6] Y. Okayama, M. Kiyomi, and R. Uehara. On cover-
ing of any point configuration by disjoint unit disks.
In 23rd Canadian Conference on Computational Ge-
ometry (CCCG), pages 393–397, 2011. (Accepted to
Geombinatorics).

[7] P. Winkler. Puzzled: Figures on a Plane. Commu-
nications of the ACM, 53(8):128, August 2010.

[8] P. Winkler. Puzzled: Solutions and Sources. Com-
munications of the ACM, 53(9):110, September
2010.

24th Canadian Conference on Computational Geometry, 2012

46

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

The Approximability and Integrality Gap of Interval Stabbing and
Independence Problems

Shalev Ben-David∗ Elyot Grant† Will Ma‡ Malcolm Sharpe§

Abstract

Motivated by problems such as rectangle stabbing in the
plane, we study the minimum hitting set and maximum
independent set problems for families of d-intervals and
d-union-intervals. We obtain the following: (1) con-
structions yielding asymptotically tight lower bounds
on the integrality gaps of the associated natural lin-
ear programming relaxations; (2) an LP-relative d-
approximation for the hitting set problem on d-intervals;
(3) a proof that the approximation ratios for indepen-
dent set on families of 2-intervals and 2-union-intervals
can be improved to match tight duality gap lower
bounds obtained via topological arguments, if one has
access to an oracle for a PPAD-complete problem re-
lated to finding Borsuk-Ulam fixed-points.

1 Introduction

In this work, we examine a family of NP-hard packing
and covering problems. Our study is motivated by the
minimum rectangle stabbing problem, in which we are
given a family H of axis-aligned rectangles in the plane,
and the goal is to find a minimum-cardinality family
of horizontal and vertical lines that intersect (or ‘stab’)
each rectangle in H at least once. Viewing this as a
geometric covering problem, we also consider the related
‘dual’ geometric packing problem of finding a maximum
conflict-free subset, where the goal is to find a maximum
subset of H containing no pair of rectangles that can be
stabbed by a single horizontal or vertical line.

The rectangle stabbing and conflict-free subset prob-
lems have many applications. The rectangles themselves
can be the bounding boxes of arbitrary connected ob-
jects in the plane, so applications need not be limited to
problems involving rectangles. The rectangle stabbing
problem can directly encode the problem of optimally
subdividing the plane into a grid of axis-aligned cells so
as to separate a given family of points, with applications
to fault-tolerant sensor networks [3] and resource allo-
cation in parallel processing systems [7]. The maximum

∗Comp. Sci. and A.I. Lab, MIT, shalev@mit.edu
†Comp. Sci. and A.I. Lab, MIT, elyot@mit.edu
‡Operations Research Center, MIT, willma@mit.edu Sup-

ported in part by ONR Grant N000141110056.
§Department of Combinatorics and Optimization, University

of Waterloo, sharpe.malcolm@gmail.com

conflict-free subset problem, and its higher dimensional
analogues, are relevant to areas such as resource allo-
cation, scheduling, and computational biology [2]. The
properties of certain rectangle stabbing instances are
also of theoretical interest in combinatorics [19].

Given a family H of axis-aligned rectangles, we write
ρ(H) for the minimum cardinality of a family of lines
stabbing it, and α(H) for the maximum size of a conflict-
free subset. It is clear that α(H) ≤ ρ(H). As in many
geometric packing-covering dual problems, there is a
bound in the other direction. In 1994, Tardos proved
that ρ(H) ≤ 2α(H), which is easily seen to be tight [18].
However, all known proofs of Tardos’s result rely on
topological fixed-point theorems, and consequently do
not seem to lead to polynomial-time approximations. In
fact, only a 4-approximation is known for the maximum
conflict-free subset problem [2], despite the fact that we
can establish the optimal objective value to within a fac-
tor of 2 by solving a linear program. Improving upon
this remains an important open problem.

In this paper, we obtain results for generalized ver-
sions of the stabbing and conflict-free subset problems.
We examine the standard linear programming relax-
ations for hitting set and independent set problems in-
volving d-intervals, and establish asymptotically tight
upper and lower bounds on their integrality gaps. These
bounds imply that no LP-relative approximation algo-
rithm can obtain a factor below 2 for either the rectangle
stabbing or the maximum conflict-free subset problems.
Additionally, we establish some interesting theoretical
consequences of topological methods such as Tardos’s.
For example, we show that the maximum conflict-free
subset problem admits a 2-approximation if one has ac-
cess to an oracle for a PPAD-complete problem.

This article proceeds as follows: in the current sec-
tion, we define the generalized problems that we study,
explain the current state of the art, and describe our
contribution. Section 2 contains our integrality gap up-
per and lower bounds, and Section 3 contains algorith-
mic results that depend on PPAD oracles.

1.1 Preliminaries

We begin by defining generalized versions of the rect-
angle stabbing and conflict-free subset problems. For
d ∈ N, a d-interval I is a union of d non-empty com-

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

47

24th Canadian Conference on Computational Geometry, 2012

pact intervals I1, . . . , Id ⊂ R. The input to all problems
we consider will be a finite collection H of d-intervals,
represented explicitly. We say that a subset of H is in-
dependent if its members are pairwise disjoint, and a
set X ⊆ R is a hitting set for H if it intersects every
member of H. We define the hypergraph GH = (V,E)
where V = H and E consists of all subsets I ⊆ H
such that there is a point p ∈ R that hits exactly the
intervals in I. Such a point p shall be called a rep-
resentative of the hyperedge I ∈ E, and we let P (H)
denote a set containing an arbitrary representative for
each distinct edge in GH. Note that |P (H)| ≤ 2d|H| as
there are at most 2d|H| interval endpoints. We call GH
a d-interval hypergraph, and observe that d-interval hy-
pergraphs generalize d-regular hypergraphs (which are
obtained when each d-interval in H is simply d points).
We denote by α(H) the maximum size of an indepen-
dent set in H, and denote by ρ(H) the minimum size of
a hitting set for H, in analogy with the usual notation
of α(G) and ρ(G) for the maximum independent set size
and minimum edge cover size of a hypergraph G.

Special cases such as the rectangle stabbing problem
arise when we impose structural restrictions on H. If
{J i}di=1 is a family of disjoint intervals and each d-
interval I = ∪di=1I

i in H satisfies Ii ⊆ J i for all i, then
H is known as a collection of d-union-intervals, and GH
is known as a d-union hypergraph. The term d-track-
interval is sometimes used for the same concept, with
the idea that each d-interval contains a piece from one
of d different ‘tracks’, each of which is a disjoint copy of
R . The rectangle stabbing and minimum conflict-free
subset problems correspond precisely to the minimum
hitting set and maximum independent set problems on
2-union-intervals, but with each ‘track’ mapped onto
a separate Euclidean dimension. In general, one can
think of the hitting set problem for d-union-intervals as
the problem of hitting a family of d-dimensional ‘boxes’
using a minimum number of ‘walls’, each of which is
orthogonal to one of the coordinate axes.

For 1-interval hypergraphs (which are the same as 1-
union hypergraphs), the independent set and edge cover
problems can both be solved in polynomial time via sim-
ple greedy algorithms that perform a left-to-right sweep
across the intervals. However, even for 2-union hyper-
graphs, the independent set and edge cover problems
are both APX-hard. Nagashima and Yamazaki, and in-
dependently Bar-Yehuda et al., have shown the conflict-
free subset problem to be APX-hard [2, 14], even when
the rectangles are all unit squares with integer vertices.
Kovaleva and Spieksma show that the rectangle stab-
bing problem is APX-hard even when each rectangle is
of the form [x, x+ 1]× [y, y] for integers x and y [11].

For a hypergraph G, the relations α(G) ≤ ρ(G) and
ρ(G) ≤ O(log |V |) · α(G) are well known, with the lat-
ter being tight for general hypergraphs. However, us-

ing methods of topological combinatorics, Kaiser proves

that ρ(GH)
α(GH) is upper bounded by d2−d+1 for d-interval

hypergraphs and d2 − d for d-union hypergraphs (for
d ≥ 2), a bound independent of |V | [10]. His result im-
proves upon that of Tardos, who originally established
a tight upper bound for the d = 2 case [18]. In a one-
page paper, Alon shows that an upper bound of 2d2 can
be established without topological methods by applying
Turán’s theorem [1]. The best known lower bounds for

large d are Ω(d2

log d) and Ω(d2

log2 d
) for d-interval and d-

union hypergraphs respectively [13].

1.2 Overview of Results

We use the term duality gap to denote the quantity

supH
ρ(H)
α(H) , where H ranges over a collection of d-

intervals. In an effort to study various duality gaps,
we examine standard linear programming relaxations
for the hitting set and independent set problems. The
standard LP relaxation for the maximum independent
set problem corresponds to the maximum fractional in-
dependent set problem, and can be written as follows:

max
∑

I∈I
xI

s.t.
∑

I3p
xI ≤ 1 ∀ p ∈ P (H)

xI ≥ 0 ∀ I ∈ H

(1)

A corresponding dual linear program for the minimum
fractional hitting set problem is as follows:

min
∑

p∈P (H)

yp

s.t.
∑

p∈I
yp ≥ 1 ∀ I ∈ H

yp ≥ 0 ∀ p ∈ P (H)

(2)

If α∗(H) is the optimal objective value for (1) and ρ∗(H)
is the optimal objective value for (2), then we have
α(H) ≤ α∗(H) = ρ∗(H) ≤ ρ(H) and can write

sup
H

ρ(H)

α(H)
≤ sup
H

ρ(H)

ρ∗(H)
· sup
H

α∗(H)

α(H)
.

The quantity supH
ρ(H)
ρ∗(H) is called the integrality gap of

the minimum hitting set problem (for d-intervals or d-

union-intervals). Similarly, supH
α∗(H)
α(H) is the integrality

gap of the maximum independent set problem. Since
ρ(H)
ρ∗(H) and α∗(H)

α(H) are always at least 1, both integrality

gaps are a lower bound on the duality gap. For the
case of 1-intervals, we actually have α(H) = ρ(H); both
linear programs have an integrality gap of 1 because the
incidence matrix of GH exhibits the consecutive ones
property and is thus totally unimodular.

24th Canadian Conference on Computational Geometry, 2012

48

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Often, upper bounds on integrality gaps for packing
and covering problems come alongside LP-relative ap-
proximation algorithms. Bar-Yehuda et al. employ the
local ratio technique to obtain a polynomial-time LP-
relative 2d-approximation algorithm for the d-interval
maximum independent set problem, proving that the
integrality gap of maximum independent set for d-
intervals is at most 2d. Their result carries over to the
version in which each element in H has a positive weight
and a maximum weight independent set is desired. In
Section 2, we show that their bound is tight up to an
additive constant by establishing the following:

Theorem 1 For any ε > 0, there exists a collection H
of d-intervals (respectively, d-union-intervals) for which
α∗(H)
α(H) ≥ 2d− 1− ε (respectively, 2d− 2− ε).

Our constructions generalize examples from [5] and [8]
but employ a novel amplification trick.

For both the d-interval and d-union-interval hitting
set problems, we are able to prove that the integrality
gap is exactly d. We show the following:

Theorem 2 There exists a polynomial-time LP-
relative d-approximation for the d-interval hitting
set problem. Accordingly, for any collection H of

d-intervals, ρ(H)
ρ∗(H) ≤ d.

Theorem 3 For any ε > 0, there exists a collection H
of d-union-intervals for which ρ(H)

ρ∗(H) ≥ d− ε.

Theorem 2 uses standard techniques to generalize a 2-
approximation algorithm for rectangle stabbing due to
[7], but Theorem 3 employs a novel construction.

The table below summarizes the known integrality
and duality gap bounds for large d:

d-Interval Lower Bound Upper Bound

Duality Gap Ω(d2

log d) [13] d2 − d+ 1 [10]

Max-IS Integ. Gap 2d− 1 2d [2]
Min-HS Integ. Gap d d
d-Union

Duality Gap Ω(d2

log2 d
) [13] d2 − d [10]

Max-IS Integ. Gap 2d− 2 2d [2]
Min-HS Integ. Gap d d

We note that for d = 2, Kaiser’s topology-based dual-
ity gap upper bounds of d2−d+1 and d2−d match our
independent set integrality gap lower bounds of 2d − 1
and 2d − 2, but are tighter than the constructive in-
tegrality gap upper bounds of 2d due to Bar-Yehuda

et al. Hence, despite knowing that ρ(H)
α(H) is bounded

above by 3 and 2 for families of 2-intervals and 2-union-
intervals respectively, no polynomial-time approxima-
tion factor below 4 is known for the maximum inde-
pendent set problem on 2-union-intervals. We observe,

however, that Kaiser’s proof can be turned into a 2-
approximation if one has access to an oracle to solve
the topological subproblems that arise. The particular
topological problems in question are closely related to
finding Borsuk-Ulam fixed-points. Unfortunately, the
problem of finding Borsuk-Ulam fixed-points is PPAD-
complete [15] and thus seems unlikely to admit poly-
nomial algorithms unless a major breakthrough occurs.
Nevertheless, we establish the following in Section 3:

Theorem 4 There exists an algorithm for the maxi-
mum independent set problem on 2-intervals (respec-
tively, 2-union-intervals) returning a solution of size at

least α(H)
3 (respectively α(H)

2), requiring O(log(α(H)))
calls to an oracle for a PPAD-complete fixed-point prob-
lem, and polynomial time for all other computations.

Despite the fact that Theorem 4 is likely not of practical
value, we find it interesting because it implies that the
2-dimensional maximum conflict-free subset problem is
a natural APX-hard geometric optimization problem
whose best known approximability appears to improve
in the presence of a PPAD oracle. It remains an open
problem to find an alternative method of achieving the
approximation ratios of Theorem 4 while bypassing the
need for a PPAD oracle (of course, this may very well
be impossible, but proving so would separate P from
PPAD, resolving a longstanding open problem).

1.3 Related Work

Many variations and special cases of d-interval stabbing
and independence problems have been studied in a va-
riety of contexts. Kovalena and Spieksma have exam-
ined the special case of the rectangle stabbing prob-
lem in which each rectangle is a horizontal line segment
[11, 12]. They obtain an LP-relative e

e−1 -approximation
for this case, alongside an example showing that the in-
tegrality gap is precisely e

e−1 .
Even et al. explore weighted and capacitated varia-

tions of d-union-interval hitting set [6]. Their results
include a 3d-approximation for a variant in which each
point may only be used to hit a specified number of
d-intervals, but may be purchased multiple times.

Spieksma considers the version of maximum d-
interval independent set where the goal is to select a
single interval from each d-interval such that none in-
tersect [17]. It is shown that a straightforward greedy
procedure yields a 2-approximation.

Some additional hardness results are also known.
Even et al. show that there is a constant c > 0 such
that it is NP-hard to approximate the d-interval hitting
set problem to within c log d [6]. Dom et al. show that
rectangle stabbing is W [1]-hard, even when the input
consists of squares of the same size, implying that the
problem is unlikely to be fixed-parameter tractable in
the optimal objective value ρ(H) [4].

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

49

24th Canadian Conference on Computational Geometry, 2012

2 Integrality Gap Bounds

To prove Theorem 1 and establish tight lower bounds
on the integrality gap of the independent set problem,
we rely on an amplification lemma. We shall refer to
the d individual intervals composing a d-interval as its
pieces, and call a piece inert if it is a point. We shall
call H a clique if α(H) = 1, and write r(H) for the rank
of GH—the maximum number of d-intervals intersected
by any point in R. We observe that if H is a clique and
r(H) = p, then a fractional independent set of value
|H|
p can be obtained by simply putting weight 1

p on each
d-interval in H. In some situations, we can do better:

Lemma 5 Suppose that H is a clique, and that H
contains no two inert pieces that intersect and no d-
intervals consisting entirely of inert pieces. Further-
more, suppose that r(H∗) = q, where H∗ is a modi-
fied version of H∗ obtained by deleting all inert pieces.
Then for any N ∈ N, there is a clique H′ of d-intervals

admitting a fractional independent set of value N |H|
Nq+1 .

Proof. We construct H′ by making N copies of each
d-interval in H, and then perturbing all inert pieces in
the resulting family of d-intervals such that no two inert
pieces intersect, while preserving intersections of inert
pieces with non-inert pieces. It is immediate that H′
is still a clique; note that copies of the same d-interval
in H must intersect in H′ because no d-interval consists
entirely of inert pieces. Moreover, r(H′) ≤ Nq + 1, so
we can place a weight of 1

Nq+1 on each d-interval in H′,
yielding a fractional independent set of value N |H|

Nq+1 . �

By taking the limit as N →∞, Lemma 5 yields an inte-

grality gap lower bound of |H|q given a d-interval graph
satisfying the necessary requirements. We note that
the amplification in Lemma 5 also works for d-union-
intervals. We proceed with the proof of Theorem 1:

Proof of Theorem 1. For the case of d-interval
graphs, we exhibit a clique H satisfying the conditions
of Lemma 5 with |H| = 2d − 1 and q = 1. We label
the d-intervals {a0, a1, . . . , a2d−2}. Each d-interval will
have exactly one non-inert piece (a closed interval in R)
and d− 1 inert pieces. We position the non-inert pieces
such that no two intersect, which ensures that q = 1.
Then for all 0 ≤ i ≤ 2d − 2, we position the remaining
d − 1 inert pieces of ai (each of which is a point) on
the non-inert pieces of d-intervals {ai+1, . . . , ai+(d−1)},
where the addition is modulo 2d − 1. This ensures
that an inert piece of ai intersects non-inert pieces in
{ai+1, . . . , ai+(d−1)}, hence ensuring that inert pieces of
{ai−1, . . . , ai−(d−1)} all intersect the non-inert piece of
interval ai. This proves that the construction yields a
clique, from which it follows that the independent set
problem in d-interval graphs has an integrality gap of

|H|
q = 2d− 1. An example of the construction for d = 3

is shown (intervals are vertically separated for clarity):

a0 a1 a2 a3 a4

a3
p

a4
p

a4
p

a0
p

a0
p

a1
p

a1
p

a2
p

a2
p

a3
p

For the case of d-union-intervals, we exhibit a clique
H of size 4d − 4 satisfying the conditions of Lemma 5

with q = 2. This yields an integrality gap |H|q = 2d− 2.
We label the 4d − 4 d-union-intervals by

{ai1, ai2, ai3, ai4}d−1i=1 . We shall say that each inter-
val has its kth piece in the kth track, where each track
is a copy of R. We first explain what happens in
tracks 1 through d− 1, and then explain what happens
in the final track, which is treated differently. For
1 ≤ i ≤ d − 1, all of the pieces in track i are inert
(single points) except for the ith pieces of ai1, ai2, ai3,
and ai4, which are arranged as follows:

ai2 ai4

ai1 ai3

Now, for all j 6= i, the ith pieces of {aj1, aj2, aj3, aj4} are
positioned according to the following rules:

• If j < i, put aj1, a
j
2 in ai1 ∩ ai2; put aj3, a

j
4 in ai3 ∩ ai4

• If j > i, put aj3, a
j
4 in ai1 ∩ ai2; put aj1, a

j
2 in ai3 ∩ ai4

In the last track d, none of the intervals need to be inert.
For all 1 ≤ i ≤ d − 1, the dth pieces of {ai1, ai2, ai3, ai4}
are positioned similarly to the diagram above, but are
permuted to induce the remaining three dependencies
among the d-intervals. Figure 1 illustrates this and pro-
vides an example of the entire construction for d = 4.

Observe that any two d-union-intervals with the same
superscript i must be adjacent in either track i or track
d. For 1 ≤ i < j ≤ d − 1, we check that all 16 de-
pendencies between ai1, a

i
2, a

i
3, a

i
4 and aj1, a

j
2, a

j
3, a

j
4 are

accounted for: In track i, aj3 and aj4 intersect ai1∩ai2; aj1
and aj2 intersect ai3 ∩ ai4. In track j, ai1 and ai2 intersect

aj1 ∩ aj2; ai3 and ai4 intersect aj3 ∩ aj4. Thus H is a clique.
It is easy to verify that the other conditions of Lemma 5
are satisfied with q = 2, so the proof is complete. �

Next, we provide a polynomial algorithm yielding an
upper bound of d for the integrality gap of the general
d-interval hitting set problem:

Proof of Theorem 2. Let H be a collection of d-
intervals, and let {y∗p : p ∈ P (H)} be an optimal frac-
tional hitting set of weight ρ∗(H) obtained by solving
linear program (2). We demonstrate how to round {y∗p}
to an integral solution of weight at most d ·ρ∗(H). For a
d-interval I in H, let I∗ ⊆ I be any piece of I that is hit
by weight at least 1

d under {y∗p} (one must exist by the

24th Canadian Conference on Computational Geometry, 2012

50

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

p p
a1
3

a1
1 a1

2

a1
4 a1

3

a1
1 a1

2

a1
4 a1

3

a1
1 a1

2

a1
4a1

1

a1
2

a1
3

a1
4

a2
1

a2
2

a2
3

a2
4

a3
1

a3
2

a3
3

a3
4

a2
3 a2

4 a3
3 a3

4 a2
1 a2

2 a3
1 a3

2 a3
3 a3

4 a1
1 a1

2 a3
1 a3

2 a1
3 a1

4 a1
1 a1

2 a2
1 a2

2 a1
3 a1

4 a2
3 a2

4

Figure 1: A clique of 12 4-union-intervals satisfying the conditions of Lemma 5 with q = 2

pigeonhole principle). Then the set C = {I∗ : I ∈ H}
is a set of intervals in R that are each hit by weight at
least 1

d under {y∗p}.
By multiplying solution {y∗p} by d, we obtain a new

fractional hitting set {dy∗p} of weight dρ∗(H) that hits,
with weight at least 1, all elements of C. However,
the incidence matrix for the hitting set problem on 1-
intervals is totally unimodular, so there must exist an
integral hitting set Q of weight at most dρ∗(H) that
hits all of C—one can be found by simply solving lin-
ear program (2) again for C instead of H. Of course,
Q is also a hitting set for H, from which it follows that
ρ(H) ≤ d · ρ∗(H). By simply returning Q, we obtain
a polynomial-time LP-relative d-approximation for the
d-interval hitting set problem, completing the proof. �

We note that the above algorithm also works for the
weighted variant of the minimum hitting set problem,
in which each point p ∈ P (H) is given a positive cost,
and the goal is to compute a minimum cost hitting set.

Finally, we establish Theorem 3 by giving a set of d-
union-intervals with a hitting set integrality gap of d−ε:
Proof of Theorem 3. Fix ε > 0. Choose any integer

t ≥ 2d2

ε and any integer n ≥ 2t
ε . Fix some small δ,

say δ = 0.1. Here, we regard the d tracks {J1, . . . , Jd}
as disjoint copies of R. A d-union-interval I is called
aligned if, for all 1 ≤ k ≤ d, the piece of I in Jk has
the form [ik + δ, jk − δ] for some integers 0 ≤ ik < jk ≤
n. In other words, a d-union-interval is aligned if the
endpoints of all of its pieces each barely miss an integer
point between 0 and n. Let H be the collection of all
aligned d-union-intervals I such that the total length of
all pieces in I is exactly t− 2dδ. Note that |H| is finite.

Let P contain all points of the form i + 0.5 for i ∈
{0, 1, . . . , n − 1} in each of the d tracks, for a total of
dn points. Each d-union-interval in H must contain at
least t points in P , so we can obtain a fractional hitting
set of total weight dn

t by placing a value of 1
t at each

point in P . This shows that ρ∗(H) ≤ dn
t .

Let Q be any feasible integral hitting set for H. We

wish to show that |Q|
ρ∗(H) ≥ d − ε, so we may assume

that |Q| < n. Let bi be the number of points of Q in
J i. By the pigeonhole principle, there must exist an
open interval Ki ⊆ [0, n] in track J i that has integer
endpoints, has length at least n−bi

bi+1 , and contains no
points in Q. Consequently, there is a d-union-interval
K = ∪di=1K

i having total length
∑d
i=1

n−bi
bi+1 that has in-

teger endpoints and is missed by Q in all tracks. How-
ever, Q hits all aligned d-union-intervals having total

length t− 2dδ, and K is missed by Q, so we must have

d∑

i=1

n− bi
bi + 1

< t.

By rearranging this, we obtain

d

(
d∑

i=1

1

bi + 1

)−1
>
d(n+ 1)

t+ d
.

The left side of the above equation is a harmonic
mean. Since an arithmetic mean is always greater than
or equal to the corresponding harmonic mean, we get

1

d

d∑

i=1

(bi + 1) >
d(n+ 1)

t+ d

and hence ρ(H) ≥ |Q| = ∑d
i=1 bi >

d2(n+1)
t+d − d. Divid-

ing by the upper bound we had for ρ∗(H) gives

ρ(H)

ρ∗(H)
>
td(n+ 1)

n(t+ d)
− t

n
>

(
1− d

t+ d

)
d− t

n
,

where the last inequality is due to n+1
n > 1. Since we

chose t and n such that t ≥ 2d2

ε and n ≥ 2t
ε , we get

ρ(H)

ρ∗(H)
>

(
1− d

2d2

ε + d

)
d− t

2t
ε

= d− ε

2 + ε
d

− ε
2
> d−ε,

completing the proof of Theorem 2. �

3 Topology-based algorithms

In this section, we sketch a proof of Theorem 4, illus-
trating how to obtain a 3-approximation (respectively,
a 2-approximation) for the independent set problem on
2-intervals (respectively, 2-union-intervals), supposing
one has access to oracles for PPAD-complete topological
subproblems. We assume familiarity with the complex-
ity class PPAD and its connection to topological fixed-
point theorems; see [15] for background information.

Our approach follows Kaiser’s duality gap upper
bound proof [10], which we outline here. We first con-
sider the case of 2-union-intervals. For concreteness,
we consider a family H of axis-aligned rectangles in the
plane. Let n be an arbitrary positive integer. Kaiser
considers the space Sn×Sn (where Sn is the boundary
of an (n+1)-dimensional unit ball), and associates each

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

51

24th Canadian Conference on Computational Geometry, 2012

point x ∈ Sn × Sn to a set of n horizontal lines and
n vertical lines in the plane. Kaiser then constructs a
family of 2n+ 2 real-valued functions hH1 , . . . , h

H
2n+2 on

Sn × Sn having the following properties:

1. If hHi (x) = 0 for all i, then x corresponds to a set
of lines that intersect all rectangles in H.

2. If hH1 (x) = hH2 (x) = . . . = hH2n+2(x) 6= 0 for all
i, then x corresponds to a set of n horizontal lines
and n vertical lines defining a grid from which we
can easily find a conflict-free set of rectangles of
size n+ 1 in polynomial time.

Kaiser then establishes that, for topological reasons,
there must exist a point x ∈ Sn × Sn such that
hH1 (x) = hH2 (x) = . . . = hH2n+2(x) and thus a point
x must exist satisfying item 1 or item 2 above. Tar-
dos’s result that ρ(H) ≤ 2α(H) follows immediately by
setting n = α(H), since then a point where hHi (x) 6= 0
for all i cannot exist, and thus a stabbing consisting of
α(H) horizontal lines and α(H) vertical lines must exist.

Kaiser’s proof can easily be adapted to yield a pro-
cedure P that, given an integer n, finds either a stab-
bing of size 2n or a conflict-free subset of size n + 1,
using polynomial time plus a single call to an ora-
cle for a topological fixed-point problem. To obtain a
2-approximation for the maximum conflict-free subset
problem, it then suffices to find a cutoff point t ∈ N such
that P returns a conflict-free subset S of size t when run
with n = t−1, but returns a stabbing of size 2t when run

with n = t (if this happens, we have |S| ≥ ρ(H)
2 ≥ α(H)

2).
Although there may be many cutoff points t, one must

exist in the interval [ρ(H)
2 , α(H)]. One can be found us-

ing only O(log(α(H))) calls to P by running a galloping
binary search that first tries t = 1, t = 2, t = 4, . . . un-
til a stabbing of size 2t is returned, and then binary
searches between t

2 and t to find a cutoff point.
Kaiser’s topological argument employs a result of

Ramos that generalizes the Borsuk-Ulam theorem to
cross products of spheres [16], so procedure P must
invoke calls to an oracle for Ramos-style fixed-points.
Ramos invokes a parity argument that can be adapted,
in a straightforward manner, to show that an appro-
priate computational version of the Ramos fixed-point
problem lies in the complexity class PPAD. Indeed,
Ramos provides a searching algorithm to locate such
fixed-points, although it may be exponential in the
worst case. We also note that, by the discreteness of our
problem, the particular instances that we must solve can
be efficiently represented and have rational solutions.
This establishes Theorem 4 for 2-union-intervals.

For the case of general 2-intervals, Kaiser provides
a related argument that can be adapted in the same
manner to yield a binary search algorithm. In this case,
only an oracle for standard Borsuk-Ulam fixed-points is
required. However, due to changes in how the functions

hHi must be formulated, only a 3-approximation can be
obtained. Still, the integrality gap bounds imply that
this is optimal among all LP-relative approximations.

References

[1] N. Alon. Piercing d-intervals. Disc. Comp. Geom., 19(3,
Special Issue):333–334, 1998.

[2] R. Bar-Yehuda, M. Halldórsson, J. Naor, H. Shachnai,
and I. Shapira. Scheduling split intervals. SIAM J.
Comput., 36(1):1–15 (electronic), 2006.

[3] G. Călinescu, A. Dumitrescu, H. Karloff, and P. Wan.
Separating points by axis-parallel lines. Internat. J.
Comp. Geom. Appl., 15(6):575–590, 2005.

[4] M. Dom, M. Fellows, and F. Rosamond. Parameterized
complexity of stabbing rectangles and squares in the
plane. In Proc. WALCOM, LNCS 5341:298–309, 2009.

[5] A. Dumitrescu. On two lower bound constructions. In
Proc. 11th Canadian Conf. Comp. Geom., 1999.

[6] G. Even, R. Levi, D. Rawitz, S. Baruch, S. Shahar, and
M. Sviridenko. Algorithms for capacitated rectangle
stabbing and lot sizing with joint set-up costs. ACM
Trans. Algorithms, 4(3), 2008.

[7] D. Gaur, T. Ibaraki, and R. Krishnamurti. Constant
ratio approximation algorithms for the rectangle stab-
bing problem and the rectilinear partitioning problem.
J. Algorithms, 43(1): 138–152, 2002.

[8] A. Gyárfás and J. Lehel. A Helly-type problem in trees.
Comb. Theory and its Appl., II, 571–584, 1970.

[9] P.J-J. Herings and R. Peeters. Homotopy methods to
compute equilibria in game theory. Economic Theory,
42(1):119–156, 2010.

[10] T. Kaiser. Transversals of d-intervals. Disc. Comp.
Geom., 18(2):195–203, 1997.

[11] S. Kovaleva and F. Spieksma. Primal-dual approxima-
tion algorithms for a packing-covering pair of problems.
RAIRO Oper. Res., 36(1):53–71, 2002.

[12] S. Kovaleva and F. Spieksma. Approximation algo-
rithms for rectangle stabbing and interval stabbing
problems. SIAM J. Disc. Math., 20(3):748–768, 2006.

[13] J. Matoušek. Lower bounds on the transversal numbers
of d-intervals. Disc. Comp. Geom., 26(3):283–287, 2001.

[14] H. Nagashima and K. Yamazaki. Hardness of approx-
imation for non-overlapping local alignments. Disc.
Appl. Math., 137(3):293–309, 2004.

[15] C. Papadimitriou. On the complexity of the parity argu-
ment and other inefficient proofs of existence. J. Com-
put. System Sci., 48(3):498–532, 1994.

[16] E. Ramos. Equipartition of mass distributions by hy-
perplanes. Disc. Comp. Geom., 15(2):147–167, 1996.

[17] F. Spieksma. On the approximability of an interval
scheduling problem. J. Sched., 2(5):215–227, 1999.

[18] G. Tardos. Transversals of 2-intervals, a topological
approach. Combinatorica, 15(1):123–134, 1995.

[19] V. Vatter. Small permutation classes. In Proc. Lond.
Math. Soc. (3), 103(5):879-921, 2011.

24th Canadian Conference on Computational Geometry, 2012

52

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

The Within-Strip Discrete Unit Disk Cover Problem

Robert Fraser ∗ Alejandro López-Ortiz †

Abstract

We investigate the Within-Strip Discrete Unit Disk
Cover problem (WSDUDC), where one wishes to find
a minimal set of unit disks from an input set D so that
a set of points P is covered. Furthermore, all points and
disk centres are located in a strip of height h, defined
by a pair of parallel lines. We give a general approxi-
mation algorithm which finds a 3d1/

√
1− h2e-factor ap-

proximation to the optimal solution. We also provide a
4-approximate solution given a strip where h ≤ 2

√
2/3,

and a 3-approximation in a strip if h ≤ 4/5, improv-
ing over the 6-approximation for such strips using the
general scheme. Finally, we show that WSDUDC is NP-
complete for a strip with any height h > 0.

1 Introduction

In the Within-Strip Discrete Unit Disk Cover (WS-
DUDC) problem, the input consists of a set of m unit
disks D with centre points Q, and a set of n points P,
all of which lie in the Euclidean plane. We define the
strip s of height h as the region of the plane between two
parallel lines `1 and `2, where Q∩s = Q and P∩s = P.
We assume that we are provided with the lines `1 and
`2; alternatively, a minimum width strip may be com-
puted. We wish to determine the minimum cardinality
set of disks D? ⊆ D such that P ∩ D? = P. This is
a seemingly simpler context than the general Discrete
Unit Disk Cover (DUDC) problem, which has no strip
confining the positions of the points and disks. The
DUDC problem is NP-complete [10], and has received
attention due to applications in wireless networking and
related optimization problems [14].

This paper addresses an open question regarding the
hardness of the general DUDC problem. An implica-
tion of a polynomial time algorithm for WSDUDC for
strips of any fixed width would be a simple PTAS for
DUDC, using the shifting techniques of Hochbaum and
Maass [9]. The recent PTAS for DUDC [12], as dis-
cussed shortly, uses fundamentally different techniques.

The notion of decomposing a problem into strip-based
subproblems is natural, since an exact algorithm or
PTAS for the subproblem can potentially be used to
derive a general PTAS using the “shifting strategy” [9].

∗University of Waterloo, Canada, r3fraser@uwaterloo.ca
†University of Waterloo, Canada, alopez-o@uwaterloo.ca

For example, the PTAS for the geometric unit disk cover
problem (like DUDC except the centres of the disks
are unrestricted) operates by dividing the problem into
strips [9]. The maximum independent set of a unit disk
graph may be found in polynomial time if the setting
is confined to a strip of fixed height [11]. Geometric
set cover on unit squares (precisely WSDUDC, except
the disks are replaced with axis-aligned unit squares)
may be solved optimally in nO(k) time when confined
to strips of height k [7]. Considering these results, the
hardness of WSDUDC is somewhat surprising.

The WSDUDC problem was formally introduced by
Das et al. [6], as a subroutine for their DUDC approx-
imation algorithm. In that work, it was demonstrated
that points in a strip of height 1/

√
2 (≈ 0.707) may be

covered in O(mn+n log n) time using a fixed partition-
ing technique to obtain a 6-approximate algorithm.

The Strip-Separated Discrete Unit Disk Cover (SS-
DUDC) problem was first addressed by Ambühl et al.
[1, Lemma 1]. The input consists of a set of points P
located in a strip in the plane, like WSDUDC, but the
set of unit disk centres Q lies strictly outside of the
strip rather than in the strip. In the electronic version
of this paper, we outline an O(m2n + n log n) time ex-
act algorithm for SSDUDC based on [1], which we use
as a subroutine in our work. The Line-Separated Dis-
crete Unit Disk Cover (LSDUDC) problem has a single
line separating P from Q. A version of LSDUDC was
first discussed by [5], where a 2-approximate solution
was given; an exact algorithm for LSDUDC was pre-
sented in [4]. Another generalization of this problem is
the Double-Sided Disk Cover (DSDC) problem, where
disks centred in a strip are used to cover points outside
of the strip. This also has an exact dynamic program-
ming solution [13].

Many papers have addressed DUDC using a vari-
ety of techniques, e.g. [3, 5]; a summary of such re-
sults is presented in [6]. Brönnimann and Goodrich
[2] established the first constant factor approximation
algorithm based on epsilon nets. Mustafa and Ray
[12] described a PTAS for a more general version of
DUDC based on local search. Interest in research
on approximation algorithms for DUDC and related
problems has remained high because of the large run-
ning time associated with the PTAS (O(m65n) for a 3-

approximation, O(mO(1/ε)2n) in general for 0 < ε ≤ 2).
The best tractable result for DUDC is that of [6], which

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

53

24th Canadian Conference on Computational Geometry, 2012

describes a 18-approximate algorithm which runs in
O(mn+ n log n) time.

1.1 Our Results

We provide a general 3d1/
√

1− h2e-approximate algo-
rithm for solving the Within-Strip Discrete Unit Disk
Cover (WSDUDC) problem on strips of height h < 1,
which runs in O(m2n + n log n) time. Given a strip of
height at most 2

√
2/3 (≈ 0.94), a 4-approximate so-

lution is given which refines the general algorithm by
checking for simple redundancy while still running in
O(m2n + n log n) time. For a strip of height at most
4/5, an O(m6n) time 3-approximate solution is pro-
vided which uses dynamic programming to solve all sub-
problems optimally (using the general 3d1/

√
1− h2e-

approximate algorithm on strips of height 2
√

2/3 or 4/5
would produce a 6-approximation). To conclude, we
show that WSDUDC is NP-complete.

2 Approximation Algorithms for WSDUDC

In this section, we present algorithms for approximating
the optimal WSDUDC solution. We begin with a gen-
eral technique, followed by refinements which achieve
better approximation factors in narrower strips.

Theorem 1 Given a strip of height h < 1, we may find
a 3d1/

√
1− h2e-approximation to the WSDUDC prob-

lem in O(m2n+n log n) time. If h ≤ 2
√

2/3, we can im-
prove the approximation factor to 4 in O(m2n+n log n)
time. Given a strip of height h ≤ 4/5, a 3-approximate
solution may be found in O(m6n) time.

We define the set of rectangles R◦, where R◦i is the
largest rectangle of height 2h which may be covered by
Di ∈ D, where the strip s has height h and is assumed
to be horizontal. Further, we use a set of rectangles R
of height h, defined as Ri = R◦i ∩ s,∀R◦i ∈ R◦.

Observation 1 Suppose we are given a strip of height
h < 1 and a unit disk D whose centre lies in the strip.
R◦ is defined as the rectangle of height 2h and width
k = 2

√
1− h2 which is circumscribed by D. If a point

q is covered by R◦, then D also covers q. Furthermore,
R◦ covers the entire height of the strip.

We divide the set of points P into two sets P = PR∪PR,
where PR is the set of points covered by the set of rect-
angles R, and PR = P\PR, i.e. those points covered by
D but not R. The approximation algorithms proceed in
two stages to compute the cover: first the points in PR
are covered, and then the remaining uncovered points
in PR are covered. We refer to the points in PR as oc-
curring in the gaps of the strip, and the points in PR

gap1 interval1
gap2 gap3

gap4interval2 interval3

Figure 1: Intervals are continuous segments of the strip
covered by the rectangles in R, and gaps are the seg-
ments of the strip outside of the intervals.

Algorithm 1 Greedy-Rectangles(R,PR)

R′ ← ∅, sort R by x-coordinate, sort PR by left boundary
while PR 6= ∅ do

p` ← left-most point in PR
Rr ← right-most rectangle in R covering p`
R′ = R′ ∪Rr

PR = PR \ (Rr ∩ PR)
return R′

are in the intervals (see Figure 1). In our discussion, we
assume that h > 0, so that k = 2

√
1− h2 < 2. 1

2.1 Covering PR
The centres of all disks are separated from the points in
PR by vertical lines (those of the gap boundaries). For
each gap of the strip, the points are covered optimally
with the O(m2n+n log n) time algorithm for SSDUDC.
While points in each gap are covered optimally, we may
lose optimality when we combine these solutions2. Re-
call that rectangles have width k = 2

√
1− h2. There

is a rectangle for each disk, and so no disk centre lies
within a distance of k/2 of any gap. By interleaving
rectangles with gaps of width ε, a disk may cover points
in 2d1/k− 1/2e gaps as ε→ 0. To see this, consider the
right side of a disk Di, where Ri defines an interval of
width k/2 on this right side. Since Di has unit radius,
d(1− k/2)/ke additional intervals (and gaps, one to the
left of each interval) may be at least partially covered by
the right half of Di. Thus, the union of the solutions for
each gap has an approximation factor of 2d1/k − 1/2e
for covering PR.

2.2 Covering PR
To cover the points remaining after the previous step,
we iteratively add the right-most rectangle that covers
the left-most remaining point to the solution, as detailed
in Algorithm 1 (Greedy-Rectangles).

1If h = 0, all points and disk centres are collinear, and
PR is empty. This setting is solved optimally by the Greedy-
Rectangles algorithm detailed in Section 2.2.

2Covering the points in the union of the gaps cannot be covered
optimally in general, as the hardness proof for WSDUDC (Section
3) only has points in gaps.

24th Canadian Conference on Computational Geometry, 2012

54

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Lemma 2 A rectangle R′i selected by Greedy-
Rectangles may overlap another rectangle R′i−1 (the
previous rectangle chosen) by k − ε, for any ε > 0. 3

Lemma 3 Let R′ = {R′1, . . . , R′|R′|} be the set of rect-
angles found by Greedy-Rectangles, indexed from
left to right so that ∀i, j, i < j ↔ left(R′i, R

′
j) where

left(R′i, R
′
j) indicates that R′i is left of R′j. Then

∀i, j, j > i+ 1→ R′i ∩R′j = ∅. 3

Lemma 4 Greedy-Rectangles computes a cover of
PR with an approximation factor of 3d1/k− 1/2e times
the optimal solution.

Proof. Consider the maximum number of rectangles
in the Greedy-Rectangles solution that may be re-
placed by a single disk Di in the strip. One of the
rectangles available to the algorithm is Ri ⊂ R◦i , where
R◦i is circumscribed by Di. By Lemma 2, there may be
another rectangle ε to the left or right of Ri which will
be selected by the algorithm, and so the approximation
factor is at least 2. It may be possible to pack addi-
tional pairs of nearly overlapping rectangles as densely
as permitted by Lemma 3 so that the points covered by
these rectangles are also covered by Di. Since all disks
have unit radius and R◦i is circumscribed, each side of
Di can potentially cover all points covered by at most
2d(1−k/2)/ke−1 additional rectangles. This analysis is
similar to Section 2.1, but now all rectangles are paired
except for the right-most one (in a right-most pair, the
region covered only by the right rectangle cannot be
covered at all by Di since we consider the pairs to have
width k, i.e. ε = 0). Thus, the total approximation
factor is 4d1/k − 1/2e. �

Greedy-Rectangles requires both the set of rectan-
gles R and the set of points PR to be sorted in left to
right order. The sorted lists are each walked through
once, so the running time is O(m logm+ n log n).

2-approximation when k ≥ 2/3 (h ≤ 2
√

2/3). The
general algorithm for covering PR presented above has
an approximation factor of 4 when k ≥ 2/3. For each
pair of consecutive rectangles R′i−1 and R′i found by
Greedy-Rectangles, we determine whether there ex-
ists a disk Dj such that (R′i−1 ∪R′i) ∩ P ⊆ Dj ∩ P. To
do so, we run through R′ in order, and check whether
the current pair may be replaced by any disk in D.

Consider a disk Di ∈ D?, which may or may not be
a member of our refined solution set. Di may intersect
at most four rectangles in R′. Every consecutive pair
of rectangles in R′ now requires at least two disks, so
at least two disks are required to cover any four consec-
utive rectangles. Therefore, the overall approximation

3Due to lack of space, the proof of this lemma is omitted. It
is presented in the electronic version of this paper.

factor is two. This operation will scan m disks for ev-
ery possible disk to remove from the solution, so the
operation takes O(m2n+ n log n) time.

Optimal solution when k ≥ 6/5 (h ≤ 4/5). In this
case4, the PR sub-problem may be solved optimally us-
ing dynamic programming. We define a set of disks Ds

as mutually spanning if each disk in Ds covers a non-
empty set of points which lies to the left of all other
disks in Ds, as well as a non-empty set of points lying
to the right of all other disks in Ds.

Lemma 5 If h ≤ 4/5, an optimal solution to PR re-
quires mutually spanning sets of size at most 3. 3

By Lemma 5, a dynamic program which add disks to
the solution in a left-to-right fashion need only con-
sider up to triples of disks to terminate sub-problems
to ensure that the sub-problems are independent and
optimal. Such a dynamic program is described in Al-
gorithm 2. In the algorithm, D2 and D3 are the sets
of mutually spanning doubles and triples of disks re-
spectively, and D is the set of all sets of disks under
consideration. Given two sets Di,Dj ∈ D, if Di cov-
ers points left of Dj , and Dj does not cover points left
of Di, we write Di <c Dj to indicate this relationship.
Otherwise, we consider them incomparable under this
operator. Hence, we may establish a partially ordered
set over all of the sets in D w.r.t. the <c operator. Note
that directed cycles are impossible in this set, since the
transitive property holds for the <c operator. We im-
pose a topological sorting D = {D1, . . . ,D|D|} so that
for any two sets Di,Dj in this ordering, we have that
i < j → Dj 6<c Di.

The correctness of Optimal-PR follows from the fact
that all points left of a set Di are covered in a valid
solution to a subproblem terminating with Di, and all
mutually spanning sets up to size three are considered.
Optimal-PR runs in O(m6n) time: there are O(m3)
possible combinations of disks that we consider in two
nested for loops, and inside the nested loop we check
the disks against the point set P.

2.3 Combining solutions for PR and PR
Recall that the approximation factor for covering the
entire set of PR is 2d1/k − 1/2e and 4d1/k − 1/2e
for covering PR, where k is the width of the rectan-
gles. We simply sum these factors to get an overall
approximation factor of 6d1/k − 1/2e < 3d1/

√
1− h2e

for strips of arbitrary height h < 1. The running time is
O(m2n+n log n), effectively dominated by the SSDUDC
algorithm used to cover PR.

4A similar dynamic programming algorithm applies to larger
strips, but the running time increases rapidly with h.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

55

24th Canadian Conference on Computational Geometry, 2012

Algorithm 2 Optimal-PR (D,PR) (Assumes k ≥
6/5)

D← D ∪D2 ∪ D3, m′ ← |D|
Topologically sort D on the <c operator
c[0] = 0, c[1 . . .m′] =∞
for i = 1 . . .m′ do

for j = 0 . . . i− 1 do
size ← c[j] + |Di|
if size < c[i] and no points lie between Di and Dj

then
c[i]← size

Backtrack on c to recover optimal cover D?

return D?

4-approximation when k ≥ 2/3 (h ≤ 2
√

2/3). We
have a 2-approximate algorithm for PR when k ≥ 2/3,
and we may solve each gap of PR optimally. For the
purposes of counting, we may assume that the disks
forming the cover for each gap are equally distributed
amongst the neighbouring intervals for both the approx-
imate solution and the optimal one. We are not in-
terested in the worst-case approximation factor in any
given interval; rather we are interested in the approxi-
mation factor over the strip as a whole. For each gap,
only disks found in adjacent intervals may form part of
the solution. Disk centres are located at least a distance
1/3 from the end of an interval, and so disk centres in
non-adjacent intervals are more than unit distance away
from the gap. Thus, for each interval of the strip, as-
sume that n` (resp. nr) disks are used for covering the
gap to the left (resp. right), and ns disks are used for
covering the points in the interval. The minimum num-
ber of disks required is max{n`, ns/2, nr}, since both n`
and nr are optimal and ns is a 2-approximation. We
conclude that n` + ns + nr ≤ 4 ·max{n`, ns/2, nr}, and
thus it is a 4-approximation algorithm. Again, the run-
ning time is O(m2n+ n log n).

3-approximation when k ≥ 6/5 (h ≤ 4/5). We have
optimal algorithms for computing the cover of each gap
of PR and each interval of PR. Further, the disks cov-
ering a gap only come from the two adjacent intervals,
and the disks covering an interval only come from the
interval itself. Since the disks in each interval can con-
tribute to only three problems, each of which is solved
optimally, the worst-case is that three times the opti-
mal number of disks is used. The running time of the
algorithm is dominated by Optimal-PR, so the overall
running time is O(m6n).

Corollary 6 There is a 15- (resp. 16-) approximate
algorithm for DUDC, which runs in O(m6n) (resp.
O(m2n+ n log n)) time.

3 Hardness of WSDUDC

We prove that WSDUDC is NP-complete by reduc-
ing from the minimum vertex cover problem (Vertex-
Cover) on planar graphs of maximum degree three,
which is known to be NP-complete [8]. Recall the
setting for Vertex-Cover: We are given a graph
G = (V,E), and we seek a minimum cardinality sub-
set V ? ⊆ V such that for all e(i,j) = (vi, vj) ∈ E, either
vi ∈ V ? or vj ∈ V ?. In other words, the vertex cover is
a minimum cardinality hitting set of all of the edges in
the graph.

Theorem 7 WSDUDC is NP-complete.

WSDUDC is in NP, since a certificate may be pro-
vided as a set of disks that covers all of the points in P,
which is trivial to verify.

In the reduction, we create an instance of WSDUDC
from a planar graph so that a solution D? to the WS-
DUDC problem provides a solution V ? to the Vertex-
Cover problem on the graph. For our reduction, it is
easier to consider the dual (disk piercing) setting of WS-
DUDC. The Within-Strip Discrete Unit Disk Piercing
problem (WSDUDP) accepts a set of points Q, a set
of unit disks DP with centre points P, and a strip of
height h as inputs, and computes the minimum number
of points Q? ⊆ Q such that each disk in DP contains at
least one point from Q?. Let WS(G) be the WSDUDP
instance created from a graph G. Note that a solution
Q? for WSDUDP is exactly the set of centre points to
D?, the optimal solution to the WSDUDC problem in
the primal setting.

Assume that we have a planar embedding of the graph
and a horizontal strip so that the terms left, right, above
and below are all well defined. Let `vvert be a vertical
line through vertex v. For the reduction, we make use
of dummy vertices, which are simply extra vertices that
we may place on an edge of the graph G. A dummy edge
is an edge which is incident upon at least one dummy
vertex. Informally, the steps of the reduction are:

1. Obtain a planar embedding of G where each vertex
has a distinct x-coordinate.

2. For any vertex v with degree three where all inci-
dent edges are left or right of `vvert, ‘bend’ the lowest
edge with a dummy vertex so that the edge becomes
incident to v from the opposite side of `vvert, call this
new graph G′ = (V ′, E′).

3. For each vertex v ∈ V ′, add a dummy vertex at
each point where `vvert ∩ e 6= ∅,∀e ∈ E′.

4. Identify each vertex v of degree one or two where
all edges are incident on the same side of `vvert, say
w.l.o.g. the edges are incident from the right. Place
a vertical line `vert between v and the next vertex

24th Canadian Conference on Computational Geometry, 2012

56

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

to the left, and add a dummy vertex at each point
where `vert ∩ e 6= ∅,∀e ∈ E′. This ensures that
consecutive vertical arrays of vertices differ in car-
dinality by at most one.

5. For any pair of vertices vi, vj ∈ V , ensure that an
even number of vertices occur any path from vi to
vj in G′, by adding additional dummy vertices.

6. Create the WSDUDP instance WS(G) from G′ so
that every edge in E′ corresponds to a disk in D and
every vertex in V ′ to a point in Q. We then show
that an optimal solution to WSDUDP provides an
optimal cover for G′, from which an optimal vertex
cover for G may be found, as required.

Lemma 8 Given an edge e(i,j) of the graph G = (V,E),
we can add a pair of adjacent dummy vertices Vd =
{vi1 , vi2} along the edge e(i,j) to create the graph G′ =
(V ∪Vd, E ∪{e(i,i1), e(i1,i2), e(i2,j)}\{e(i,j)}). The graph
remains planar, and the size of the optimal solution to
Vertex-Cover over G′ is |V ?| + 1, where V ? is the
set of vertices in a minimum vertex cover of G. 3

Lemma 9 Given any optimal solution V ?
G′ to Vertex-

Cover on G′, we can find an optimal solution V ?
G to

Vertex-Cover on G in polynomial time. 3

An example WSDUDP construction WS(G) is shown
in Figure 2, to provide intuition for the gadgets used
in the reduction. Each edge of the graph G′ (actual
or dummy) corresponds to a disk in WS(G), and each
vertex (actual or dummy) corresponds to a point in Q.
A point in Q stabs two disks in WS(G) if the degree
of the corresponding vertex in G′ is two; the remaining
points stab three disks and their corresponding vertices
have degree three.

A wire wi is a sequence of disks positioned so that
consecutive centres are spaced ddisk units apart, not
necessarily collinearly, where 2

√
1− h2` < ddisk <√

2 + 2
√

1− (3h`/4)2, so that there exists a small area

of overlap between consecutive disks which contains
a point in Q.5 Disk centres on adjacent wires are
dvert = 3h`/2 units apart vertically, and we define a
stack as a set of such vertically aligned disks. The cen-
tres of the disks in a stack are shifted within the strip
by dvert/2 relative to an adjacent stack when the num-
ber of disks in the two stacks differs, while the distance
between consecutive centres in each wire remains ddisk.

Lemma 10 There is a non-empty area of intersection
between three disks in consecutive stacks when the cen-
tres of the stacks are shifted by dvert/2 relative to each

other, and ddisk <
√

2 + 2
√

1− (3h`/4)2. 3

5Note that 2
√

1− h2
` <

√
2 + 2

√
1− (3h`/4)2 for h` > 0.

3.1 Gadgets

In the graph, we may encounter vertices of degree one,
two, or three. With each vertex, wires may begin, end,
split, merge, or continue unchanged. For vertices of de-
gree one, the incident edge will correspond to a terminal
disk on a wire. For vertices of degree two, if one edge
leaves to the left and the other to the right in the em-
bedding, this is a trans-2 vertex, and we handle it by
continuing all wires. If both edges go in the same direc-
tion (left or right), we call this a cis-2 vertex, and we
have a gadget to merge the pair of wires corresponding
to the edges. Analogously, we have gadgets for both
the trans-3 and cis-3 degree three vertices. Finally, we
build a gadget to increase the number of vertices on an
edge. With each gadget, we apply the analogous modifi-
cation to G′ by adding dummy vertices to the respective
edges. This ensures that an optimal solution to WS(G)
corresponds exactly to an optimal vertex cover for G′.

cis-2 Gadget. In this case, a pair of wires will ter-
minate, and since the two terminal disks correspond to
a pair of edges sharing a vertex, we place a vertex in the
area covered by both disks and no others. An extra col-
umn of dummy nodes should be used to extend all other
wires if the vertex is on an interior face of the planar
embedding of the graph, since two wires are terminated
simultaneously, and we may only shift wires by dvert/2
with each column.

trans-3 Gadget. Suppose we have an upper wire
ending in disk Du and a lower wire ending in disk Dl,
and they merge into a single wire beginning with disk
Dc. Therefore, we can place Dc at a point so that the
distance between the centres of both Dc to Du and Dc

to Dl is ddisk, as described in Lemma 10. By placing a
vertex in Dc ∩Du ∩Dl, a single point stabs three disks,
which corresponds to a vertex which can cover three
edges in the graph.

cis-3 Gadget. For this gadget, we combine the
trans-3 and cis-2 gadgets to build a cis-3 configura-
tion. In the planar graph embedding, this corresponds
to introducing a bend in the lowest edge incident to the
cis-3 vertex with a dummy vertex, so that it becomes a
trans-3 vertex.

Card+ Gadget. If the total number of dummy ver-
tices added to an edge of G is odd, we require a gadget
which increases the number of disks between a pair of
points on a wire by one. An extra disk whose centre is
very close to the centre point of a disk on the wire allows
points to be placed so that the wire remains indepen-
dent from adjacent wires, while increasing the number
of disks on the wire by one.

Now an instance of WSDUDP WS(G) may be con-
structed from any planar graph G with no vertex of
degree greater than three. A solution Q? to WS(G) is
also a solution V ?

G′ to the Vertex-Cover problem on
G′ = (V ′, E′), where vi ∈ V ′ is mapped to qi ∈ Q and

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

57

24th Canadian Conference on Computational Geometry, 2012

}}

dvertdvert/2 ddisk

`1

`2

(a)

(b)

trans-2

cis-3

trans-3

cis-2

Figure 2: A sample WSDUDP construction WS(G) for the NP-hardness reduction. (a) Given a graph G, we compute
a planar embedding (see Section 3.1 for vertex classes). (b) We construct a series of stacks of disks, where disks in
adjacent stacks have slight overlap. The disk centres in each stack are aligned vertically and separated by a fixed
distance dvert. The number of disks in adjacent stacks may only vary by one. If two consecutive stacks have the same
number of disks, the centres are aligned horizontally and separated by ddisk. If two consecutive stacks have differing
numbers of disks, the centres are staggered vertically by dvert/2, so that each disk centre is ddisk from two disk centres
in the adjacent stack (thus, these stacks are distance

√
d2disk − d2vert apart). The points of Q are indicated by squares;

those points stabbing three disks are empty. The centre points of the disks P are displayed as filled circles.

qi ∈ Dj ↔ vi ∈ ej ∈ E′. By Lemma 9, we can find
a minimum vertex cover V ?

G for G from V ?
G′ in poly-

nomial time. Therefore, there is a hitting set of size
c + (|D| − |V |)/2 for WS(G) if and only if there exists
a vertex cover of size c for G (exactly half of the extra
points added in the construction of WS(G) from G are
required for a hitting set for D). The number of disks
stacked vertically in any column of WS(G) is in O(m),
where m is the number of edges and n is the number of
vertices in the graph G. The number of such stacks is
in O(n), so the total number of disks and points in the
WSDUDP construction is O(mn). This completes the
proof of Theorem 7.

4 Conclusions

We outlined several approximation algorithms for WS-
DUDC and a proof of NP-completeness. The gen-
eral 3d1/

√
1− h2e-approximate algorithm and the 4-

approximation for strips of height ≤ 2
√

2/3 both run in
O(m2n + n log n) time. The 3-approximate algorithm
for strips of height ≤ 4/5 runs in O(m6n) time.

References

[1] C. Ambühl, T. Erlebach, M. Mihal’ák, and
M. Nunkesser. Constant-factor approximation for
minimum-weight (connected) dominating sets in unit
disk graphs. In APPROX, pages 3–14, 2006.

[2] H. Brönnimann and M. Goodrich. Almost optimal set
covers in finite VC-dimension. Disc. and Comp. Geom.,
14(1):463–479, 1995.

[3] P. Carmi, M. Katz, and N. Lev-Tov. Covering points by
unit disks of fixed location. In ISAAC, pages 644–655,
2007.

[4] F. Claude, G. Das, R. Dorrigiv, S. Durocher, R. Fraser,
A. López-Ortiz, B. Nickerson, and A. Salinger. An im-
proved line-separable algorithm for discrete unit disk
cover. Disc. Math. Alg. & Appl., 2(1):77–87, 2010.

[5] G. Călinescu, I. I. Măndoiu, P.-J. Wan, and A. Z. Ze-
likovsky. Selecting forwarding neighbors in wireless ad
hoc networks. Mob. Net. & Appl., 9(2):101–111, 2004.

[6] G. Das, R. Fraser, A. López-Ortiz, and B. Nickerson.
On the discrete unit disk cover problem. In WALCOM:
Alg. & Comp., pages 146–157. 2011.

[7] T. Erlebach and E. van Leeuwen. PTAS for weighted
set cover on unit squares. In APPROX, pages 166–177.
2010.

[8] M. R. Garey and D. S. Johnson. The rectilinear steiner
tree problem is NP-complete. SIAM J. App. Math.,
32(4):826–834, 1977.

[9] D. S. Hochbaum and W. Maass. Approximation
schemes for covering and packing problems inimage pro-
cessing and VLSI. J. ACM, 32:130–136, 1985.

[10] D. Johnson. The NP-completeness column: An ongoing
guide. J. of Alg., 3(2):182–195, 1982.

[11] T. Matsui. Approximation algorithms for maximum
independent set problems and fractional coloring prob-
lems on unit disk graphs. In JCDCG, pages 194–200.
2000.

[12] N. Mustafa and S. Ray. Improved results on geometric
hitting set problems. Disc. & Comp. Geom., 44:883–
895, 2010.

[13] X. Xu and Z. Wang. Wireless coverage via dynamic
programming. In WASA, pages 108–118. 2011.

[14] D. Yang, S. Misra, X. Fang, G. Xue, and J. Zhang. Two-
tiered constrained relay node placement in wireless sen-
sor networks: Efficient approximations. In (SECON),
pages 1 –9, 2010.

24th Canadian Conference on Computational Geometry, 2012

58

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

The Cover Contact Graph of Discs Touching a Line

Stephane Durocher∗ Saeed Mehrabi∗ Matthew Skala∗ Mohammad Abdul Wahid∗

Abstract

We answer a question of Atienza et al. [4] by showing
that the circular CCG+ problem is NP-complete. If we
cover a set of objects on the plane with discs whose in-
teriors are pairwise disjoint, then we can form a cover
contact graph (CCG) that records which of the cover-
ing discs touch at their boundaries. When the input
objects are themselves discs, and both input and cover-
ing discs are constrained to be touching and above the
x-axis, then the circular CCG+ problem is to decide the
existence of a covering with a connected CCG. We also
define an approximate version of this problem by allow-
ing a small overlap between covering discs, and give an
algorithm that in polynomial time finds an approximate
solution for any yes-instance of the exact problem.

1 Introduction

Given a set S of n disjoint input discs in the plane, a
covering C of S consists of n covering discs such that
each covering disc covers exactly one input disc and no
two covering discs intersect except on their boundaries.
In general, the radii of the covering discs need not all be
the same. The cover contact graph (CCG) induced by
C is a graph G = (V,E) such that each input disc corre-
sponds to a vertex in V and two vertices are connected
by an edge if and only if their corresponding covering
discs are tangent. In other words, G is the intersection
graph of a set of discs in the plane whose interiors are
pairwise disjoint. Koebe’s theorem [6] states that every
planar graph can be represented as a coin graph. The
coin graph of a set of discs in the plane is in fact the
CCG of that set of discs. Problems related to these
graphs arise in many application areas, such as wireless
communication networks [5] and facility location [7].

Given a set of discs in the plane, the circular CCG
problem asks if the given set admits a covering whose
CCG is connected. Atienza et al. [4] show that the cir-
cular CCG problem is NP-hard using a reduction from
Planar3Sat, a constrained version of 3Sat in which
the corresponding variable-clause graph must be pla-
nar. They also explore a variant in which the input
discs are reduced to distinct points, with different kinds
of connectivity required for the contact graph. They

∗Department of Computer Science, University of Manitoba,
{durocher, mehrabi, mskala, wahid}@cs.umanitoba.ca

give algorithms with O(n log n) worst-case running time
for 1-connectivity, and with O(n2 log n) expected run-
ning time for 2-connectivity. They also study variants
in which the covering discs are required to touch the x-
axis. While they extensively examine the axis-touching
case when the input is limited to distinct points, they
leave open the case where the input is a set of discs and
both the input and the covering discs are required to
touch the x-axis. This is the circular CCG+ problem,
for which we show NP-hardness in this paper. Our
proof depends on very precise differences in the radii
of the discs, and we show that such differences are es-
sential to the hardness of the problem. We define an
ε-approximate version of the circular CCG+ problem
and give a polynomial-time algorithm such that if the
circular CCG+ problem has an exact solution, then our
algorithm produces an ε-approximate solution.

Many related problems are known. One is that of
realizability. In addition to the set of input discs, we
can be given an unlabeled planar graph G and the goal
of deciding whether there exists a covering for the given
input set whose CCG is G. Atienza et al. [4] show, again
by reduction from Planar3Sat, that this realizability
problem is also NP-hard, even if the input is a set of
points.

Notwithstanding Koebe’s theorem that every planar
graph is realizable as a coin graph (without constraining
the centres of the discs), if we fix the coordinates of the
vertices to make a geometric graph and require the discs
to be centred on their respective vertices, then not every
geometric graph can be so realized. Under the further
constraint that the geometric graph is a tree, Abellanas
and Moreno-Jiménez [3] present an O(n log n)-time al-
gorithm that decides if a given tree can be realized as a
coin graph with coins centred at the vertices of the tree.
For a graph that may not be a tree, they find a spanning
tree and adapt their tree algorithm to solve the prob-
lem in polynomial time. Moreover, if the answer to this
decision problem is affirmative, then the algorithm also
computes all possible coin sets.

Abellanas et al. [1] show that given n points and n
discs in the plane, it is NP-complete to decide whether
the discs can be placed in such a way that each disc
is centred at one of the points and no two discs over-
lap. Abellanas et al. (with a different set of authors)
show that the following problem isNP-complete: Given
a set of points in the plane, determine whether there
are disjoint discs centred at the points such that the

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

59

24th Canadian Conference on Computational Geometry, 2012

x

a b

x

a+ b
a− b

Figure 1: The constraint between two discs. See (1).

CCG of the discs is connected [2]. Note that if we re-
lax the constraint that the discs must be centred at
the given points, then the problem is polynomial-time
tractable [4].

2 Proof of NP-hardness

In this section, we show that the following problem is
NP-hard.

Given n distinct real numbers x1 < x2 < · · · < xn,
and n nonnegative real numbers r1, r2, . . . , rn, the circu-
lar CCG+ problem is to decide whether there exist real
numbers y1, y2, . . . , yn such that if C is the set of closed
discs C1, C2, . . . , Cn where Ci is centred at (xi, yi) and
has radius yi (implying that Ci touches the x axis) with
yi ≥ ri, then the interiors of the discs in C are pairwise
disjoint and the CCG induced by C is connected.

Consider two discs in the circular CCG+ problem
whose radii are a and b with the horizontal distance
between their centres equal to x (see Figure 1). The
constraint between the radii corresponds to the right
triangle shown. We have:

(a+ b)2 ≤ (a− b)2 + x2

⇔ ab ≤ x2/4 .
(1)

The constraint holds as an inequality for every pair
of discs. It achieves equality if and only if the discs
touch, corresponding to an edge in the CCG+. Taking
the logarithm, we have:

log a+ log b ≤ 2 log x− log 4 .

The logarithmic form of the constraint provides intu-
ition for the hardness of the problem. Finding a circu-
lar CCG+ means solving a linear program on the log-
arithms of the disc radii, subject to an additional con-
straint that the graph formed by the constraints that
reach equality is a connected graph. It is intuitively
reasonable that linear programming with a connectiv-
ity constraint should be NP-hard, because if we could

2a 2a
2b 2 2b

Figure 2: A non-convexity gadget.

constrain linear programming variables to represent a
connected graph, then we could constrain them to rep-
resent a 2-regular connected graph, which would be a
Hamiltonian cycle.

Our proof, however, reduces from 3Sat. We will have
gadgets and ways to combine them so that different val-
ues of the radius of the leftmost disc in the problem will
correspond to different assignments of values to boolean
variables; then we will manipulate the sets of radii that
could satisfy the CCG+ problem so that they corre-
spond to exactly the assignments that satisfy the 3Sat
problem.

The first step to create a hard instance of the circular
CCG+ problem is to create a non-convex solution set in
the related linear programming problem.

2.1 A Non-convex Gadget

Figure 2 shows a gadget for creating non-convexity. The
two discs in the middle are constrained to a minimum
radius a slightly less than 1; their proximity to each
other also gives them a maximum radius slightly greater
than 1. Then in order to form a connected contact
graph, the two outer discs must touch each other as
shown; they cannot both touch the inner discs, but one
must, and there is a choice as to which one that is. The
radius y1 of the leftmost disc is constrained to be in
one of two non-overlapping intervals depending on that
choice. The following lemma describes the behavior and
existence of the non-convexity gadget.

Lemma 1 We can choose the dimensions of a gadget
like that shown in Figure 2 to constrain the radius y1 of
the leftmost disc such that the circular CCG+ problem
is satisfiable if and only if (c ≤ y1 ≤ d)∨(e ≤ y1 ≤ f) is
true, for any positive c, d, e, and f such that 1 ≤ d/c =
f/e < 16/9 and 1 < e/c < (9/7)2.

Proof. Consider the non-convex gadget shown in Fig-
ure 2 and let C1, C2, C3, and C4 be the four discs, left
to right. Their minimum radii are given by r1 = r4 = 0
and r2 = r3 = a for some a slightly less than 1, which
we will choose later. The horizontal distances are as
shown: 2b from C1 to C2, 2 from C2 to C3, and 2b from
C3 to C4, for some b we will choose later.

24th Canadian Conference on Computational Geometry, 2012

60

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

C1 C4 C1 C4

C2 C3 C2 C3

Figure 3: Allowable contact graphs for the non-convex
gadget.

Each pair of discs in the gadget corresponds to an
inequality constraint, which will achieve equality if and
only if the discs touch.

y1y2 ≤ b2 for (C1, C2) (2)

y1y3 ≤ (b+ 1)2 for (C1, C3) (3)

y1y4 ≤ (2b+ 1)2 for (C1, C4) (4)

y2y3 ≤ 1 for (C2, C3) (5)

y2y4 ≤ (b+ 1)2 for (C2, C4) (6)

y3y4 ≤ b2 for (C3, C4) (7)

We also have, as a consequence of (5) and the mini-
mum radii r2 = r3 = a ≤ 1, the constraints a ≤ y2 ≤
1/a and a ≤ y3 ≤ 1/a. For the gadget to work as in-
tended, we must ensure that the only connected contact
graphs allowed are those shown in Figure 3. Requiring
one of those graphs implies that (4), (5), and either of
(2) or (7) can achieve equality, but (3) and (6) cannot,
nor (2) and (7) simultaneously.

We can prevent C1 and C3 from touching by mak-
ing C2 big enough. We have y2 ≥ a. That gives
y1 ≤ b2/a from (2), and y3 ≤ 1/a from (5). Therefore
y1y3 ≤ b2/a2. Substituting into (3), C1 and C3 will be
prevented from touching if a > b/(b+ 1). This relation
will hold if we choose a large enough and b small enough;
a ≥ 3/4 and b < 3 are sufficient. These conditions also
make (6) strict, by symmetry.

It remains to prevent (2) and (7) from both achieving
equality at once. Suppose they did that. Then we would
have y1y2 = b2 and y3y4 = b2, so y1y2y3y4 = b4, but
by (5), we can eliminate y2 and y3 and get y1y4 ≥ b4.
That will contradict (4) if b4 > (2b + 1)2, or b2 > 2b +
1. Solving the quadratic, (2) and (7) cannot both be
equalities if b > 1 +

√
2 = 2.414 Therefore if 3/4 <

a ≤ 1 and 1+
√

2 < b < 3, the connected contact graphs
that can be achieved are exactly the ones in Figure 3.

Assume we choose 3/4 < a ≤ 1 and 1 +
√

2 < b <
3, and consider the possible values for y1 in a solution
to the problem. It must fall in one of two intervals,
depending on whether C1 touches C2, or C3 touches
C4. One and only one of those conditions must hold,
as described above. If C1 touches C2, then because a ≤

y2 ≤ 1/a, we have:

ab2 ≤ y1 ≤ b2/a . (8)

Symmetrically, if C3 touches C4, then ab2 ≤ y4 ≤
b2/a, and then since C1 and C4 must touch each other,
(4) is an equality and we have:

a(2b+ 1)2

b2
≤ y1 ≤

(2b+ 1)2

ab2
. (9)

Note that in both (8) and (9), the ratio between the
upper and lower limits is equal to 1/a2. By choosing
an a > 3/4, we can choose any value less than 16/9 =
1.777 . . . for that ratio. Dividing the lower limits in
(8) and (9) gives the ratio b4/(2b + 1)2. Note that a
cancels out and so the ratio between the lower ends of
the intervals is independent of a. By choosing b between
1+
√

2 and 3, we can choose this ratio anywhere between
1 and (9/7)2 = 1.653 Also note that we can scale
the entire gadget arbitrarily, with the effect of scaling
all the interval bounds by the same factor. The result
follows. �

2.2 Coupling Gadgets and Interval Duplication

The next step is to combine several such gadgets into a
chain, by placing them side by side in such a way that
they are forced to touch. Then the radius of the left-
most disc is constrained by all the constraints of all the
gadgets; we have taken the intersection of the solution
sets of the individual gadgets. Figure 4 illustrates the
technique.

But linking gadgets side by side is not the only way
to apply one gadget’s constraints to another; we can
also take one gadget, or a chain of them, scale it down
to be arbitrarily small, and tuck it underneath another
disc as shown in Figure 5. Making it arbitrarily small
means we can prevent any other discs in the problem
from interfering with the contact. Moving the small
disc closer to the large disc cancels out the effect of
scaling them smaller, so the effect on the large disc’s
radius is, if we so choose, no different from placing the
gadgets side by side. The difference is that because
it does not require access from the sides, only from the
bottom arbitrarily close to the centre, we can apply this
technique to the inner discs of the gadget from Figure 2;
and whatever we do to one of those is done twice to the
leftmost disc of the gadget. The set of allowed radii for
the leftmost disc becomes the union of two copies of the
set of allowed radii we apply to the inner disc, separated
by an adjustable scaling factor. The following lemma
states this property precisely.

Lemma 2 Given a chain of discs that constrains its
leftmost member’s radius to be in a set R ⊆ R with
supR ≤

√
2 inf R, and positive reals c and d with

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

61

24th Canadian Conference on Computational Geometry, 2012

C1

C4
C ′

1

C ′
4

C ′′
1

C ′′
4

Figure 4: Gadgets coupled into a chain.

Figure 5: Hiding a chain of discs under a large disc
(scale distorted for clarity).

c < d < (9/7)2c, by adding five more discs we can
construct a gadget in which the leftmost disc’s radius
is constrained to be an element of the set {cy | y ∈
R} ∪ {dy | y ∈ R}.

That construction can be repeated a linear number
of times to create an exponential number of disjoint in-
tervals, giving the following corollary. The radius of the
leftmost disc in the problem is constrained to be in one
of the intervals, but so far unconstrained as to which
one.

Corollary 3 For any nonnegative integer k and posi-

tive reals c and d with c > 1, d ≥ 1, and c2
k

d ≤
√

2, we
can construct a gadget using a number of discs linear in
k that constrains the radius of its leftmost disc to be in
the set {y | ci ≤ y ≤ dci for some i ∈ {0, 1, . . . , 2k−1}}.

2.3 Encoding a 3Sat Instance

Choose any instance of 3Sat. We may add a polynomial
number of extra variables to it for technical reasons to
be described later, but suppose that after adding those
it contains n boolean variables v1, v2, . . . , vn. There are
2n ways to assign values to all the variables. We will
associate those with 2n intervals, disjoint but arbitrarily
close to each other and proportionally equally sized and
spaced. That is, the ratios between the upper and lower
bound of each interval, and between the lower bound of
each interval and the lower bound of the next, are the
same for all intervals. All the intervals will be contained
in (1,

√
2). The intervals are associated with variable

y0

1
√
2

v3 F F F F T T T T
v2 F F T T F F T T
v1 F T F T F T F T

v1 ∨ ¬v2 ∨ v3

Figure 6: Satisfying a 3-clause.

assignments from all-false to all-true in binary counting
order with v1 as the least significant bit and vn as the
most significant bit. Figure 6 illustrates the encoding.

Figure 6 also illustrates how we can enforce a 3-literal
disjunctive clause constraint on this encoding. Provided
the clause only involves the three most significant vari-
ables, it corresponds to the negation of a single one of
the eight intervals. For a clause of the form (¬a∨¬b∨¬c)
or (a∨b∨c), we just increase the minimum radius of the
leftmost disc in the problem, or increase the minimum
radius of the rightmost in order to have the effect of
decreasing the maximum for the leftmost, and we can
require the clause to be satisfied. For any other 3-clause
over the three most significant variables, we can require
satisfaction by intersecting with a union of two intervals
that satisfy the numerical requirements of Lemma 1; so
adding one more gadget to the right can have the effect
of enforcing the clause as a constraint.

The clause constraint gadget only works for clauses in
the three most significant variables, so we need all our
clauses to be of that form when we apply it. Although
other approaches more economical of variables might be
possible, we will introduce three new variables for ev-
ery clause, forcing them equal to the existing variables
the clause is intended to constrain. This technique is
illustrated in Figure 7. Here v3 is the new variable be-
ing set equal to v1. Observe that the set of intervals
corresponding to v1 = v3 consists of two halves, and to
equate vi and vj , i < j, each half is a set of 2j−i−1 inter-
vals with equal proportional size and equal proportional
spacing. Only the gap in the middle is different. We can
create one of the halves with the gadget of Corollary 3,
and then combine two copies of it with the appropriate
spacing in the middle using the more general form of
Lemma 2. The following lemma states precisely the ap-

24th Canadian Conference on Computational Geometry, 2012

62

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

y0

1
√
2

v3 F F F F T T T T
v2 F F T T F F T T
v1 F T F T F T F T

v1 = v3

¬v3 ∧ (v1 = v3) v3 ∧ (v1 = v3)

Figure 7: Duplicating a variable.

proach that we use to add a new variable and make it
equal to an existing variable.

Lemma 4 Given that n boolean variables v1, v2, . . . , vn
are encoded by the radius of a disc in a CCG+ instance
using a range from 1 to r ≤

√
2 according to our en-

coding scheme, for any integer 1 ≤ i < n we can, with
a number of discs linear in n, create a gadget that con-
strains the radius of its leftmost disc to enforce the con-
straint vi = vn.

Proof. First we apply Corollary 3 with

log c =
log r

2n−i
,

log d =
log r

2n−i+1
, and

k = n− i− 1

to create a gadget that enforces vi = vn when vn is false.
Then we apply Lemma 2 to that gadget using

c = 1, and

log d =

[
1

2
+

1

2n−i+1

]
log r .

�

The key observation is that the set of intervals cor-
responding to the statement vi = vn may include an
exponential number of intervals, but it is of a special
form regardless of i and n: it is the union of two copies
of a collection of proportionally equally spaced and sized
intervals, and we can create it by applying Corollary 3
followed by Lemma 2.

Then we have all the pieces necessary to construct
an instance of the circular CCG+ problem equivalent to
an instance of 3Sat. First, we calculate the number of
variables we will add, which is equal to three times the
number of 3-clauses. That gives us the size we need for
the smallest intervals in our encoding. Note that this
size comes from starting at a constant and scaling down
by at most a constant amount, a linear number of times;
we can represent the numbers involved in a polynomial
number of bits.

We represent the variables from the original problem
in a suitably narrow range of radii using Corollary 3. For
each clause, we add three new variables with Lemma 4,
doubling the number of variable assignments in the en-
coding with each one. We enforce the 3-clause. Then
we proceed to the next. When we are done, we have a
polynomial-sized instance of the circular CCG+ prob-
lem whose leftmost disc is constrained to have a radius
that represents a satisfying assignment for the original
3Sat instance; this is satisfiable if and only if the 3Sat
instance was satisfiable. Therefore the following holds:

Theorem 5 The circular CCG+ problem is NP-hard.

3 An Approximation Algorithm

The NP-hardness proof depends on high numeric pre-
cision. The constraints on disc radii create intervals
that are exponentially small, although represented by a
number of bits polynomial in the problem size. In this
section we show that that precision is essential to the
hardness of the problem: if we relax the problem def-
inition in such a way as to permit imprecise solutions,
then it becomes tractable.

First, discs cannot grow arbitrarily large or small.
This follows from doing two rounds of simple constraint
propagation (detailed proof omitted).

Lemma 6 Any instance of the circular CCG+ problem
either is trivially satisfiable, or contains at least two
discs with nonzero minimum size, and in the latter case
we can in polynomial time compute a nonzero minimum
and finite maximum size for every disc in the problem,
which must be satisfied by any exact solution.

Recall that the circular CCG+ problem requires, for
each pair of discs whose radii are a and b and whose
horizontal distance is x, the constraint ab ≤ x2/4; and
this holds as an equality if and only if the discs are
touching each other and correspond to an edge in the
contact graph. Let us relax the constraint to say that
for any ε > 0 two discs are ε-approximately touching if
x2/4 ≤ ab ≤ (1+ε)x2/4. Then other definitions arise by
analogy: the ε-approximate contact graph is the graph
with a vertex for each disc and an edge between any
two discs that are ε-approximately touching, and the ε-
approximate CCG+ problem is like the CCG+ problem
but requires a choice of radii for the discs such that
the ab ≤ (1 + ε)x2/4 constraint is obeyed by every pair
of discs, instead of ab ≤ x2/4, and the ε-approximate
contact graph is connected instead of the exact contact
graph necessarily being connected.

Allowing ε-approximate contacts means that we can
reduce the precision of all the disc radii. If we start
from an exact solution and round up each disc radius
to the next larger integer power of

√
1 + ε, we still have

an ε-approximate solution, giving the following lemma.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

63

24th Canadian Conference on Computational Geometry, 2012

Lemma 7 If there exists an exact solution to an in-
stance of the CCG+ problem, then there exists a solu-
tion to the corresponding instance of the ε-approximate
CCG+ problem in which every disc radius is an integer
power of

√
1 + ε.

Therefore we can search for a solution with the radii
limited to powers of

√
1 + ε, and still be assured of find-

ing an ε-approximate solution if an exact solution exists.
We can prove the following approximate result.

Theorem 8 There exists an algorithm such that given
a circular CCG+ instance for which an exact solution
exists, it finds an ε-approximate solution. If no exact so-
lution exists, it may produce an ε-approximate solution
or fail. Where R is the greatest ratio, for any disc in
the problem, between the maximum and minimum radii
of Lemma 6, the algorithm runs (unconditionally on so-
lution existence) in time polynomial to the instance size
and to logR/ log(1 + ε).

Note that this is a one-sided test: when an exact so-
lution exists, our algorithm guarantees to find an ap-
proximate solution, but if there exists an approximate
solution and no exact solution, the algorithm does not
guarantee finding the approximate solution.

The approximation algorithm performs dynamic pro-
gramming on intervals of the left-to-right sequence of
discs, using the following observation: if we have three
discs left to right and we know that the one in the mid-
dle is the largest (possibly tying with either of the other
two), then the one on the left and the one on the right
cannot touch each other. Thus if we know which disc
is largest in the entire problem and its radius, then we
can split the problem into two smaller ones whose solu-
tions are independent, which is the necessary structure
for dynamic programming. We can try all possibilities
for the largest disc, and recurse on each side, memoizing
the answers to the recursive subproblems.

Each recursive subproblem corresponds to an inter-
val of the sequence of discs, with specified sizes for the
discs on either end, an assumption that no disc in be-
tween is larger than either of those, and a choice be-
tween a small constant number of cases for whether this
subproblem is the leftmost or rightmost in the entire
problem and whether or not the two endmost discs are
already connected by larger discs outside the subprob-
lem. Lemma 7’s limitation on the number of radii we
need to consider forces the number of subproblems, and
thus the algorithm’s time complexity, to be polynomial.

4 Conclusion

In this paper, we considered a circular cover contact
graph problem defined by Atienza et al. [4]. We showed
that when the input discs and the covering discs are all

constrained to touch a line, then the problem of deciding
whether the input set has a connected CCG isNP-hard.

We also defined an approximate variation of the prob-
lem, where the covering discs are allowed to overlap by
a small amount. We gave a polynomial-time algorithm
such that if there exists an exact solution to the prob-
lem, then the algorithm returns an ε-approximate solu-
tion. However, if there is no exact solution, then the
algorithm does not guarantee to return an approximate
solution that might exist. Our algorithm provides an
approximate answer to the decision problem of exact
solution existence. The decision problem of approxi-
mate solution existence is a different problem, and the
complexity of that problem remains open.

References

[1] M. Abellanas, S. Bereg, F. Hurtado,
A. Garćıa Olaverri, D. Rappaport, and J. Tejel.
Moving coins. Computational Geometry: Theory
and Applications (CGTA), 34:35–48, 2006.

[2] M. Abellanas, N. de Castro, G. Hernández,
A. Máarquez, and C. Moreno-Jiménez. Gear sys-
tem graphs. Manuscript, 2006.

[3] M. Abellanas and C. Moreno-Jiménez. Geometric
graphs realization as coin graphs. In International
Conference on Computational Science and Its Appli-
cations, volume 3045, pages 1–10, Assisi, Italy, 2004.
Springer.

[4] N. Atienza, N. de Castro, C. Cortés, M. A. Garrido,
C. I. Grima, G. Hernández, A. Márquez, A. Moreno-
González, M. Nöllenburg, J. R. Portillo, P. Reyes,
J. Valenzuela, M. T. Villar, and A. Wolff. Cover
contact graphs. In S.-H. Hong, T. Nishizeki, and
W. Quan, editors, Graph Drawing, volume 4875 of
Lecture Notes in Computer Science, pages 171–182.
Springer, 2007.

[5] B. N. Clark, C. J. Colbourn, and D. S. Johnson.
Unit disk graphs. Discrete Mathematics, 86:165–
177, 1990.

[6] P. Koebe. Kontaktprobleme der konformen abbil-
dung. Ber. Sachs. Akad. Wiss. Leipzig Math.-Phys.
Kl., 88:141–164, 1936.

[7] J.-M. Robert and G. T. Toussaint. Computational
geometry and facility location. In International
Conference on Operations Research and Manage-
ment Sciences, pages B–1–B–19, Manila, Philip-
pines, 1990.

24th Canadian Conference on Computational Geometry, 2012

64

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

On Piercing (Pseudo)Lines and Boxes

Subramanya Bharadwaj B. V∗ Chintan H. Rao∗ Pradeesha Ashok∗ Sathish Govindarajan ∗

Abstract

We say a family of geometric objects C has the (l, k)-
property if every subfamily C ′ ⊆ C of cardinality at
most l is k-piercable. In this paper we investigate the
existence of g(k, d) such that if any family of objects C
in Rd has the (g(k, d), k)-property, then C is k-piercable.
Danzer and Grünbaum showed that g(k, d) is infinite for
families of boxes and translates of centrally symmetric
convex hexagons. In this paper we show that any fam-
ily of pseudolines with the (k2 + k + 1, k)-property is
k-piercable and extend this result to certain families of
objects with discrete intersections. This is the first posi-
tive result for arbitrary k for a general family of objects.
We also pose a relaxed version of the above question and
show that any family of boxes in Rd with the (k2d, k)-
property is 2dk-piercable.

1 Introduction

A family of geometric objects C in Rd is said to be
k-piercable if there exists a set of points P ⊂ Rd of
cardinality k such that every object in C contains (is
pierced by) at least one of the points of P .

Definition 1 We say a family of geometric objects C
has the (l, k)-property if every subfamily C ′ ⊆ C of car-
dinality at most l is k-piercable.

The classical Helly’s theorem [8] stated in this notation
is as follows: Any family of convex objects C in Rd
having the (d+ 1, 1)-property is 1-piercable.

Helly-type theorems have been widely studied for
different settings (see surveys [5, 6]). Danzer and
Grünbaum [4] considered the following generalised
version of Helly’s theorem:

For every positive integer k, does there exist a fi-
nite g(k, d) such that if any family of convex objects
C in Rd has the (g(k, d), k)-property, then C is k-
piercable?

They showed that g(k, d) is infinite even for fami-
lies of boxes in Rd. Specifically, they gave a generic
construction and showed that g(k, d) is infinite for all

∗Department of Computer Science and Automa-
tion, Indian Institute of Science, Bangalore, India,
{subramanya,chintanraoh,pradeesha,gsat}@csa.iisc.ernet.in

k ≥ 3, d ≥ 2 and (k, d) 6= (3, 2). The same construction
also works as a counterexample for hypercubes in Rd.
Katchalski et al [9] showed that g(k, d) is infinite for
translates of a symmetric convex hexagon.

Positive results are known for small values of k (i.e.
k = 2). Danzer and Grünbaum [4] showed that for
a family of boxes in Rd, g(2, d) = 3d − 1 if d is even
and g(2, d) = 3d if d is odd. They also proved that
g(3, 2) = 16 for a family of rectangles in R2. Katchalski
et al [9] showed that for a family of homothetic triangles
in R2, g(2, 2) = 9.

In this paper, we obtain the first positive results for
general k. We show that for a family of pseudolines in
R2, g(k, 2) is finite for all k ≥ 2. Specifically, we prove
the following:

Theorem 1 Let C be a family of pseudolines in R2 with
|C| ≥ k2 + k + 1. For any integer k ≥ 2, if C has the
(k2 + k + 1, k)-property then C is k-piercable.

We extend the above theorem for families of objects
C with the following property: any subfamily of p + 1
distinct objects in C intersect in at most one point. Note
that p = 1 for a family of pseudolines.

Theorem 2 Let C be a family of objects with the prop-
erty that any subfamily of p+ 1 distinct objects in C in-
tersect in at most one point. Let |C| ≥ k(kp+1)+1. For
any integer k ≥ 2, if C has the (k(kp + 1), k)-property
then C is k-piercable.

The proof of Theorem 1 and 2 are combinatorial and
exploit only the intersection property. In fact, Theorem
2 is true for set systems with the property that any
subfamily of p + 1 distinct sets intersect in at most
one element. Also the proofs lead naturally to a FPT
algorithm for the minimum piercing problem on these
objects. Note that the minimum piercing problem is
NP-hard and APX-hard even for lines in R2 [12, 3].

Since g(k, d) is infinite for most families of geometric
objects in the above problem, we define the following
relaxed variant, which we refer to as the k-Helly
problem:

k-Helly problem: For every positive integer k,
determine the smallest f(k, d) such that if any family
of convex objects C in Rd has the (g(k, d), k)-property
for some g(k, d), then C is f(k, d)-piercable.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

65

24th Canadian Conference on Computational Geometry, 2012

The k-Helly problem is related to the weak ε-net [1]
and Hadwiger-Debrunner (p, q)-problem [7] as follows:

Weak ε-nets are a special case of the k-Helly problem
: In the weak ε-net problem, we ask for a piercing set
for objects containing > εn points. By the pigeon hole
principle, in any subcollection of 1

ε + 1 objects, two will
intersect. Therefore the objects satisfy the (1

ε + 1, 1ε)-
property.

The k-Helly problem is a special case of the Hadwiger-
Debrunner (p, q)-problem since the (g(k, d), k)-property
implies the Hadwiger-Debrunner (p, q)-property for
p = g(k, d), q = g(k, d)/k. Also, the finiteness of
g(k, d), f(k, d) is implied by the Hadwiger Debrunner
(p, q) theorem [2], which shows a finite piercing set.
However, the bounds given by the Hadwiger Debrunner
(p, q) theorem are large (roughly O(p6) for convex
objects in R2).

We show the following result for boxes in Rd:

Theorem 3 Let C be a family of boxes in Rd. For any
k ≥ 2, if C has the (k2d, k)-property, then C is 2dk-
piercable.

Note that for boxes in Rd, f(k, d) > k since otherwise
g(k, d) is infinite. The proof of Theorem 3 directly leads
to a 2d-approximate FPT algorithm for the minimum
piercing problem on boxes. We note that the minimum
piercing problem for boxes is NP-hard as well as W[1]-
hard [11].

2 Lines and Pseudolines

Any two lines in R2 intersect in at most one point. This
can be generalized in the following way.

Definition 2 A family of geometric objects C in R2 is
called a family of pseudolines if for every li, lj ∈ C, li
and lj intersect in at most one point.

Let C be a finite family of pseudolines in R2.

Definition 3 Let a point x lie in the intersection of
a set of pseudolines l1, l2, · · · , ls ∈ C. We call x k-
degenerate in C if s > k.

Lemma 4 Let H be a set of points that pierces C. If x
is k-degenerate in C and x /∈ H, then |H| ≥ k + 1.

Proof. If x /∈ H then we need at least s points to hit
the s pseudolines passing through x. Since s > k the
lemma follows. �

Lemma 5 Let |C| ≥ (k2 +k+1) and G be the set of all
k-degenerate points in C. If C has the (k2 + k + 1, k)-
property, then 1 ≤ |G| ≤ k

Proof. Let S be a subset of C such that |S| = k2+k+1.
S is k-piercable. By pigeon hole principle, there exists
a point x that pierces at least k + 1 pseudolines in S.
Hence |G| ≥ 1. Also if G ≥ k + 1, there exists S′ ⊂ C
which contains k + 1 pseudolines passing through each
of the first k points in G and one pseudoline passing
through the (k+1)th point which does not pass through
the first k points. Clearly |S′| ≤ k2 +k+1 and S′ is not
k-piercable, a contradiction. Hence 1 ≤ |G| ≤ k. �

Proof of Theorem 1. Let G be the set of all k-
degenerate points in C. From Lemma 5, we know that
1 ≤ |G| ≤ k. Let C ′ be the set of pseudolines not pierced
by any of the points in G. We claim that if |G| = k then
C ′ = ∅. For if C ′ 6= ∅ then there is a l ∈ C ′ such that it
is not pierced by any point in G. For each point in G,
pick k+1 pseudolines passing through it. This together
with l gives a set C ′′ of at most k(k+1)+1 = k2 +k+1
pseudolines which is not k-piercable, a contradiction.

Hence let |G| = k−r where k > r ≥ 1 and C ′ 6= ∅. We
claim |C ′| ≤ rk. Assume, for contradiction, that |C ′| >
rk. Then, for each point in G, pick k + 1 pseudolines
passing through it. This together with rk+1 lines from
C ′ to give a set C ′′ of (at most) (k−r)(k+1)+rk+1 =
k2 + (k − r) + 1 < k2 + k + 1 pseudolines. C ′′, being
a subset of C, has the (k2 + k, k)-property and hence
can be pierced by k points. Any point in G can pierce
only k + 1 pseudolines in C ′′ and no r points outside
G can pierce the remaining rk + 1 pseudolines in C ′′, a
contradiction.

Now as before we pick k + 1 pseudolines from each
of the k − r k-degenerate points together with at most
rk pseudolines from C ′ to get a system of (at most)
(k−r)(k+1)+rk = k2 +k−r < k2 +k+1 pseudolines.
This can be pierced by k points. We have to choose
each of the k−r k-degenerate points in a piercing set for
this system. This means that the rk pseudolines from
C ′(none of them are pierced by the degenerate points)
have to be pierced by r points. This implies that C is
k-piercable.

Lemma 6 Let C be a family of pseudolines with |C| ≥
6. If C has the (6, 2)-property then C is 2-piercable.

Proof. As C has the (6, 2)-property, there exist two
cases. There exist some 6 pseudolines out of which 5 do
not intersect or out of every 6 pseudolines 5 intersect.

In the first case there are two sub cases. There ex-
ist l1, . . . , l6 ∈ C such that l1, l2, l3, l4 intersect or in
the second sub case l1, l2, l3 and l4, l5, l6 intersect re-
spectively. Let l ∈ C. If l1, l2, l3, l4 intersect, then l is
incident on the intersection of l1, l2, l3 or on the inter-
section of l5, l6. Otherwise l1, l2, l3, l5, l6, l is a set of 6
pseudolines which are not 2-piercable. If l1, l2, l3 and
l4, l5, l6 intersect, then l is incident on the intersection
of l1, l2, l3 or l5, l6. Otherwise l1, l2, l3, l5, l6, l is a set of

24th Canadian Conference on Computational Geometry, 2012

66

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Figure 1: A family of 6 lines with the (5, 2)-property
which is not 2-piercable.

6 lines which are not 2-piercable. Hence in both sub
cases C is 2-piercable.

In the second case when out of every 6 pseudolines 5
intersect, all the lines except one have a common inter-
section and hence C is 2-piercable.

Hence in either case C is 2-piercable. �

The above result is tight since there is a family of 6 lines
with the (5, 2)-property which is not 2-piercable (shown
in Figure 1).

Consider a collection of pseudolines C. We wish to
determine if C is k-piercable or not. There is a naive
FPT algorithm which is implied by the above combina-
torial result which takes O(n2 + k3k4k) time. However
one can use the techniques given in [10] to get a faster
FPT algorithm which takes O(n2 + k2k+2) time.

3 Objects with discrete intersection

We extend the results of the previous section to a more
general family of objects. We consider families of ob-
jects C with the following property : any subfamily of
p + 1 distinct objects intersect in at most one point.
This is a notion similar to the one in [10]. Unit circles,
curves in the plane obtained by polynomial equations of
bounded degree are some examples of objects with the
above property.

Definition 4 Let a point x lie in the intersection of a
set of objects c1, c2, · · · , cs ∈ C. We call x k-degenerate
in C if s > kp.

Lemma 7 Let H be a set of points that pierces C. If x
is k-degenerate in C and x /∈ H, then |H| ≥ k + 1.

Proof. Any point y 6= x can pierce at most p−1 of the
objects passing through x. Hence we need at least k+1
points to pierce kp+ 1 objects passing thorugh x. �

Consider a set of objects C with |C| ≥ k(kp + 1) + 1
which has the (k(kp + 1) + 1, k)-property. Consider a

subset S ⊆ C with |S| = k(kp+ 1). Note that it can be
pierced by a set H of size k. Then there is some point
x1 ∈ H which pierces at least kp + 1 objects in C. We
construct a set of degenerate points as follows. Let C1 =
C, G1 = {x1} where x1 is obtained as before. Construct
Gi+1, i ≥ 1, as long as possible, in the following way:
Ci+1 = Ci \ {c ∈ Ci : c pierced by xi}. Let xi+1 be any
k-degenerate point in Ci+1. Now Gi+1 = Gi ∪ xi+1.

Lemma 8 Consider a family of objects C with |C| ≥
k(kp+ 1) + 1 which has the (k(kp+ 1), k) property. Let
G be a set of k-degenerate points in C with maximum
cardinality. Then 1 ≤ |G| ≤ k.

Proof. Clearly |G| ≥ 1 . Suppose |G| ≥ k + 1. Let Ci

be a subset of objects pierced by xi ∈ G with |Ci| =
kp+ 1. Consider X = ∪1≤i≤kCi ∪ {c} where c ∈ Ck+1.
Clearly |X| ≤ k(kp + 1) + 1. Hence X is k-piercable.
Any k-piercing set for C ′ must contain {x1, · · ·xk} (by
Lemma 7). This is a contradiction as ∀xi ∈ G, 1 ≤ i ≤
k, xi cannot pierce c. �

Proof of Theorem 2. Let G be a set of k-degenerate
points in C with maximum cardinality and let |G| =
k − r where k > r ≥ 0 (by Lemma 8). Let Ci be a
subset of objects pierced by xi ∈ G with |Ci| = kp+ 1.

Let C ′ be the set of remaining objects not pierced by
any of these points. If C ′ = ∅ then C is k-piercable.
Hence let us assume C ′ 6= ∅. We claim that |C ′| ≤
r(kp+ 1).

Assume, for contradiction, that |C ′| = r(kp+ 1) + 1.
Then a subset of objects X = C1 ∪ · · ·Ck−r ∪ C ′ is k-
piercable since |X| ≤ k(kp+ 1) + 1. Any k-piercing set
for X must contain all k − r points in G. If r = 0 this
means that a object in C ′ is not pierced, a contradiction.
Else if r > 0 this implies r(kp + 1) objects in C ′ is
pierced by r points, all of which are not k-degenerate, a
contradiction.

Hence |C ′| ≤ r(kp + 1). Again as before a subset
of objects X = C1 ∪ · · ·Ck−r ∪ C ′ is k-piercable since
|X| ≤ k(kp + 1) + 1. Any k-piercing set for X must
contain all k − r points in G. This implies C ′ is
r-piercable(if r = 0 this means C ′ = ∅). Hence C is
k-piercable.

We extend the result on lines in the previous sec-
tion to hyperplanes in 3 dimensions. The idea of
replacing degenerate hyperplanes by a line is from [10].

Lemma 9 Let C be a family of hyperplanes in R3 with
the (k(k + 1)3, k) property. Then C is k-piercable.

Proof. We obtain a family of objects C ′ from C as
follows. If at least k + 1 hyperplanes intersect in a line
then we replace them with the line.

It is obvious that if C ′ is k-piercable then C is k-
piercable. We note that if any k + 1 hyperplanes in C

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

67

24th Canadian Conference on Computational Geometry, 2012

intersect in a line l then any k-piercing set must contain
a point from l. Hence C ′ is k-piercable if and only if C
is k-piercable.

We claim that any set of k+ 2 objects in C ′ intersect
in at most 1 point. There are two cases - the set contains
at least two lines or the set contains at most one line.
The claim is true if there are at least two lines in this
set of k + 2 objects. In the other case, the set contains
at least k+ 1 hyperplanes and these cannot intersect in
a line. Hence the k+2 objects intersect at most 1 point.

From Theorem 2 if C ′ has the (k(k(k + 2) + 1), k)
property then C ′ is k-piercable. Any line in C ′ can be
realized as the intersection of at most k+1 hyperplanes
in C. Hence if C has the ((k+1)k(k(k+2)+1), k) prop-
erty then C is k-piercable which proves the claim. �

This result can be extended to higher dimensions.

4 Boxes in Rd

In this section we consider the k-Helly problem for fam-
ilies of boxes in Rd.

Lemma 10 Let I be a family of intervals in R with the
(k + 1, k) property. Then I is k-piercable.

Proof. We note that I satisfies the Hadwiger Debrun-
ner HD(k + 1, 2) property. Hence I has a piercing set
of size k [7]. �

Lemma 11 Let S be a family of vertical and horizontal
slabs with the (k + 1, k)-property. S is k-piercable.

Proof. Let S1 be the set of vertical slabs and S2 the
set of horizontal slabs. Clearly from Lemma 10, S1

and S2 are k-piercable. Without loss of generality
let S1 and S2 be ’pierced’ by k points on the x axis
v1, . . . , vk and k points on the y axis h1, . . . , hk respec-
tively. (v1, h1), . . . , (vk, hk) is a k-piercing set for S. �

Proof of Theorem 3. Let C be a family of boxes in Rd
with the (k2d, k)-property. Figure 2 provides an illus-
tration of the proof for rectangles in the plane(the case
d = 2). We orthogonally project each box r ∈ C to the
coordinate axes. For each axis i, 1 ≤ i ≤ d, we get a set
of intervals Ci with the (k2d, k)-property. Hence Ci has
the (k + 1, k)-property and is k-piercable (Lemma 10).
LetHi, |Hi| ≤ k, be such a piercing set (the small hollow
points on the x and y axes in Figure 2). Consider the
grid points H = {(x1, . . . , xd) : x1 ∈ H1, . . . , xd ∈ Hd}
(the small hollow circles in Figure 2). For r ∈ C,
let ri be the projection of r on axis i. There exist
x1 ∈ H1, . . . , xd ∈ Hd, such that xi pierces ri. Thus
(x1, . . . , xd) ∈ H pierces r. Hence every r ∈ C can be
pierced by one of the (at most kd) grid points in H.

Figure 2: Grid points, representative rectangles and
piercing set for a collection of rectangles.

For X ⊆ H we define SX ⊆ C as follows:

SX = {r ∈ C : r ∩H = X}

We note that C is partitioned into the sets SX , i.e.
C =

⋃̇
X⊆HSX .

The subset of H ’induced’ by a box r ∈ C will be
of the form of a ’rectangular sub block’ of H. Any
rectangular sub block of H is uniquely determined by

its diagonal endpoints. Hence there are at most
(
kd

2

)

distinct subsets of H induced by boxes. Therefore there

are at most
(
kd

2

)
≤ k2d distinct nonempty SX .

Let S′ ⊆ C be a set of representative boxes obtained
by picking exactly one box from each of the nonempty
sets SX , X ⊆ H (the bold rectangles in Figure 2). Note
that |S′| ≤ k2d. Since C has the (k2d, k) property, S′

can be pierced by a set of points W ⊂ Rd, |W | ≤ k (the
filled points in Figure 2). For p ∈ W , let N(p) denote
the set of (at most 2d) grid points of H which form the
gridcell containing p. Let P = ∪p∈WN(p), |P | ≤ 2dk
(the big hollow points in Figure 2). If p pierces some
box r ∈ SX , then the points in N(p) pierce all boxes in
SX . Since points in W pierce all the boxes in S′, points
in P pierce all the boxes in C =

⋃̇
X⊆HSX . Thus C is

2dk-piercable.

The proof of Theorem 3 directly leads to a 2d-
approximate FPT algorithm for the minimum piercing
problem on boxes. Given a collection of boxes C Algo-
rithm 1 returns no if C is not k-piercable and returns a
piercing set of size atmost 2dk otherwise.

Obtaining Ci takes O(dn) time. Checking if each Ci is
k-piercable takes O(dn log n) time. Obtaining S′ takes
O(dn log k) time. The bruteforce check takes O(k4k)
time. Hence the whole algorithm takes O(dn log n+k4k)
time.

24th Canadian Conference on Computational Geometry, 2012

68

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Algorithm 1 FPT algorithm to give a 2d approxima-
tion for piercing boxes in Rd

Orthogonally project each box r ∈ C to the d axes to
get a set of intervals Ci for each axis i
if All the Ci are k-piercable then

Obtain S′

Bruteforce check if S′ is k-piercable

if S′ is k-piercable then
return Grid neighbours of piercing set

else
return false

end if
else

return false
end if

5 Conclusion

In this paper we prove that any family of pseudolines
with the (k2 + k + 1, k)-property is k-piercable. We ex-
tend this result for other families of geometric objects
with discrete intersection, i.e., polynomial curves and
hyperplanes. It is an interesting question to fully chara-
terise such families of objects for which g(k, d) is finite.
We also pose a relaxed variant of this problem as the
k-Helly problem and show non-trivial bounds for a fam-
ily of boxes in Rd. An interesting open problem is to
obtain tight bounds on the k-Helly problem for other
families of geometric objects in Rd.

References

[1] N. Alon, I. Barany, Z. Furedi, and D. J. Kleitman. Point
selections and weak ε-nets for convex hulls. Combina-
torics, Probability and Computing, 1:189–200, 1992.

[2] N. Alon and D. Kleitman. Piercing convex sets and
the Hadwiger Debrunner (p,q)-problem. Advances in
Mathematics, 92:103–112, 1992.

[3] B. Broden, M. Hammar and B. J. Nilsson. Guarding
lines and 2-link polygons is APX-hard. Proceedings of
the Canadian Conference on Computational Geometry,
45–48, 2001.

[4] L. Danzer and B. Grünbaum. Intersection properties of
boxes in Rd. Combinatorica, 2:237–246, 1982.

[5] L. Danzer, B. Grünbaum, and V. Klee. Helly’s theorem
and its relatives. Convexity, American Mathematical
Society,7:101–179, 1963.

[6] J. Eckhoff. Helly, Radon, and Caratheodory type theo-
rems. Handbook of Convex Geometry, 389–448, 1993.

[7] H. Hadwiger and H. Debrunner. Uber eine variante
zum hellyschensatz. Archiv der Mathematik, 8:309–313,
1957.

[8] E. Helly. Uber mengen konvexer kŏrper mit gemein-
schaftlichenpunkten, Jber. Deutsch. Math. Verein.,
32:175–176, 1923.

[9] M. Katchalski and D. Nashtir. On a conjecture of
Danzer and Grünbaum. American Mathematical So-
ciety, 124:3213-3218, 1996.

[10] S. Langerman and P. Morin. Covering things with
things. Discrete & Computational Geometry, 33:717–
729, 2005.

[11] D. Marx. Efficient approximation schemes for geometric
problems? Proceedings of the 13th annual European
Symposium on Algorithms, 448–459, 2005.

[12] N. Megiddo and A. Tamir. On the complexity of lo-
cating linear facilities in the plane. Operations Rsearch
Letters, 1:194–197, 1982.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

69

24th Canadian Conference on Computational Geometry, 2012

70

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Adaptive Techniques to find Optimal Planar Boxes

J. Barbay ∗ G. Navarro † P. Pérez-Lantero ‡

Abstract

Given a set P of n planar points, two axes and a real-
valued score function f() on subsets of P , the Optimal
Planar Box problem consists in finding a box (i.e. an
axis-aligned rectangle) H maximizing f(H ∩ P). We
consider the case where f() is monotone decomposable,
i.e. there exists a composition function g() monotone
in its two arguments such that f(A) = g(f(A1), f(A2))
for every subset A ⊆ P and every partition {A1, A2} of
A. In this context we propose a solution for the Opti-
mal Planar Box problem which performs in the worst
case O(n2 lg n) score compositions and coordinate com-
parisons, and much less on other classes of instances
defined by various measures of difficulty. A side result
of its own interest is a fully dynamic MCS Splay tree
data structure supporting insertions and deletions with
the dynamic finger property, improving upon previous
results [Cortés et al., J.Alg. 2009].

1 Introduction

Consider a set P of n planar points, and two axes
x and y forming a base of the plane, such that the
points are in general position (i.e. no pair of points
share the same x or y coordinate). We say that a
real-valued function f() on subsets of P is decompos-
able [2, 7] if there exists a composition function g() such
that f(A) = g(f(A1), f(A2)) for every subset A ⊆ P
and every partition {A1, A2} of A. Without loss of gen-
erality, we extend f() to P such that f(p) = f({p}). A
decomposable function is monotone if the corresponding
composition function g() is monotone in its two argu-
ments. A box is a rectangle aligned to the axes, and
given a monotone decomposable function f(), such a
box is f()-optimal if it optimizes f(H ∩ P). Without
loss of generality, we assume that we want to maximize
f() and that its composition function g() is monotone

∗Department of Computer Science, University of Chile,
Chile, jeremy.barbay@dcc.uchile.cl. Partially funded by grant
FONDECYT 1-120054, Chile.
†Department of Computer Science, University of Chile, Chile,

gnavarro@dcc.uchile.cl. Partially funded by Millennium Nu-
cleus Information and Coordination in Networks ICM/FIC P10-
024F, Mideplan, Chile.
‡Escuela de Ingenieŕıa Civil en Informática, Universidad

de Valparáıso, Chile, pablo.perez@uv.cl. Partially supported
by grant FONDECYT 11110069 (Chile) and project MEC
MTM2009-08652 (Spain).

increasing in its two arguments. Given a monotone de-
composable function f() well defined for the empty set
∅, a point p of P is positive if f(p) > f(∅). Otherwise,
this point p is negative. Observe that if p is positive then
f(A ∪ {p}) = g(f(A), f(p)) > g(f(A), f(∅)) = f(A) by
monotonicity of g(): hence a point p is positive if and
only if f(A ∪ {p}) > f(A) for every subset A ⊂ P not
containing p. A stripe is an area delimited by two lines
parallel to the same axis. A positive stripe (resp. neg-
ative stripe) is one which contains only positive (resp.
negative) points. A monochromatic stripe is a stripe in
which all points have the same sign.

Given a set of planar points, a simple example of such
monotone decomposable functions is counting the num-
ber of points the box contains. Other examples include
counting the number of blue points; returning the differ-
ence between the number of blue points and the number
of red points contained; returning the number of blue
points in the box or −∞ if it contains some red points;
summing the weights of the points contained; taking the
maximum of the weights of contained points; etc.

Given a set P of n planar points and a real-valued
function f() on subsets of P , the Optimal Planar
Box problem consists in finding an f()-optimal box.
Depending on f(), this problem has various practical
applications, from identifying rectangular areas of in-
terest in astronomical pictures to the design of optimal
rectangular forest cuts or the analysis of medical radio-
graphies. We present various adaptive techniques for
the Optimal Planar Box problem:

• In the worst case over instances composed of n
points, our algorithm properly generalizes Cortés et
al.’s solution [5] for the Maximum Weight Box
problem, within the same complexity of O(n2 lg n)
score compositions.

• For any δ ∈ [1..n] and n1, . . . , nδ ∈ [1..n] summing
to n, in the worst case over instances composed
of δ monochromatic stripes of alternating signs
when the points are sorted by their y-coordinates,
such that the i-th stripe contains ni points, our
algorithm executes O(δn(1 + H(n1, . . . , nδ))) ⊂
O(δn lg(δ + 1)) score compositions (Theorem 4),

where H(n1, . . . , nδ) =
∑δ
i=1(ni/n) lg(n/ni) is the

usual entropy function.

• Assuming the same y-coordinate order, for any
λ ∈ [0..n2], in the worst case over instances where

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

71

24th Canadian Conference on Computational Geometry, 2012

λ is the sum of the distances between the inser-
tion positions of the consecutive points according to
their x-coordinate, our algorithm makes O(n2(1 +
lg(1 + λ/n)) score compositions (Lemma 5). Mea-
sure λ relates to the local insertion sort complex-
ity [11] of the sequence of x-coordinates. It holds
λ ∈ O(n+ Inv), where Inv is the number of inver-
sions in the sequence. When the points are grouped
into δ monochromatic stripes, the complexity drops
to O(nδ(1 + lg(1 + Inv/n)) (Theorem 7).

• Assuming the same y-coordinate order, for a min-
imal cover of the same sequence of x-coordinates
into ρ ≤ n runs (i.e. contiguous increasing sub-
sequences) of lengths r1, . . . , rρ, our algorithm ex-
ecutes O(n2(1 + H(r1, . . . , rρ))) ⊂ O(n2 lg(ρ + 1))
score compositions (Lemma 6). When the points
can be grouped into δ monochromatic stripes, this
complexity decreases to O(nδ(1+H(r1, . . . , rρ))) ⊂
O(nδ lg(ρ+ 1)) (Theorem 7 again).

• Using an approach orthogonal to the one of Cortés
et al. [5], we partition (via a clever strategy consid-
ering axis-parallel lines) the point set P into sub-
sets called diagonal blocks, so that a new adap-
tive algorithm is obtained (Theorem 14). The algo-
rithm solves the Optimal Planar Box problem
in each block and combine the solutions. Extend-
ing this algorithm, we obtain another adaptive al-
gorithm running in O(n lg n+σn) comparisons and
O(σn lg n) score compositions, where σ ∈ [1..n] is a
measure of difficulty of the instance that depends
on the partition in diagonal blocks (Theorem 18).

Due to the lack of space, several proofs are omit-
ted. A longer version of this paper is available at
http://arxiv.org/abs/1204.2034.

2 Optimal Boxes and Related Problems

Given a set P of n weighted planar points, in which the
weight of a point can be either positive or negative, the
Maximum Weight Box problem [5] consists in finding
a box R maximizing the sum of the weights of the points
in R ∩ P . Cortés et al. [5] gave an algorithm solving
this problem in time O(n2 lg n) using O(n) space, based
on MCS trees, a data structure supporting in O(lg n)
time the dynamic computation of the Maximum-Sum
Consecutive Subsequence problem [3] (hence the
name “MCS”).

The Maximum Weight Box problem [5] and, by
successive reductions, the Maximum Subarray prob-
lem [14], the Maximum Box problem [5, 8, 10], and the
Maximum Discrepancy Box problem [5, 6] can all be
reduced to a finite number of instances of the Optimal
Planar Box problem by choosing adequate definitions
for the score functions f() to optimize.

Cortés et al.’s algorithm [5] first sorts the points by
their y-coordinate in O(n lg n) time and then traverses
the resulting sequence of points p1, p2, . . . pn as follows.
For each pi, it sets an MCS tree (described in more
details in Section 3) with points pi, . . . pn, where the key
is their x-coordinate xi, and all have value f(∅). It then
successively activates points pj for j ∈ [i..n], setting
its weight to value f(pj), updating in time O(lg n) the
MCS tree so that to compute the optimal box contained
between the y-coordinate of pi to that of pj . The whole
algorithm executes in time O(n2 lg n).

3 Fully Dynamic MCS Trees

The MCS tree [5] is an index for a fixed sequence S =
(xi)i∈[1..n] of n elements, where each element xk of S has
a weight w(xk) ∈ R, so that whenever a weight w(xk)
is updated, a consecutive subsequence (xi)i∈[l..r] of S
maximizing

∑
i∈[l..r] w(xi) is obtained (or recomputed)

in O(lg n) time. This behavior is dynamic in the sense
that it allows modification of element weights, yet it
is only partially dynamic in the sense that it admits
neither addition nor deletion of elements.

Existing dynamic data structures can be easily
adapted into a truly dynamic data structure with the
same functionalities as MCS trees. We start by gen-
eralizing MCS trees [5] from mere additive weights to
monotone decomposable score functions in Lemma 1.
We further generalize this solution to use an AVL tree [1]
in Lemma 2 and a Splay tree [13] in Lemma 3, whose
“finger search” property will play an essential role in
the results of Sections 4 and 5.

Lemma 1 Let S be a static sequence of n elements, and
f() be a monotone decomposable score function receiv-
ing as argument any subsequence of S, defined through
the activation and deactivation of each element of S.
There exists a semi-dynamic data structure for main-
taining S using linear space that supports the search for
an element in O(lg n) comparisons; the activation or de-
activation of an element in O(lg n) score compositions;
and f()-optimal sub range queries in O(lg n) compar-
isons and score compositions.

The MCS tree data structure can be converted into a
truly dynamic data structure supporting both insertions
and deletions of elements. This data structure can be
used to index a dynamic sequence S = (xi)i∈[1..n] of
n elements so that whenever an element is inserted or
removed, a consecutive subsequence S′ = (xi)i∈[l..r] of S
optimizing f(S′) can be (re)computed in O(lg n) score
compositions and comparisons. The following lemma
establishes the property of this data structure, which
we call MCS AVL tree.

24th Canadian Conference on Computational Geometry, 2012

72

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Lemma 2 Let S be a dynamic sequence of n elements,
and f() be a monotone decomposable score function re-
ceiving as argument any consecutive subsequence of S.
There exists a fully dynamic data structure for main-
taining S using linear space that supports the search for
an element in O(lg n) comparisons; the update of the
score of an element in O(lg n) score compositions, the
insertion or deletion of an element in O(lg n) compar-
isons and score compositions; and f()-optimal subrange
queries in O(lg n) comparisons and score compositions.

The Splay tree is a self-adjusting binary search tree
created by Sleator and Tarjan [13]. It supports the basic
operations search, insert and delete, all of them called
accesses, inO(lg n) amortized time. For many sequences
of accesses, splay trees perform better than other search
trees, even when the specific pattern of the sequences are
unknown. Among other properties of Splay trees, we are
particularly interested in the Dynamic Finger Property,
conjectured by Sleator and Tarjan [13] and proved by
Cole et al. [4]: every sequence of m accesses on an arbi-
trary n-node Splay tree costs O(m+n+

∑m
j=1 lg(dj+1))

rotations where, for j = 1..m, the j-th and (j − 1)-th
accesses are performed on elements whose ranks among
the elements stored in the Splay tree differ by dj . For
j = 0, the j-th element is the element stored at the
root. It is easy to see that in the MCS AVL tree we can
replace the underlying AVL tree by a Splay tree, and
obtain then the next lemma, which describes the MCS
Splay tree data structure.

Lemma 3 Let S be a dynamic sequence of n elements
and f() be a monotone decomposable function receiving
as argument any consecutive subsequence of S. There
exists a data structure for maintaining S that uses lin-
ear space and supports the search in O(lg n) amortized
comparisons, the update of the score of an element in
O(lg n) amortized score compositions, and the inser-
tion and deletion of elements in O(lg n) amortized com-
parisons and score compositions. Joint with the inser-
tion or deletion of any element, the consecutive sub-
sequence S′ of S maximizing f(S′) is recomputed. The
Dynamic Finger Property is also satisfied for each oper-
ation (search, insertion and deletion), both for the num-
ber of comparisons and for the number of score compo-
sitions performed.

4 Taking Advantage of Monochromatic Stripes

Consider an instance where positive and negative points
can be clustered into δ positive and negative stripes
along one given axis, of cardinalities n1, . . . , nδ. Such
stripes can be easily identified in O(n lg n) comparisons
and O(n) score accesses. On such instances one does
not need to consider boxes whose borders are in the
middle of some stripes: all optimal boxes will start at

the edge of a stripe; specifically, the top (resp. bottom)
of an optimal box will align with a positive point at the
top (resp. bottom) of a positive stripe.

This very simple observation not only limits the num-
ber of boxes for which we need to compute a score,
but also it makes it easier to compute the score of
each box: adding the ni points of the i-th stripe in
increasing order of their coordinates in a MCS Splay
tree of final size n amortizes to O(n+

∑δ
i=1 ni lg(n/ni))

coordinate comparisons and score compositions. The
reason is that the ni distances dj + 1 of Lemma 3
telescope to at most n + ni within stripe i, and thus
by convexity the cost O(n +

∑n
j=1 lg(dj + 1)) is up-

per bounded by O(n +
∑δ
i=1 ni lg(1 + n/ni)) which is

O(n +
∑δ
i=1 ni lg(n/ni)) = O(n(1 + H(n1, . . . , nδ))) ⊂

O(n lg(δ + 1)). Combining this with the fact that the
top of an optimal box is aligned with a positive point at
the top of a positive stripe yields the following result.

Theorem 4 For any δ ∈ [1..n] and n1, . . . , nδ ∈ [1..n]
summing to n, in the worst case over instances com-
posed of δ stripes of alternating signs over an axis such
that the i-th stripe contains ni points, there exists an
algorithm that finds an f()-optimal box in O(δn(1 +
H(n1, . . . , nδ))) ⊂ O(δn lg(δ + 1)) score compositions
and O(δn(1 + H(n1, . . . , nδ)) + n lg n) ⊂ O(δn lg(δ +
1) + n lg n) coordinate comparisons.

5 Taking Advantage of Point Alignments

Running the algorithm outlined in the first paragraph
of Section 4 over the MCS Splay tree has further con-
sequences. In this section we show how it makes the
algorithm adaptive to local point alignments.

The cost of our algorithm using the MCS Splay tree
can be upper bounded as follows. Let λ denote the
sum of the distances between the insertion positions of
the consecutive points according to their x-coordinate.
When we insert the points in the MCS Splay tree start-
ing from p1, the total cost is O(n+

∑n
j=1 lg(dj + 1)) ⊂

O(n + n lg(1 + λ/n)) score compositions, by convexity
of the logarithm and because

∑n
j=1 dj + 1 ≤ λ + n. A

simple upper bound when considering all the n passes
of the algorithm can be obtained as follows.

Lemma 5 There exists an algorithm that finds an f()-
optimal box in O(n2(1+lg(1+λ/n))) score compositions
and O(n2(1 + lg(1 + λ/n)) + n lg n) coordinate compar-
isons, where λ ≤ n2 is the local insertion complexity
of the sequence of x-coordinates of the points sorted by
y-coordinates.

In the worst case this boils down to the O(n2 lg n)-
worst-case algorithm, whereas in the best case λ = 0
and the cost corresponds to O(n2) operations.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

73

24th Canadian Conference on Computational Geometry, 2012

We can upper bound λ by using other two measures of
disorder in permutations. For example, let us consider
Inv, the number of inversions in the permutation π, or
said another way, the number of pairs out of order in the
sequence [12]. The measure Inv corresponds to a cost
where the “finger” is always at the end of the sequence.
This can be as small as (λ − n)/2, for example con-
sider the permutation π = (m,m− 1,m+ 1,m− 2,m+
2, . . . , 1, 2m−1) for m = (n+1)/2 and odd n. However,
Inv can be much larger than λ because it is not sym-
metric on decreasing sequences, for example when the
points are semi-aligned in a decreasing diagonal and the
permutation is π = (n, n−1, n−2, . . . , 1). Thus replac-
ing λ by Inv in Lemma 5 yields a valid upper bound in
terms of big-O complexity.

Another well-known measure of permutation com-
plexity is the number of increasing runs ρ, that is,
the minimum number of contiguous monotone increas-
ing subsequences that cover π [9]. Let r1, . . . , rρ be
the lengths of the runs, computed in O(n lg n) compar-
isons. Then the sum of the values |πj+1 − πj | within
the i-th run telescopes to at most n, and so does the
sum of the dj values. Therefore

∑n
j=1 lg(dj + 1) ≤∑ρ

i=1 ri lg(1+n/ri) ≤ n+
∑ρ
i=1 ri lg(n/ri) by convexity.

This leads to the following alternative upper bound.

Lemma 6 There exists an algorithm that finds an f()-
optimal box in O(n lg n) coordinate comparison and
O(n2(1+H(r1, . . . , rρ)) ⊂ O(n2 lg(ρ+1)) score composi-
tions, where r1, . . . , rρ are the lengths of ρ maximal con-
tiguous increasing subsequences that cover the sequence
of x-coordinates of the points sorted by y-coordinate.

6 Taking Advantage of both Stripes and Alignments

The combination of the techniques of Sections 4 and 5
can be elegantly analyzed. A simple result is that we
need to start only from δ different pi values, and there-
fore an upper bound to our complexity is O(nδ((1 +
lg(1 + λ/n))). We can indeed do slightly better by
sorting the points by increasing x-coordinates within
each monochromatic stripe. While the measure λ′ re-
sulting from this reordering may be larger than λ, the
upper bounds related to Inv and ρ, namely Inv′, ρ′,
and H(n′1, . . . , n

′
ρ′), do not increase. In particular it

is easy to see that the upper bound of Theorem 4
is dominated by the combination since ρ′ ≤ δ and
H(r′1, . . . , r

′
ρ′) ≤ H(n1, . . . , nδ) (because no run will cut

a monochromatic stripe once the latter is reordered).

Theorem 7 There exists an algorithm that finds an
f()-optimal box in O(n lg n) coordinate comparisons
and O(nδ(1 + min(lg(1 + Inv/n), H(r1, . . . , rρ)))) ⊂
O(nδ lg(ρ+ 1)) score compositions, where δ is the min-
imum number of monochromatic stripes in which the

points, sorted by increasing y-coordinate, can be parti-
tioned; X is the corresponding sequence of x-coordinates
once we (re-)sort by increasing x-coordinate the points
within each monochromatic stripe; Inv ≤ n2 is the num-
ber of out-of-order pairs in X; and r1, . . . , rρ are the
lengths of the minimum number ρ ≤ δ of contiguous in-
creasing runs that cover X. A similar result holds by
exchanging x and y axes.

Note that if these new measures are not particularly
favorable, the formula boils down to the O(nδ lg δ) time
complexity of Section 4.

7 Taking Advantage of Diagonals of Blocks

In this section we present an approach orthogonal to the
previous ones, which considers partitions of the point
set into subsets and yields to a new adaptive algorithm
which solves the Optimal Planar Box problem in
each of them and combine the solutions. Its difficulty
measure depends on such a partition.

For any subset A ⊆ P , a diagonalization of A is a
partition {A1, A2} of A induced by two lines `1 and
`2, respectively parallel to axes x and y, so that the
elements of A1 and the elements of A2 belong to oppo-
site quadrants with respect to the point `1 ∩ `2. Note
that if p1, p2, . . . , pm denote the elements of A sorted
by x-coordinate, then any diagonalization of A has
the form {{p1, . . . , pk}, {pk+1, . . . , pm}} for some index
k ∈ [1..m − 1]. Not all point sets admit a diagonaliza-
tion, the simplest case consists of four points placed at
the four corners of a square whose sides are slightly ro-
tated from the axes. We call such a point set a windmill,
due to the characteristic position of its points. Given
any bounded set S ⊂ R2, let Box(S) denote the smallest
box enclosing S and let the extreme points of any subset
A ⊆ P be those belonging to the boundary of Box(A).

Lemma 8 Let A be a point set that does not admit a di-
agonalization. Then A has exactly four extreme points.
Furthermore, A has a windmill which contains at least
one extreme point of A.

Definition 9 A diagonalization tree of P , D-tree, is a
binary tree such that: (i) each leaf u contains a sub-
set S(u) ⊆ P which does not admit a diagonalization,
(ii) set {S(u) | u is a leaf } is a partition of P , and
(iii) each internal node v has exactly two children v1
(the left one) and v2 (the right one) and satisfies that
{A(v1), A(v2)} is a diagonalization of A(v), where for
each node v A(v) denotes the union of the sets S(u) for
all leaves u descendant of v (See Figure 1).

Lemma 10 Let P be a set of n points in the plane.
Every D-tree of P has the same number of leaves. Fur-
thermore, the i-th leaves from left to right of any two
D-trees of P contain the same subset S(·) of P .

24th Canadian Conference on Computational Geometry, 2012

74

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

p1

p2

p3

p4
p5

p6

p7

p8

p9

p10

p11

p12
p13

p3, . . . , p7

p1 p2 p8 p9

p10, . . . , p13

Figure 1: A D-tree of the point set {p1, . . . , p13}.

From Lemma 10 we can conclude that every D-tree
T of P induces the same partition {S(u1), . . . , S(uβ)}
of P , where u1, . . . , uβ are the leaf nodes of T.

Lemma 11 A D-tree of P requires O(n) space and can
be built in O(n lg n) comparisons.

Proof. (Sketch) Let p1, p2, . . . , pn be the elements of
P sorted by x-coordinate, and let pπ1

, pπ2
, . . . , pπn

be
the elements of P sorted by y-coordinate. Consider-
ing the computation of permutation π a preprocess-
ing, we can show that: If P admits a diagonaliza-
tion {{p1, . . . , pk}, {pk+1, . . . , pn}} then it can be de-
termined in O(min{k, n− k}) comparisons. Otherwise,
if P does not admit a diagonalization, then it can be
decided in O(n) comparisons. We can then build a D-
tree of P recursively as follows. If a diagonalization
{{p1, . . . , pk}, {pk+1, . . . , pn}} of P exists, which was de-
termined in O(t) comparisons where t = min{k, n− k},
then create a root node and set as left child a D-
tree of {p1, . . . , pk} and as right child a D-tree of
{pk+1, . . . , pn}. Otherwise, if P does not admit a di-
agonalization, which was decided in O(n) comparisons,
then create a leaf node whose set S(·) is equal to P .
This results in the next recurrence equation for the to-
tal number T (n) of comparisons, where 1 ≤ t ≤ bn/2c:

T (n) =

O(t) + T (t) + T (n− t) n > 1, a diagonali-
zation exists.

O(n) otherwise.

By applying induction and using the binary entropy
function H(x) = x lg(1/x) + (1− x) lg(1/(1− x)), with
the fact x ≤ H(x) for x ≤ 1/2, it can be proved that
T (n) is O(n lg n). �

Definition 12 For any non-empty subset A ⊆ P the
set of ten f()-optimal boxes of A, denoted by Ten(A),
consists of the following f()-optimal boxes of A, all con-
tained in Box(A):
1. Box(A);
2. Bopt(A), without restriction;
3. B1(A), with the bottom-left vertex of Box(A);
4. B2(A), with the bottom-right vertex of Box(A);
5. B3(A), with the top-right vertex of Box(A);
6. B4(A), with the top-left vertex of Box(A);
7. B1,2(A), with the bottom vertices of Box(A);
8. B2,3(A), with the right vertices of Box(A);
9. B3,4(A), with the top vertices of Box(A);

10. B4,1(A), with the left vertices of Box(A).

Lemma 13 For any non-empty subset A ⊆ P and any
diagonalization {A1, A2} of A, Ten(A) can be computed
in O(1) score compositions from Ten(A1) and Ten(A2).

Theorem 14 There exists an algorithm that finds an
f()-optimal box of P in O(n lg n+

∑β
i=1 hc(ni)) compar-

isons (on coordinates and indices) and O(
∑β
i=1 hs(ni)+

β) score compositions, where {P1, . . . , Pβ} is the parti-
tion of P induced by any D-tree of P and β is the size of
this partition, ni is the cardinality of Pi, and hc(ni) and
hs(ni) are the numbers of coordinate comparisons and
score compositions used, respectively, to compute the ten
f()-optimal boxes of Pi.

Proof. Build a D-tree T of P in O(n lg n) comparisons
(Lemma 11). Let u1, . . . , uβ be the leaves of T which
satisfy S(ui) = Pi for all i ∈ [1..n]. Compute the set
Ten(S(ui)) = Ten(Pi) in hc(ni) coordinate comparisons
and hs(ni) score compositions. By using a post-order
traversal of T , for each internal node v of T compute
Ten(A(v)) from Ten(A(v1)) and Ten(A(v2)), where v1
and v2 are the children nodes of v, in O(1) score com-
positions (Lemma 13). The f()-optimal box of P is
the box Bopt(A(r)), where r is the root node of T and
satisfies A(r) = P . In total, this algorithm runs in

O(n lg n) +
∑β
i=1 hc(ni) = O(n lg n +

∑β
i=1 hc(ni)) co-

ordinate comparisons and
∑β
i=1 hs(ni) +

∑β−1
i=1 O(1) =

O(
∑β
i=1 hs(ni) + β) score compositions. �

Corollary 15 There exists an algorithm that finds an
f()-optimal box of P in O(n lg n +

∑β
i=1 ni lg ni) com-

parisons and O(
∑β
i=1 n

2
i lg ni + β) score compositions,

where β is the size of the partition {P1, . . . , Pβ} of P
induced by any D-tree of P , and ni = |Pi| for all i.

8 Dealing with Windmills

In this section we use Lemma 8 to obtain a variant of
the algorithm in Theorem 14. The set S(u) of every leaf
node u of any D-tree of P does not admit a diagonal-
ization and has a windmill containing an extreme point

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

75

24th Canadian Conference on Computational Geometry, 2012

of S(u). The idea is to remove the extreme points of
S(u) and then recursively build a D-tree of the remain-
ing points. This approach yields a diagonalization in
depth of the point set, potentially reducing the number
of score compositions.

Definition 16 An extended diagonalization tree of P ,
D∗-tree, is defined recursively as follows: Each leaf node
u of a D-tree of P satisfying |S(u)| > 1 is replaced by
a node u′ containing the set X(u) of the four extreme
points of S(u), and if the set S(u) \X(u) is not empty
then u′ has as its only one child a D∗-tree of S(u)\X(u).

Lemma 17 Every D∗-tree of P has the same number
σ of one-child nodes, contains n− 4σ leaves nodes, and
every leaf node u satisfies |S(u)| = 1 or |S(u)| = 4. A
D∗-tree of P requires O(n) space and can be built in
O(n lg n+ σn) comparisons.

Proof. The first part of the lemma can be seen from
Lemma 10 and Definition 16. A D∗-tree of P can be
built in O(n lg n + σn) comparisons by following the
same algorithm to build a D-tree of P until finding a
leaf node u such that S(u) does not admit a diagonal-
ization. At this point we pay O(n) comparisons in order
to continue the algorithm with the set S(u) \X(u) ac-
cording to Definition 16. Since this algorithm finds σ
nodes u, the total comparisons are O(n lg n+ σn). The
D∗-tree has n nodes of bounded degree and hence can
be encoded in linear space. �

Theorem 18 There exists an algorithm that finds an
f()-optimal box of P in O(n lg n+ σn) coordinate com-
parisons and O(σn lg n) score compositions, where σ is
the number of one-child nodes of every D∗-tree of P .

Proof. Build a D∗-tree T of P in O(n lg n+ σn) com-
parisons (Lemma 17). For each of the n − 4σ leaves
nodes u of T compute Ten(S(u)) in constant score com-
positions. Then, using a post-order traversal of T , com-
pute Ten(S(u)) for each internal node u as follows: If v
has two children v1 (the left one) and v2 (the right one),
then {A(v1), A(v2)} is a diagonalization of A(v) and
Ten(A(v)) can be computed in O(1) score compositions
from Ten(A(v1)) and Ten(A(v2)) (Lemma 13). Other-
wise, if v is one of the σ one-child nodes, then Ten(A(v))
can be computed in O(n lg n) worst-case comparisons
and score compositions. Namely, if a box of Ten(A(v))
contains a at least one point of X(u) in the boundary
then it can be found in O(n lg n) comparisons and score
compositions [5]. Otherwise, it is a box of Ten(A(v′)),
where v′ is the child of v. We pay O(1) score composi-
tions for each of the O(n) two-child nodes and O(n lg n)
score compositions for each of the σ one-child nodes.
Then the total score compositions is O(n+σn lg n). �

9 Future work

The definition of Ten(·) can be used for further re-
sults: Suppose the point set P can be partitioned
into subsets P1, P2, . . . , Pk so that bounding boxes
Box(P1), Box(P2), . . . , Box(Pk) are pairwise disjoint and
any axis-parallel line stabs at most one of them. Once
Ten(P1), Ten(P2), . . . , Ten(Pk) have been computed, an
optimal box of P can be found in O(k lg k) comparisons
and O(k2 lg k) score compositions. Finding an optimal
decomposition P1, P2, . . . , Pk is our main issue.

References

[1] G. Adelson-Velskii and E. M. Landis. An algorithm for
the organization of information. In Proc. of the USSR
Academy of Sciences, volume 146, pages 263–266, 1962.

[2] C. Bautista-Santiago, J. M. Dı́az-Báñez, D. Lara,
P. Pérez-Lantero, J. Urrutia, and I. Ventura. Comput-
ing optimal islands. Oper. Res. Lett., 39(4):246–251,
2011.

[3] J. Bentley. Programming pearls: algorithm design tech-
niques. Commun. ACM, 27(9):865–873, 1984.

[4] R. Cole, B. Mishra, J. Schmidt, and A. Siegel. On the
dynamic finger conjecture for splay trees. Part I: Splay
sorting logn-block sequences. SIAM J. Comp., 30(1):1–
43, 2000.

[5] C. Cortés, J. M. Dı́az-Báñez, P. Pérez-Lantero,
C. Seara, J. Urrutia, and I. Ventura. Bichromatic sep-
arability with two boxes: A general approach. J. Algo-
rithms, 64(2-3):79–88, 2009.

[6] D. P. Dobkin, D. Gunopulos, and W. Maass. Comput-
ing the maximum bichromatic discrepancy, with appli-
cations to computer graphics and machine learning. J.
Comput. Syst. Sci., 52(3):453–470, 1996.

[7] D. P. Dobkin and S. Suri. Dynamically computing the
maxima of decomposable functions, with applications.
In FOCS, pages 488–493, 1989.

[8] J. Eckstein, P. Hammer, Y. Liu, M. Nediak, and
B. Simeone. The maximum box problem and its ap-
plication to data analysis. Comput. Optim. App.,
23(3):285–298, 2002.

[9] D. E. Knuth. The Art of Computer Programming, vol-
ume 3. Addison-Wesley, 1968.

[10] Y. Liu and M. Nediak. Planar case of the maximum box
and related problems. In CCCG, pages 14–18, 2003.

[11] H. Mannila. Measures of presortedness and optimal
sorting algorithms. In IEEE Trans. Comput., vol-
ume 34, pages 318–325, 1985.

[12] A. Moffat and O. Petersson. An overview of adaptive
sorting. Australian Comp. J., 24(2):70–77, 1992.

[13] D. D. Sleator and R. E. Tarjan. Self-adjusting binary
search trees. J. ACM, 32(3):652–686, 1985.

[14] T. Takaoka. Efficient algorithms for the maximum sub-
array problem by distance matrix multiplication. Elec-
tronic Notes in Theoretical Computer Science, 61:191–
200, 2002. CATS’02.

24th Canadian Conference on Computational Geometry, 2012

76

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

A Fast Dimension-Sweep Algorithm for the Hypervolume Indicator
in Four Dimensions

Andreia P. Guerreiro∗† Carlos M. Fonseca† Michael T. M. Emmerich‡

Abstract

The Hypervolume Indicator is one of the most widely
used quality indicators in Evolutionary Multiobjective
Optimization. Its computation is a special case of
Klee’s Measure Problem (KMP) where the upper end of
all rectangular ranges coincides with a given reference
point (assuming minimization, without loss of general-
ity). Although the time complexity of the hypervolume
indicator in two and three dimensions is known to be
Θ(n log n), improving upon the O(nd/2 log n) complex-
ity of Overmars and Yap’s algorithm for the general
KMP in higher dimensions has been a challenge. In
this paper, a new dimension-sweep algorithm to com-
pute the hypervolume indicator in four dimensions is
proposed, and its complexity is shown to be O(n2).

1 Introduction

In multiobjective optimization, solutions may be seen
as points in a decision space, S, which are mapped onto
a multi-dimensional objective space, Rd, by means of a
vector-valued objective function, f : S → Rd. Min-
imization of all objective function components is as-
sumed throughout this work without loss of generality.

In this context, a solution x ∈ S is said to dom-
inate another solution z ∈ S iff f(x) ≤ f(z) and
f(x) 6= f(z), where the inequality ≤ applies compo-
nentwise. A solution x ∈ S is said to be Pareto-optimal
iff ∀z ∈ S, f(z) ≤ f(x) ⇒ f(z) = f(x). The set of all
Pareto-optimal solutions in decision space is called the
Pareto-optimal set, and the corresponding set of points
in objective space is called the Pareto-optimal front.

Since enumerating the whole Pareto-optimal set, or
even the Pareto-optimal front, is usually infeasible,
multiobjective optimization typically aims at finding
a good, discrete approximation to the Pareto-optimal
front. In comparative studies, the quality of such ap-
proximations is often assessed in a quantitative man-

∗INESC-ID, Instituto Superior Técnico, Technical Univer-
sity of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
apg@dei.uc.pt
†CISUC, Department of Informatics Engineering, Uni-

versity of Coimbra, Pólo II, 3030-290 Coimbra, Portugal
cmfonsec@dei.uc.pt
‡LIACS, Faculty of Science, Leiden University, P.O. Box 9512,

2300 RA Leiden, The Netherlands emmerich@liacs.nl

ner by means of quality indicators, which map a set of
points in objective space to a real value. Such quality
indicators have also been integrated into some evolu-
tionary multiobjective optimizers [3, 14], which leads to
the quality indicator being evaluated many times in the
course of an optimization run, and imposes a need for
efficient algorithms to compute it.

One of the most widely used quality indicators is
the hypervolume indicator [18]. Given a set of points
X ⊂ Rd and a reference point r ∈ Rd, the hypervolume
indicator H(X) is the Lebesgue measure, λ(·), of the
region dominated by X and bounded above by r, i.e.
H(X) = λ({q ∈ Rd | ∃p ∈ X : p ≤ q ∧ q ≤ r}). Alter-
natively, the hypervolume indicator may be written as
the measure of the union of n isothetic hyperrectangles
in d dimensions:

H(X) = λ

⋃

p∈X
p≤r

[p, r]

where [p, r] = {q ∈ Rd | p ≤ q∧ q ≤ r}, which highlights
its connection to Klee’s Measure Problem (KMP) [13].
Furthermore, given a point p ∈ X and a reference point
r ∈ Rd, the individual contribution of p is the Lebesgue
measure of the region exclusively dominated by p. It
can be obtained by subtracting H(X−{p}) from H(X).

It is known that the hypervolume indicator and, thus,
Klee’s measure problem cannot be computed exactly
in time polynomial in the number of dimensions unless
P = NP [6]. While asymptotically optimal, O(n log n)-
time algorithms for the hypervolume indicator in two
and three dimensions are known [2], no tight complex-
ity bounds are available for d ≥ 4. For a long time,
the best upper bounds for d ≥ 4 stemmed from algo-
rithms for the more general KMP. Chan’s algorithm [8],
with time bound O(nd/2 2O(log∗ n)), where log∗ denotes
the iterated logarithm function, provides the best gen-
eral upper bound to date. It slightly improves upon
Overmars and Yap’s algorithm, which has time com-
plexity O(nd/2 log n) [13]. Beume [1] developed a sim-
plified version of Overmars and Yap’s algorithm for the
hypervolume indicator, but with the same complexity.1

1A gap in the analysis presented in N. Beume and G. Rudolph,
Faster S-Metric Calculation by Considering Dominated Hypervol-
ume as Klee’s Measure Problem, in Proc. 2nd IASTED Conf. on
Comp. Intelligence, 231–236, 2006, is acknowledged in [1].

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

77

24th Canadian Conference on Computational Geometry, 2012

Better bounds have been obtained for the KMP on unit
cubes [7] and on fat boxes [5], for example, but reducing
the hypervolume indicator to such problems is not possi-
ble in general. Only very recently has a tighter, general
upper bound of O(n(d−1)/2 log n) on the time complex-
ity of the hypervolume indicator been obtained [17].

In this paper, a fast dimension-sweep algorithm for
the hypervolume indicator in four dimensions is pro-
posed. Although its quadratic time complexity ex-
ceeds Yıldız and Suri’s new upper bound by a factor
of n1/2/ log n, it can be easily implemented based on
simpler data structures, and runs much faster than the
currently available implementations of alternative algo-
rithms on standard benchmark instances [11].

The paper is structured as follows: the next section
reviews some of the existing algorithms for the hyper-
volume indicator and their time complexities. Section 3
describes the proposed algorithm to compute the hy-
pervolume indicator in four dimensions, and states its
complexity. Concluding remarks are drawn in Section 4.

2 Related work

Several algorithms for the hypervolume indicator have
been proposed in the literature in addition to the afore-
mentioned simplified algorithm by Beume, known as
HOY [1]. Fonseca et al.’s algorithm [10] is a recursive
dimension-sweep algorithm which improves upon a pre-
vious algorithm known as HSO (Hypervolume by Slicing
Objectives) [16] by caching intermediate results without
sacrificing linear space complexity, and using the asymp-
totically optimal O(n log n) algorithm later detailed by
Beume et al. [2] as its three-dimensional base case. Its
O(nd−2 log n) time complexity for d > 2 matches HOY’s
for d = 4, but is worse for greater values of d.

Two other algorithms, IIHSO (Iterated Incremental
HSO) [4] and WFG (Walking Fish Group) [15], have
been reported to be the fastest known algorithms in
practice, the former for d = 4 and the latter for d > 4,
based on experimental results on a set of benchmark
instances [15]. However, IIHSO has O(nd−1) time com-
plexity and WFG is reported to be exponential in the
number of points in the worst case [15]. Finally, Yıldız
and Suri’s new algorithm [17] is asymptotically the
fastest to date, and it will be interesting to see how
well it performs in practice.

3 New dimension-sweep algorithm for the four-di-
mensional case

Like WFG [15], the new algorithm proposed here fol-
lows a dimension-sweep approach, and implements an
iterated incremental computation of the hypervolume
indicator. However, its time complexity can be shown
to be at most quadratic.

The next subsection presents the main ideas behind
the proposed algorithm. An algorithm to compute the
individual contribution of a point in three dimensions,
on which the main algorithm relies, is described in Sub-
section 3.2. The data structures used and the operation
of the overall algorithm are described in Subsections 3.3
and 3.4, respectively. Subsection 3.5 discusses in detail
how the O(n2) time complexity is achieved.

3.1 General description

An asymptotically optimal, O(n log n)-time algorithm
to compute the hypervolume indicator in three-
dimensions is described by Beume et al. [2], and is a
natural extension of Kung et al.’s algorithm for max-
ima in three dimensions [12]. In a minimization setting,
the algorithm operates by sweeping input points in as-
cending order of z-coordinate values. While sweeping,
the set S of the points seen so far whose (orthogonal)
projections on the (x,y)-plane are not dominated by the
projection of any other points already seen is efficiently
maintained, using a balanced search tree with either the
x or y coordinate as the key. At each step, the volume of
a slice bounded below by the current point and bounded
above by the next point is computed.

Algorithm 1 details this approach, and generalizes it
to any number of dimensions. For each new point, p,
the volume of a slice is computed by determining the
measure, v, of the region dominated by the projection of
S∪{p} onto (d−1)-dimensional space, denoted S∗∪{p∗},
and multiplying it by the difference between the last
coordinate of the next point, q, and that of p. Note that
the asterisk is used to denote projection onto (d − 1)-
dimensional space.

The currently dominated (d − 1)-dimensional hyper-
volume, v, is updated by finding the points in S∗ that
are dominated by p∗ and subtracting their individual
contributions from v in turn as they are removed from
S∗, before adding the individual contribution of p∗ to v
and inserting p∗ into S∗. Once v has been updated, the
height, and thus the hypervolume, of the current slice
can be easily computed by fetching the next point.

In Algorithm 1, contribution(p∗,S∗, r∗) denotes the in-
dividual contribution of a point p∗ to a non-dominated
point set S∗, given a reference point r∗. Each point is
swept and removed at most once, resulting in a total
of O(n) computed contributions. In the 3-dimensional
case, individual 2-dimensional contributions can be
computed in constant time, and the complexity of the
algorithm is dominated by the time needed to find each
dominated projection, s∗. In the 4-dimensional case,
the contribution of each point (in three dimensions) to
a non-dominated point set can be computed in (amor-
tized) O(n) time as it will be seen next. Since all dom-
inated projections, s∗, can also be found in linear time,
the 4-dimensional hypervolume indicator may be com-

24th Canadian Conference on Computational Geometry, 2012

78

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Algorithm 1 General algorithm

Input: X // a set of n points in Rd

Input: r // r ∈ Rd is the reference point
Output: h // Total hypervolume

1: s← (−∞, ...,−∞, rd) ∈ [−∞,+∞]d

2: Q is a queue containing X ∪ s sorted in ascending
order of dimension d

3: S∗ ← ∅
4: v ← 0
5: h← 0
6: p← dequeue(Q)
7: while Q 6= ∅ do
8: for all s∗ ∈ S∗ : p∗ ≤ s∗ do
9: S∗ ← S∗ − {s∗}

10: v ← v − contribution(s∗,S∗, r∗)
11: v ← v + contribution(p∗,S∗, r∗)
12: S∗ ← S∗ ∪ {p∗}
13: q ← dequeue(Q)
14: h← h+ (qd − pd) · v
15: p← q
16: return h

puted in O(n2) time.

3.2 Individual contribution of a point in three di-
mensions

In order to achieve O(n) time complexity in the compu-
tation of a single point contribution to a non-dominated
point set S∗ in the conditions imposed by Algorithm 1
(i.e., p∗ ∈ R3, S∗ ⊂ R3 and @q∗ ∈ S∗ : p∗ ≤ q∗),
a method inspired in Emmerich and Fonseca’s algo-
rithm [9] is proposed.

Given a non-dominated point set S ⊂ R3 and a refer-
ence point r ∈ R3, the individual contribution of each
point p in S may be efficiently determined using the
method proposed by Emmerich and Fonseca [9]. The
volume dominated exclusively by each point is divided
into cuboids (or boxes), and the sum of their volumes
is computed. To this end, S is swept in ascending order
of the z-coordinate2 and the region of the (x,y)-plane
exclusively dominated by each point p at z = pz is par-
titioned into smaller non-overlapping rectangular areas.
This partitioning can be obtained by sweeping those
points that have coordinate z lower than pz along one
of the dimensions x or y, and is used in the algorithm
proposed here. Unlike in [9], where all contributions
are computed, in Algorithm 2 only the contribution of
a single point needs to be updated.

The example in Figure 1 will be used throughout the
remainder of this Section to illustrate the computation
of single-point contributions. The base problem is de-

2Note that, in [9], maximization is assumed. For clarity and
consistency, the description here considers minimization instead.

r

x

y

q1

p

s1

s2

s3 s4

s5
s6

s7

s8

q2

q3

q4

q5

q6

(a) Base example

x

y
r

b1
b2

b3

b4
b5

p

s1

s2

s3 s4

s5
s6

s7

s8

q2

q3

q4

q5

q6

(b) Initialize boxes

r

x

y

b7

b6

b1
b2

b3

b4
b5

p

s3 s4

s5
s6

s7

s8

q2

q3

q4

q5

q6

(c) Simulate closeBoxesLeft and
closeBoxesRight

x

y

3
3

3

2 2

5

6r3

5

r

p

s3 s4

s5
s6

s7

s8

q2

q3

q4

q5

q6

(d) Expected result

Figure 1: Example of a problem in 3 dimensions, where
the goal is to determine the contribution of p to S (S =
{q1, ..., q6} ∪ {s1, ..., s8}), given the reference point r.
In this problem, szt ≤ pz (t = 1, ..., 8) and qzi > pz

(i = 1, ..., 6). It is assumed that pz = 0 and qzi = i.

Algorithm 2 HV4D - contribution

Input: p ∈ R3

Input: S ⊂ R3

Input: r ∈ R3 // The reference point
Output: c // contribution

1: S1,S2 ← split(S, pz) // S1 = {q | q ∈ S : qz ≤ pz},
2: // S2 = {q | q ∈ S : qz > pz}
3: B← initializeBoxes(p, S1)
4: c← determineContrib(p,S2,B, r)
5: return c

picted in Figure 1a. Ignoring the presence of q1 in the
example of Figure 1a, as it would have been removed in a
previous step, the contribution of p would be computed
as the sum of the volumes of the boxes depicted in Fig-
ure 1d, where the numbers indicate the corresponding
heights.

The main steps of the computation of the contribu-
tion of a point p ∈ R3 to a set S ⊂ R3, as described
above, are detailed in Algorithm 2. All of them can
be implemented in O(n) time, as long as S is a non-
dominated point set and there are no points in S which
are dominated by p, which is guaranteed to happen by
Algorithm 1. Furthermore, points must be kept sorted
with respect to dimension two, in order to delimit the
base of the boxes (see Figure 1b), and to dimension
three, to allow their heights to be determined.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

79

24th Canadian Conference on Computational Geometry, 2012

3.3 Data structures

Algorithm 1 receives a non-dominated point set X ⊂ R4

as input, and sets up a queue Q containing all points
in X in ascending order of the fourth coordinate. A
sentinel is added to Q in order to ensure that point
q, which is used to determine the height of the slice,
always exists in line 13. The set S∗ is stored in a data
structure that maintains all points sorted in ascending
order of coordinates y and z, using two doubly-linked
lists. Such sorted lists are used also for the two subsets
S1 and S2 of S in Algorithm 2, and support the following
operations:

nexty(p, S) The point following p in S with respect to
coordinate y, for p ∈ S.

highery(p, S) The point q ∈ S with the least qy > py,
for p /∈ S.

getXRightBelow(p,S) The point q ∈ S with the least
qx ≥ px such that qy ≤ py

Operations nextz and higherz, analogous to nexty and
highery, are available as well. Operation next is per-
formed in constant time as long as p itself is in S, while
the remaining operations are performed in linear time.

In Algorithm 2, the volume exclusively dominated
by a point is partitioned into cuboids, here referred to
as boxes. Each box b is defined by its lower corner
(lx, ly, lz) and its upper corner (ux, uy, uz). Boxes are
kept in a doubly-linked list, B, so that boxes that need
to be updated or removed may be accessed easily (in
constant time). Since there is no overlap between boxes
in the list, it is possible to keep the list of boxes sorted
in ascending order of coordinate x. When a box is cre-
ated, only (lx, ly, lz) and (ux, uy) are known. Boxes are
kept in the list as long as the corresponding value of uz

is not known. Once this value is determined, the box
is closed, i.e., its volume is computed, and the box is
removed from the list. Then, the volume is added to
the accumulated volume c.
In order to manage the list of boxes, the following op-
erations are implemented:

pushLeft(B, b) Add box b to the left of the box list B

closeAllBoxes(B, z) Close all boxes in list B, setting the
corresponding value of uz to z, and return the sum
of the volumes of those boxes.

closeBoxesLeft(B, y, z) From left to right, close all
boxes in list B for which uy > y, setting the corre-
sponding value of uz to z and ly to y. After closing
those boxes, push to the left of B a new box whose
lower corner coincides with p, and has uy = y and
ux equal to the ux of the last box removed. Finally,
return the total volume of the closed boxes.

Algorithm 3 HV4D - contribution - initializeBoxes

Input: p ∈ R3

Input: S1 ⊂ R3 // ∀q ∈ S⇒ qz ≤ pz
Input: r ∈ R3 // The reference point
Output: B // Box list

1: S1 ← S1 ∪ {(rx,−∞,−∞), (−∞, ry,−∞)}
2: B← ∅
3: q ← highery(p,S1)
4: m← getXRightBelow(p,S1)
5: while qx > px do
6: if qx < mx then
7: b← ((qx, py, pz), (mx, qy, pz))
8: pushLeft(B, b)
9: m← q

10: q ← nexty(q,S1)
11: b← ((px, py, pz), (mx, qy, pz))
12: pushLeft(B, b)
13: return B

closeBoxesRight(B, x, z) From right to left, close all
boxes in list B for which ux > x, setting their uz

to z. If the last removed box is such that lx < x,
lx is updated to x before closing it, and a new box
is pushed to the right of B with the same corners,
but with ux set to x. Return the total volume of
the closed boxes.

Operation pushLeft is performed in constant time.
Operation closeAllBoxes is performed in k steps, and
the remaining operations in k + 1 steps. Therefore, all
have a cost of O(k), where k ≤ n represents the number
of boxes removed.

3.4 Detailed description

Algorithm 1 sweeps through every point p in Q and
determines the contribution of its projection on (x,y,z)-
space, p∗, to the volume dominated by S∗. This may
cause the removal of points in S∗ that are dominated by
p∗. Point removal can be performed in constant time,
but requires the computation of the corresponding con-
tributions, as well. After computing its individual con-
tribution, p∗ is added to S∗ while keeping the lists used
to maintain S∗ sorted in ascending order of both y and
z coordinates, which can be implemented in linear time.
Furthermore, Algorithm 1 guarantees that, when calcu-
lating the contribution of any point p∗, all points in S∗

are kept sorted in ascending order of coordinates y and
z, and that no point in S∗ is dominated by any other
point in S∗ or by p∗ itself. As explained before, these
constraints allow linear-time computation of a point’s
contribution.

Algorithm 2 computes the 3-dimensional contribution
of p to a set of points S. The computation consists
of two parts: the bases of an initial set of boxes are

24th Canadian Conference on Computational Geometry, 2012

80

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Algorithm 4 HV4D - contribution - determineContrib

Input: p ∈ R3

Input: S2 ⊂ R3 // ∀q ∈ S⇒ qz > pz

Input: B is a list of boxes
Output: c // contribution

1: S2 ← S2 ∪ {(−∞,−∞, rz)}
2: q ← higherz(p, S2)
3: while not empty(B) do
4: if qx ≤ px then
5: if qy ≤ py then
6: c← c+ closeAllBoxes(B, qz) // Case 3
7: else
8: c← c+ closeBoxesLeft(B, qy, qz) // Case 1
9: else

10: c← c+ closeBoxesRight(B, qx, qz) // Case 2
11: q ← nextz(q,S2)
12: return c

determined first (Algorithm 3), and then box heights
are found (Algorithm 4).

To determine the bases of the boxes, the points in
S whose z coordinate is lower than or equal to pz (S1)
and which are dominated by p with respect to the x
and y coordinates, but not by any other point in S1,
are swept (points s4, ..., s7 in Figure 1a). Boxes are cre-
ated from right to left by sweeping through points in S1

in ascending order of coordinate y, starting from point
highery(p,S1) (s7), which is the lowest point in S1 higher
than py, and stopping when a point to the left of p is
found (s3). Note that such points always exist because
of the presence of the sentinel (−∞, ry,−∞), although
this is not shown in Figure 1. All points between the
starting point (s7) and the end point (s3) that do not
fulfill all the above conditions are skipped (s2). Each
of the points that satisfy the above conditions (s7, s6,
s5, s4) defines lx and uy of a box as well as ux of the
next box. For example, in Figure 1b, point s5 defines
lx and uy of box b3 and ux of box b4. The value of ux

for the first and rightmost box created is determined by
getXRightBelow(p) (s8), and is guaranteed to exist due
of the sentinel (rx,−∞,−∞). Finally, the end point s3
only defines uy of the last and leftmost box. In the ex-
ample of Figure 1a, after executing the first part of the
algorithm, B contains b1, ..., b5 as depicted in Figure 1b.

The next step, determineContrib, consists of determin-
ing the height of boxes and closing them and, in some
cases, initializing a new box (Algorithm 4). The total
area covered by boxes in the (x, y)-plane shrinks after
each step. Only points with coordinate z higher than pz

(S2) need to be considered (q2, ..., q6). Therefore, points
in S2 are swept in ascending order of coordinate z as long
as there are still boxes to be closed. While processing
each point q, three cases are considered, depending on
the projection of q on the (x, y)-plane:

Case 1: q is to the left of and above p (e.g. q2, q5)

Case 2: q is to the right of and below p (e.g. q3, q4, q6)

Case 3: q dominates p (e.g. the sentinel (−∞,−∞, rz),
which is not represented in Figure 1)

Note that q is never dominated by p on the (x,y)-plane,
because it would also be dominated in (x, y, z)-space in
that case, but those points were previously removed in
Algorithm 1.

Cases 1, 2 and 3 cause the algorithm to call func-
tions closeBoxesLeft, closeBoxesRight and closeAllBoxes,
respectively. Figure 1c shows an example of what hap-
pens when cases 1 or 2 occur. The darker regions of
boxes b5 and b4 (respectively, b1, b2 and b3) represent
the boxes that are shrunk and closed when case 1 (case
2) occurs while processing q2 (q3). After closing those
boxes, box b6 (b7) is inserted to the left (right) of the
box list to account for the area left uncovered due to
the shrinking of the boxes before they are closed. Every
function returns the total volume of the closed boxes.
When case 3 occurs, all boxes are closed and the algo-
rithm can terminate, as there are no more box heights
to be determined.

3.5 Complexity

It is not difficult to see that the complexity of Algo-
rithm 2 is O(n). Splitting S into two subsets (S1 and
S2), and each of the two remaining stages of the algo-
rithm can be performed in O(n) time. Regarding the
first stage (initializeBoxes), note that for each point in S1

with coordinate y greater than py, of which there are at
most n points, at most one box is created (in constant
time). Therefore, O(n) complexity is achieved. The sec-
ond stage processes all points with coordinate z greater
than pz, which are also at most n points. For each of
these points, k boxes are closed, k ∈ [0, n]. Moreover,
at most one box is created, which can happen only if at
least one box is closed. Note that if there are t points
with third coordinate lower or equal to pz, then the first
stage can create up to t boxes, while the second stage
can create at most n− t boxes, which gives a total of up
to n boxes created. Therefore, the maximum number of
closed boxes is also n. Independently of which function
is used to close boxes (closeBoxesRight, closeBoxesLeft
or closeAllBoxes) k steps are performed if boxes are only
closed, or k + 1 steps, if a box is also created, leading
to O(k) cost either way. Therefore, the total cost of the
operations of Algorithm 2 amortizes to O(n).

Algorithm 1 sweeps through n points and, for each
point p, it determines the points in S∗ with great-
est y and z coordinates lower than py and pz, respec-
tively, in order to keep the lists of points associated
with S∗ sorted, at a cost of O(n). Moreover, for each

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

81

24th Canadian Conference on Computational Geometry, 2012

point swept, the individual contributions of k domi-
nated points and the contribution of the current point
are computed. Since each point in the original set X is
added to S∗ and removed from it at most once, the algo-
rithm computes at most 2n contributions, each at a cost
of O(n) using Algorithm 2, leading to O(n2) amortized
time complexity.

4 Concluding remarks

A C-language implementation of the algorithm pro-
posed here confirms that it can be implemented effi-
ciently, and that no large constants hide in the O nota-
tion [11]. Following the same ideas, it may be possible
to obtain a dimension-sweep algorithm for d = 5 with
complexity O(n2 log n), since at least a 4-dimensional
analogue of initializeBoxes with O(n log n) complexity
would be easily constructed. This would match Yıldız
and Suri’s upper bound [17] for the 5-dimensional case.

Acknowledgement Andreia P. Guerreiro gratefully
acknowledges funding from Fundação para a Ciência
e Tecnologia (FCT), Portugal, through Ph.D. grant
SFRH/BD/77725/2011.

References

[1] N. Beume. S-metric calculation by considering domi-
nated hypervolume as Klee’s measure problem. Evol.
Comput., 17:477–492, Dec. 2009.

[2] N. Beume, C. M. Fonseca, M. López-Ibáñez, L. Pa-
quete, and J. Vahrenhold. On the complexity of com-
puting the hypervolume indicator. IEEE Trans. Evol.
Comput., 13(5):1075–1082, 2009.

[3] N. Beume, B. Naujoks, and M. Emmerich. SMS-
EMOA: Multiobjective selection based on dominated
hypervolume. Eur. J. Oper. Res., 181(3):1653–1669,
2007.

[4] L. Bradstreet, L. While, and L. Barone. A fast many-
objective hypervolume algorithm using iterated incre-
mental calculations. In IEEE Congress on Evolutionary
Computation (CEC 2010), pages 179–186, July 2010.

[5] K. Bringmann. Klee’s measure problem on fat boxes in
time O(n(d+2)/3). In 26th Symposium on Computational
geometry (SoCG), pages 222–229, New York, NY, USA,
2010. ACM.

[6] K. Bringmann and T. Friedrich. Approximating the
volume of unions and intersections of high-dimensional
geometric objects. In S.-H. Hong et al., editors, Algo-
rithms and Computation, volume 5369 of LNCS, pages
436–447. Springer Berlin / Heidelberg, 2008.

[7] T. M. Chan. Semi-online maintenance of geometric op-
tima and measures. In Proceedings of the thirteenth
annual ACM-SIAM symposium on Discrete algorithms,
SODA ’02, pages 474–483, Philadelphia, PA, USA,
2002. Society for Industrial and Applied Mathematics.

[8] T. M. Chan. A (slightly) faster algorithm for Klee’s
measure problem. Computational Geometry, 43:243–
250, 2010.

[9] M. Emmerich and C. M. Fonseca. Computing hypervol-
ume contributions in low dimensions: Asymptotically
optimal algorithm and complexity results. In R. H. C.
Takahashi et al., editors, EMO 2011, volume 6576 of
LNCS, pages 121–135. Springer Berlin / Heidelberg,
2011.

[10] C. M. Fonseca, L. Paquete, and M. López-Ibáñez. An
improved dimension-sweep algorithm for the hypervol-
ume indicator. In IEEE Congress on Evolutionary
Computation (CEC 2006), pages 1157–1163, Piscat-
away, NJ, July 2006. IEEE Press.

[11] A. P. Guerreiro. Efficient algorithms for the assessment
of stochastic multiobjective optimizers. Master’s thesis,
IST, Technical University of Lisbon, Portugal, 2011.

[12] H. T. Kung, F. Luccio, and F. P. Preparata. On finding
the maxima of a set of vectors. Journal of the ACM,
22(4):469–476, 1975.

[13] M. H. Overmars and C.-K. Yap. New upper bounds
in Klee’s measure problem. SIAM J. Comput.,
20(6):1034–1045, 1991.

[14] T. Wagner, B. Nicola, and B. Naujoks. Pareto-,
aggregation-, and indicator-based methods in many-
objective optimization. In S. Obayashi et al., edi-
tors, EMO 2007, volume 4403 of LNCS, pages 742–756,
Berlin, Heidelberg, 2007. Springer-Verlag.

[15] L. While, L. Bradstreet, and L. Barone. A fast way
of calculating exact hypervolumes. IEEE Trans. Evol.
Comput., 16(1):86–95, 2012.

[16] L. While, P. Hingston, L. Barone, and S. Huband. A
faster algorithm for calculating hypervolume. IEEE
Trans. Evol. Comput., 10(1):29–38, Feb. 2006.

[17] H. Yıldız and S. Suri. On Klee’s measure problem on
grounded boxes. In 28th Symposium on Computational
Geometry (SoCG), Chapel Hill, North Carolina, USA,
June 2012.

[18] E. Zitzler and L. Thiele. Multiobjective optimization
using evolutionary algorithms – A comparative case
study. In A. E. Eiben et al., editors, Parallel Problem
Solving from Nature, PPSN V, volume 1498 of LNCS,
pages 292–301. Springer, Heidelberg, 1998.

24th Canadian Conference on Computational Geometry, 2012

82

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

An Efficient Transformation for Klee’s Measure Problem in the Streaming
Model

Gokarna Sharma∗ Costas Busch∗ Ramachandran Vaidyanathan† Suresh Rai† Jerry L. Trahan†

Abstract

Given a stream of rectangles over a discrete space, we
consider the problem of computing the total number
of distinct points covered by the rectangles. This can
be seen as the discrete version of the two-dimensional
Klee’s measure problem for streaming inputs. We pro-
vide an (ε, δ)-approximation for fat rectangles. For the
case of arbitrary rectangles, we provide an O(

√
logU)-

approximation, where U is the total number of discrete
points in the two-dimensional space. The time to pro-
cess each rectangle, the total required space, and the
time to answer a query for the total area are polylog-
arithmic in U . Our approximations are based on an
efficient transformation technique which projects rect-
angle areas to one-dimensional ranges, and then uses a
streaming algorithm for the Klee’s measure problem in
the one-dimensional space. The projection is determin-
istic and to our knowledge it is the first approach of this
kind which provides efficiency and accuracy trade-offs in
the streaming model.

1 Introduction

The well-known two-dimensional Klee’s measure prob-
lem (KMP) [7] can be stated as follows: given a col-
lection of m axis-aligned rectangles, how quickly can
we compute the area of their union? This problem has
been studied extensively in the literature [3, 6, 12] with
the best known bounds of O(m logm) and O(m) for the
time and space requirements for an exact answer for m
rectangles.

In this paper, we consider the problem of estimat-
ing the discrete version of the classical two-dimensional
KMP in the streaming model. In this case, the data
stream consists of rectangular elements over a discrete
two-dimensional grid of points, and the task is to ef-
ficiently estimate at any time the number of distinct
grid points occupied by the rectangles that have arrived
so far. Following the literature, we hereafter denote this
problem of finding the number of distinct elements by F0

(referred to as the zeroth frequency moment) [1, 10, 11].

∗Department of Computer Science, Louisiana State University,
Baton Rouge, LA 70803, USA, {gokarna,busch}@csc.lsu.edu
†Department of Electrical and Computer Engineering,

Louisiana State University, Baton Rouge, LA 70803, USA,
{vaidy,srai,jtrahan}@lsu.edu

The motivation to study KMP in the streaming model
is due to spatial and temporal data that arise in many
domains such as VLSI layout processing and sensor net-
works. A spatial database, e.g. OpenGIS1, deals with
a large collection of relatively simple geometric objects,
of which rectangles are the most basic types. Moreover,
query processing in the constraint database model [8]
can also be seen as a computation over the set of geo-
metric objects, e.g. [2]. The streaming setting makes
sense in online scenarios of the aforementioned appli-
cations when the workspace is very limited such that
rescanning the entire dataset is not feasible.

A recent work in the F0 of KMP in the streaming
model is due to Tirthapura and Woodruff [11], who
gave an (ε, δ)-approximation algorithm with space as
well as processing time per rectangle (1

ε log(mUδ))O(1),
0 < ε, δ < 1, where U is the total number of grid points
in the two-dimensional space2. Comparing to their al-
gorithm, the algorithm we present here is very simple,
does not depend on m, and exhibits different tradeoffs.

Contributions. We consider a 2n×2n two-dimensional
grid with U = 22n points. The input stream consists of a
set ofm elements Υ = {x0, x1, . . . , xm−1}, where each xi
is an ai×bi, 0 ≤ ai, bi <

√
U, rectangle of discrete points,

and xm−1 is the last element that has arrived so far.
Let A denote the total area (number of distinct discrete
points) of the rectangles in Υ which have arrived so far
in the stream. We present and analyze an algorithm
that returns an estimate est(A) of A.

Our first result is for “fat” rectangles − we say that a
rectangle is fat if the ratio g of its side lengths (i.e., the
aspect ratio) is between 1

c < g < c, where c ≥ 1 is some
constant, e.g. [4]. We give an algorithm which pro-
vides an (ε, δ)-approximation of A (that is, F0). Given
0 < ε, δ < 1, an approximation algorithm is said to
(ε, δ)-approximate F0 if the estimated output F̂0 satis-
fies Pr[|F̂0−F0| < εF0] > 1− δ. Moreover, our stream-
ing approximation algorithm achieves the following time
and space complexities for fat rectangles: (i) the amor-
tized processing time per rectangle is O(1

ε log U
ε log 1

δ);
(ii) the workspace needed is O(1

ε2 logU log 1
δ) bits; and

1http://www.opengeospatial.org/
2For a discrete d-dimensional space, their algorithm has space

as well as processing time per rectangle (d
ε

log(mω
δ

))O(1), where
ω is the maximum coordinate along any dimension.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

83

24th Canadian Conference on Computational Geometry, 2012

(iii) the time to answer a query for F0 is O(1).
For the general case of arbitrary rectangles (the

rectangles with any ratio of side lengths), we present
a streaming algorithm which provides an O(

√
logU)-

approximation of A, such that Ω(1/
√

logU) ≤
est(A)/A ≤ O(

√
logU); the approximation bound holds

with constant probability. Moreover, it ensures that: (i)
the amortized processing time per rectangle is O(logU ·
log logU); (ii) the workspace neededO(log2 U ·log logU)
bits; and (iii) the time to answer a F0 query is O(logU).

The main idea is to transform each input rectan-
gle to an interval (range), such that the estimate of
F0 for the intervals provides an estimate for A. Our
two-dimensional approximation is based on the range-
efficient3 (ε, δ)-approximation algorithm of [10].

Our algorithm implements an efficient proximity
transformation technique of rectangles to ranges based
on a Z-ordering [9] (note that a depth-first traversal of
a quadtree is essentially a Z-ordering). The proximity-
based transformation is deterministic and partitions the
data stream into buckets according to the aspect ratio
of the rectangles. In the general case we use O(logU)
buckets, while for the case of fat rectangles we only use
one bucket. We then apply a range-efficient algorithm
for each bucket instance independently. The algorithm
requires first to normalize a rectangle and then project
it to a range. The normalization helps to preserve the
intersection properties of the rectangles even when they
are transformed to ranges, which further helps to obtain
good approximations. In the analysis, we bound the er-
ror due to normalization and also due to the projection
on ranges.

To the best of our knowledge, this is the first transfor-
mation algorithm for KMP that improves significantly
on the previous solutions for fat rectangles [4, 11].

Related Work. For the classical (non-streaming)
KMP, Bentley [3] described a deterministic time-
optimal O(m logm) time and O(m) workspace solution.
This solution is based on reducing the problem to m
one-dimensional KMPs [7] by sweeping a vertical line
across the area. Some recent work tried to minimize
the space and time requirements for the efficient com-
putation of the area of the union, e.g. [6, 12]. Particu-
larly, Chen and Chan [6] gave an algorithm that runs in
O(m3/2 logm) time but needs O(

√
m) extra workspace.

Vahrenhold [12] minimizes the extra space to O(1) with
the same running time. All the aforementioned solu-
tions for KMP are deterministic and compute the ex-
act area. Moreover, no deterministic algorithm has im-
proved the best known bounds of O(m logm) and O(m)
for the time and space. Therefore, recent focus has been
on approximation algorithms. To this end, Bringmann

3In the range-efficient model, the elements of a data stream
contain a range (or interval) of items.

and Friedrich [5] gave a (1±ε)-approximation algorithm
for any 0 < ε < 1. However, it has space complexity
that is still linear in the size of the input.

A difficulty in obtaining tighter bounds on time and
space complexities of KMP stems from the fact that
[3, 6, 12] use explicit sorting algorithms and tree-based
data structures (e.g. quadtrees) to handle rectangles,
where such data structures need at least Ω(logm) time
to process an individual element using O(m) space. A
natural question that arises is whether tighter bounds
on time and space requirements are achievable. Ac-
cording to the literature, computing F0 exactly requires
space linear in the number of distinct values [1]. There-
fore, we opt to design streaming approximation algo-
rithms for KMP that require very limited space.

Outline of Paper. We give a KMP streaming algo-
rithm in Section 2 and discuss the normalization in Sec-
tion 3. In Section 4, we give an algorithm to transform a
rectangle to a normalized approximation based on a Z-
ordering. We analyze the transformation algorithm for
the one bucket case (fat rectangles) in Section 5 and do
the same for many buckets (general case) in Section 6.
We conclude the paper in Section 7. Proofs are deferred
to the full version due to space limitations.

2 KMP Streaming Algorithm

Algorithm 1 is an approach for estimating the total
number of distinct points A covered by a streaming set
Υ of m rectangles in Z2

n. The basic idea is to transform
each rectangle to one or more one-dimensional ranges
and then use a range-efficient algorithm to estimate the
number of discrete points used by the stream of ranges.
The challenge is to perform the transformation in such a
way that the estimate from the ranges is a good approx-
imation of A. In order to achieve good approximations,
we first normalize the rectangles, by aligning them into
appropriate space points whose coordinates are multi-
ples of 2. We then separate the rectangles into different
buckets according to their normalization. Each bucket
has range mapping characteristics which help to accu-
rately estimate the respective covered areas. We run a
range-efficient algorithm to each bucket, which we com-
bine to obtain the resulting estimate for A.

Algorithm 1 initializes χ buckets B0, . . . ,Bχ−1 of nor-
malized rectangles in Z2

n. Each rectangle x ∈ Υ is trans-
formed to one or more normalized rectangles y′1, y

′
2, . . .

whose union is an approximation of x. Then, each
y′j is inserted into some appropriate bucket Bij . Each
y′j ∈ Bij is immediately mapped to a one-dimensional
range using a projection function appropriate for Bij .
In this way, bucket Bij produces a stream of ranges.
Some known range-efficient (ε, δ)-approximation algo-
rithm is applied to the stream of ranges to find an es-

24th Canadian Conference on Computational Geometry, 2012

84

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Algorithm 1: A rectangle area estimation algo-
rithm
Input: A streaming set Υ of m rectangles in Z2

n;
Output: An estimate est(A) of total number of

distinct discrete points A covered by the
rectangles in Υ;

1 Initialization:
2 Define χ buckets B0, . . . ,Bχ−1 of normal rectangles in

Z2
n (initially the buckets are empty);

3 When a new rectangle x ∈ Υ arrives:
4 Normalization: Transform x into a sequence of

normal rectangles y′1, y
′
2, . . ., and then assign each y′j

to some appropriate bucket Bij ;
5 One-dimensional mapping: Map each y′j to a range

rj using an appropriate projection based on Bij ;
6 Apply a range-efficient (ε, δ)-approximation

algorithm to update with respect to rj an estimate of
A′ij , the total area (total discrete points) of the

normal rectangles in Bij ;
7 Maintain Emax = maxi est(A′i) and

Esum =
∑χ−1
i=0 est(A′i); the maximum and the sum

among the χ bucket estimates;
8 When an estimate for F0 is asked for:

9 Return est(A) =
√
EmaxEsum;

timate of A′i, the total number of discrete points occu-
pied by the normalized rectangles in Bi. Algorithm 1
then maintains Emax and Esum, the maximum and the
sum among all the bucket estimates, respectively. When
an estimate est(A) is asked for, the algorithm returns
est(A) =

√
EmaxEsum.

One can apply any range-efficient (ε, δ)-
approximation algorithm for F0 on each bucket
Bi (step 6). Here, we use the Hits algorithm of [10]. It
has the following time and space complexities for F0

for each bucket Bi, where U = 22n.

Theorem 1 (Pavan and Tirthapura [10]) Given
0 < ε < 1 and 0 < δ < 1, algorithm Hits (ε, δ)-
approximates F0 with space complexity O(1

ε2 logU log 1
δ)

bits, amortized time taken to process a range
O(log U

ε log 1
δ), and time taken to process a query

for F0 at any time O(1).

In section 4 we give a transformation Proximity of rect-
angles to ranges which will enable us to provide two
versions of Algorithm 1, one with a single bucket (fat
rectangles), and the other with multiple buckets (arbi-
trary rectangles). We continue with first describing the
normalization that we use.

3 Normalization

We first start with some basic definitions for ranges and
their normalizations, and then we extend the definitions
for normalized rectangles.

Ranges. For integer n ≥ 0, let Zn = {0, 1, . . . , 2n −
1} ⊂ Z be a one-dimensional space of 2n discrete integer
points. A range (or interval) r = [p1, p2], where 0 ≤
p1 ≤ p2 < 2n, consists of all the points between p1 and
p2. Denote with |r| = p2 − p1 + 1 the size of range r
which is the number of points in it.

The α-normal subset of Zn, denoted Wα
n, for integer

0 ≤ α ≤ n, consists of every (2α)th element of Zn,
namely, Wα

n = {p ∈ Zn : p = i2α ∧ i ∈ Z}. We
will refer to the elements of Wα

n as normal points. The
normal subset Wα

n induces 2n−α normal ranges of size
2a such that each starts at a normal point. We will also
use the notation Wα

n to denote the normal ranges. Let

Wn =
⋃n−1
α=0 Wα

n denote the set of all possible normal
ranges (and respective normal points).

Rectangles. All the definitions for one-dimensional
space Zn extend to the two-dimensional space Z2

n =
Zn × Zn of discrete integer points. Space Z2

n can be
viewed as an array of points such that for any point
(p, q) ∈ Z2

n, p corresponds to a row and q to a column
(there are 2n rows and 2n columns). The upper left cor-
ner of Z2

n is point (0, 0), and the lower right corner is
point (2n − 1, 2n − 1). (See the figure below.)

A rectangle x = 〈(p1, q1), (p2, q2)〉 is a subset of Z2
n,

where p1, p2, q1, q2 ∈ Zn with p1 ≤ p2 and q1 ≤ q2, such
that x contains all points {(p, q) : p1 ≤ p ≤ p2 and q1 ≤
q ≤ q2}. Note that (p1, q1) is the north-west corner of
x, while (p2, q2) is the south-east corner. We say that
x is a a× b rectangle with side lengths a = p2 − p1 + 1
and b = q2 − q1 + 1. We denote with |x| = a · b the size
of rectangle x which is the number of points in it.

x’

x

For any integers
0 ≤ α, β ≤ n, define
the (α, β)-normal subset
Wα,β
n = Wα

n ×Wβ
n ⊆ Z2

n.
Each element (p, q) ∈
Wα,β
n is a normal point

for which it holds p = i2α

and q = j2β , for integers i
and j. In other words, set
Wα,β
n selects every (2α)th

point in the vertical direc-
tion and every (2β)th point in the horizontal direction
of Z2

n. Each normal point w ∈ Wα,β
n corresponds to a

2α × 2β normal rectangle, whose north-west corner is
w. We will also use the notation Wα,β

n to denote the
set of normal rectangles. Let Wn =

⋃n
α=0

⋃n
β=0 Wα,β

n

denote the set of all possible normal rectangles (and
respective normal points). The figure above shows a
(1, 2)-normal subset and the respective 21 × 22 normal
rectangles W1,2

4 of Z2
4.

Lemma 2 Any a × b rectangle x ∈ Z2
n, contains an

a′ × b′ normal rectangle x′ ⊆ x with 1 ≤ |x|/|x′| ≤ 16,
such that 1 ≤ a/a′ ≤ 4 and 1 ≤ b/b′ ≤ 4.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

85

24th Canadian Conference on Computational Geometry, 2012

Given a rectangle x, the internal normal rectangle x′ of
Lemma 2 can be computed in constant time. See the fig-
ure above for an example rectangle x and its respective
internal normalized rectangle x′.

Aspect Ratios. The aspect ratio of an a × b rectan-
gle is b

a . Each normal rectangle induced by Wα,β
n has

an aspect ratio of 2β−α. All rectangles induced by
Wα+i,β+i
n (for integer i) have aspect ratio 2β−α. Thus,

given g, 0 ≤ g ≤ n, Wα,g+α
n corresponds to normal

rectangles of aspect ratio 2g and size 2α × 2g+α. Let

W(g,+)
n =

⋃n−g
α=0 Wα,g+α

n denote the normal rectangles of

aspect ratio 2g. Similarly, let W(g,−)
n =

⋃n−g
α=0 Wg+α,α

n

denote the normal rectangles of aspect ratio 2−g. Let

W(+)
n =

⋃n
g=0 W

(g,+)
n be the set of all possible nor-

mal rectangles with aspect ratio at least one. Let

W(−)
n =

⋃n
g=1 W

(g,−)
n be the set of all possible normal

rectangles with aspect ratio < 1.

Union of Rectangles. In our
KMP approach, given a rect-
angle xi we compute inside it
a yi which is either a normal
rectangle (for example given
by Lemma 2), or yi is a rect-
angle that consists of multiple
normal rectangles (as will be
the case of Section 5). Con-
sider a sequence of rectangles
x0, x1, . . . , xm−1. Denote the union of these rectan-
gles as X = x0 ∪ x1 ∪ · · · ∪ xm−1 and the area of
X as |X|. Consider also a sequence of rectangles
y0, y1, . . . , ym−1, where each yi is contained in xi, with
union Y = y0 ∪ y1 ∪ · · · ∪ ym−1. We are interested in
estimating the area of X based on calculating the area
of Y .

Let x be an a × b rectangle (see the figure above)
with a · b discrete points in Z2

n, 0 ≤ a, b < 2n. Denote
by |x| the area of x, namely, |x| = a · b. Let y denote an
a′ × b′ rectangle in x. Write a = atop + a′ + abottom and
b = bleft + b′ + bright, where a = a′cx,v and b = b′cx,h,
for some integers cx,v, cx,h ≥ 1. Note that |x| = a′cx,v ·
b′cx,h = cx|y|, where cx = cx,v · cx,h.

We define rectangle ztop of dimensions atop × b′ that
resides on top of y. Similarly, we define zbottom as an
abottom × b′ rectangle that resides on the bottom of y.
Symmetrically, we define zleft and zright as the a′×bleft
and a′ × bright rectangles that reside on the left and
right of y. Note that ztop, zbottom, zleft, and zright are
all in x. Finally, we define the cross polygon z to be:
z = y ∪ ztop ∪ zbottom ∪ zleft ∪ zright.

Given X and Y , we define the corresponding sequence
of cross polygons z0, z1, . . . , zm−1, with union Z = z0 ∪
z1 ∪ · · · ∪ zm−1. Denote cv = maxi cxi,v, and ch =
maxi cxi,h. It can be shown that |Z| = α|Y |, for 1 ≤ α ≤

2cv+2ch−3. It can also be shown that |X−Z| = β|Z|,
for 0 ≤ β ≤ 2 ·min{cv, ch} − 2. Therefore, we obtain:

Lemma 3 |X| = γ|Y |, where 1 ≤ γ ≤ (2cv + 2ch −
3)(2 ·min{cv, ch} − 1).

4 Proximity Transformation

Here we describe the Proximity transformation which
deterministically maps each normal rectangle to a one-
dimensional range based on a Z-ordering.

Without loss of generality consider a bucket Bg which

contains normal rectangles from W(g,−)
n . For the one-

dimensional mapping (step 5 of Algorithm 1), we show
how Algorithm Proximity takes a normalized rectangle
x′ ∈ Bg and maps it to a linear interval (range) r in a
manner that preserves the intersection properties of the
rectangles of Bg.

(a) (b)

Figure 1: A Z-curve for aspect ratio (a) 1, (b) 1/4

Define f
(0,+)
n : Z2

n −→ Z2n as the well-known Z-
ordering [9] (see Fig. 1a). The figure shows the Z-values
for the case g = 0 of points for the two dimensional
space 0 ≤ x ≤ 3, 0 ≤ y ≤ 3 (shown in binary). In-
terleaving the binary coordinate values gives binary Z-
values and connecting the Z-values in their order from
the lowest (0000) to the highest (1111) produces the
recursively Z-shaped curve, i.e., a Z-order. For aspect

ratio < 1, define f
(g,−)
n : Z2

n −→ Z2n as follows. Parti-
tion Z2

n into 2g contiguous vertically aligned elements,
then connect them in the order provided by a Z-ordering
(see Fig. 1b). For aspect ratio > 1, partition as hori-

zontally aligned 2g elements. Note that f
(g,−)
n preserves

the intersection properties of normalized rectangles of

W(g,−)
n , that is, for any x′1, x

′
2 ∈ W(g,−)

n , |x′1 ∩ x′2| =

|(f (g,−)
n (x′1)) ∩ (f

(g,−)
n (x′2))|. Similarly, f

(g,+)
n preserves

the intersection properties of normalized rectangles in

W(g,+)
n .
Each element i of Z2n = {0, 1, · · · , 22n − 1} (the

codomain of f
(g,−)
n (f

(g,+)
n)) is a 2n-bit binary represen-

tation of i. The domain Z2
n of f

(g,−)
n (f

(g,+)
n) consists

of doublets (p, q), where p, q ∈ Zn. So, each (p, q) ex-
pressed as the concatenation of the binary representa-

24th Canadian Conference on Computational Geometry, 2012

86

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

tions of p and q is a 2n-bit quantity. This 2n-bit num-
ber (belonging to Z2n) is called the row-major index of

(p, q). Thus, function f
(g,−)
n (f

(g,+)
n) can be viewed as

the transformation of one 2n-bit number into another
2n-bit number.

Since n = O
(
log |Z2

n|
)
, the function f

(g,−)
n (·)

(f
(g,+)
n (·)) can be computed using a logarithmic-size (al-

beit non-standard) operation that could be assumed to
be computable in constant time. Therefore, we obtain:

Lemma 4 For any normalized rectangle x ∈ Bg,

f
(g,−)
n (x) (f

(g,+)
n (x)) is a set of |x| contiguous integers

(range) in Z2n. This ordering can be computed in con-
stant time for a given rectangle and preserves the inter-
section properties of rectangles of Bg.

5 One Bucket

We describe how to efficiently estimate the area of a
stream with fat rectangles. We first describe the spe-
cial case of a stream of squares Υ = {x0, x1, . . . , xm−1}
and then we extend the result to include fat rectan-
gles with aspect ratios other than 1. The normalization
(step 4) of Algorithm 1 uses only one bucket B which
contains normal rectangles of aspect ratio 1 (namely,

normal squares in W(0,+)
n). Using the following result

it is possible to transform each square x ∈ Υ into a set
of normal squares which are then used to estimate the
total area A of the stream Υ.

Lemma 5 Given an a × a square x and η, 0 < η ≤ 1,
there is an internal a′×a′ square x′ which consists of at
most c/η normal squares (of possibly various sizes), for
some positive constant c, such that a(1− η) ≤ a′ ≤ a.

In Algorithm 1, since est(A) =
√
EmaxEsum and we

use only one bucket, we get Emax = Esum. Thus, the
result of the algorithm is directly the output of Hits
(Theorem 1) on bucket B. For each square xi ∈ Υ, let
x′i be the respective square given by Lemma 5. Suppose
that the set Υ′ = {x′0, x′1, . . . , x′m−1} has total area A′.
Each xi is replaced with c/η normal squares that cover
the respective x′i (as specified by Lemma 5), and fur-
ther each such normal square is projected to a range
through the Proximity transformation of Section 4. In
other words, Hits returns an (ε′, δ) estimate on A′, for
0 < ε′, δ < 1. This is then used to obtain an estimate
of A. Using Lemma 3 we can relate the areas of A and
A′ through η, since cv, ch ≤ 1/(1 − η). Finally, by ap-
propriately substituting ε′ and η with linear functions
of ε, we obtain an (ε, δ)-approximation for est(A). The
space complexity and query time remain asymptotically
the same as in Hits, while the time complexity increases
by a factor of c/η (due to the number of normalized
rectangles inside each x′i). Therefore, we can obtain:

Theorem 6 For the special case of a stream Υ of
squares, given 0 < ε, δ < 1, Algorithm 1 (ε, δ)-
approximates the area of A with space complexity
O(1

ε2 logU log 1
δ) bits, amortized time taken to process

a square O(1
ε log U

ε log 1
δ), and time taken to process a

query for A at any time O(1).

Theorem 6 can be also applied to fat rectangles. Each
fat rectangle of aspect ratio h can be converted to a
stream of at most h+ 1 (or 1/(h+ 1) if h < 1) squares
that cover the rectangle area. Thus, we can use the
approach above for a constant factor increase in time.

6 Many Buckets

Here we give an analysis of Algorithm 1 for the general
case of arbitrary input rectangles. Section 6.1 estab-
lishes a relation of (ε, δ)-estimators to ξ-approximations.

6.1 Area Estimation

Consider a set Υ = {x0, x1, . . . , xm−1} of m rectan-
gles in Z2

n, such that each xj is an aj × bj rectan-

gle, 0 ≤ aj , bj <
√
U , with ajbj discrete points, and

total area A. Partition Υ arbitrarily into χ subsets
{Υ0,Υ1, . . . ,Υχ−1} where Υi has mi rectangles and

m =
∑χ−1
i=0 mi. Let Ai denote the area of the union

of the rectangles in Υi. In each xj of size aj × bj , let
x′j denote an a′j × b′j rectangle contained in xj , where
a′j ≤ aj and b′j ≤ bj Define Υ′,Υ′i, A

′, and A′i corre-

spondingly. Let 0 < ∆1 ≤ A′

A ≤ ∆2 ≤ 1; we fix ∆1 and
∆2 later in Section 6.2.

Let us assume that there is an (ε, δ)-estimator algo-
rithm A (similar to Theorem 1) that computes an es-
timate est(A′i) of the area in the rectangles in Υ′i and
returns: (i) Emax = maxi est(A′i), the maximum among

est(A′i), 0 ≤ i ≤ χ − 1, and (ii) Esum =
∑χ−1
i=0 est(A′i),

the sum of each est(A′i), 0 ≤ i ≤ χ − 1. The algorithm
A then uses the estimates Emax and Esum to estimate
quantity est(A) of A as est(A) =

√
EmaxEsum. Define

relative error as % = |est(A)−A|
A . We have that:

Lemma 7 The (ε, δ)-estimator algorithm A computes
an estimate est(A) of the total area A such that A · ε1 ≤
est(A) ≤ A · ε2 with probability (1 − δ)χ, where χ is
the number of blocks in a partition of set Υ of input

rectangles, ε1 = ∆1(1−ε)√
χ , ε2 = ∆2(1 + ε)

√
χ, and 0 <

∆1 ≤ ∆2 ≤ 1.

6.2 Approximation

We project each bucket Bi to Z2n (as described in Sec-
tion 4) and apply a range-efficient algorithm for F0. Let
Υi denote the original rectangles in Υ that are projected
with bucket Bi, and let Υ′i denote the normal rectan-
gles assigned to Bi (according to their aspect ratio).

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

87

24th Canadian Conference on Computational Geometry, 2012

Thus, Υ = {Υ0,Υ1, . . . ,Υχ−1}, and after normaliza-
tion Υ′ = {Υ′0,Υ′1, . . . ,Υ′χ−1}. For each x ∈ Υ we use a
single internal normal rectangle x′ as given by Lemma
2, which is assigned to a bucket Bi according to its as-
pect ratio. Let Ai (resp. A′i) denote the total area of
Υi (resp. Υ′i) . This results to Ai/A

′
i = γ, γ ≤ 91, from

the area analysis in Lemma 3.
The Hits algorithm (Theorem 1) yields an (ε, δ)-

approximation of F0 for the ranges in each Bi. The
estimate est(A) of the total area A of Υ using Emax and
Esum is computed from the (ε, δ)-estimates of A′i given
by the Hits algorithm for each bucket.

From Lemma 7, substituting ∆1 = 1/γ and ∆2 = 1,
Algorithm 1 computes an estimate est(A) of the total
area A of the set Υ of m rectangles mapped to χ buckets

such that A · ε1 ≤ est(A) ≤ A · ε2, where ε1 = 1
γ

(1−ε)√
χ

and ε2 = (1 + ε)
√
χ with probability (1 − δ)χ. We set

χ = 2n + 1 = logU + 1 (the total number of normal

aspect ratios), and hence, ε1 = 1
γ

(1−ε)√
logU+1

and ε2 =

(1 + ε)
√

logU + 1 with probability (1− δ)logU+1.
Algorithm 1 reaches est(A) with space complexity

O(1
ε2 log2 U log 1

δ) bits, amortized time taken to process

a rectangle O(log U
ε log 1

δ), and the time taken to pro-
cess a query for F0 is O(logU). These follow from The-
orem 1 by combining the space and time complexities
of logU + 1 instances of Hits. In comparison to Hits,
the space needed by our approximation algorithms in-
creases by a factor of O(logU) due to the logU + 1
buckets. The amortized time taken to process a rectan-
gle remains the same as we need to run Hits on only a
single bucket for that rectangle. Since it is necessary to
compute the median of logU + 1 instances of Hits, one
for each bucket, the time taken to process a query for
A increases by a factor of O(logU). By setting ε = 1/2
and δ = 1

logU+1 , our algorithm approximates est(A),

such that Ω(1/
√

logU) ≤ est(A)/A ≤ O(
√

logU), with
constant probability.

Theorem 8 Algorithm 1 O(
√

logU)-approximates A
with constant probability and achieves space complexity
O(log2 U · log logU) bits, amortized time to process a
rectangle O(logU · log logU), and time taken to process
a query at any time O(logU).

The asymptotic notation O(
√

logU) hides large con-
stants, due to the fact that for each xi we use some
internal normalized square. We can improve the con-
stants and bring them down to 1, by tiling each xi with
poly-log number of normalized rectangles as specified by
the lemma below. This has the side effect of increasing
the time complexity by a poly-log factor which can be
traded-off for the enhanced accuracy.

Lemma 9 A rectangle r can be (1 − η)-approximately
tiled with 4 log2 1

η2 normal rectangles, for 0 < η ≤ 1/2.

7 Conclusions

We presented a randomized approximation algorithm
with poly-log bounds on time and space complex-
ity with approximation factor 1 ± ε for fat rectangles
and O(

√
logU) for general rectangles for the KMP

in the streaming model. Our technique will give an
O((
√

logU)d−1)-approximation for the general case of
d-dimensional KMP. For future work, it would be inter-
esting to explore techniques that will reduce the current
approximation factor O(

√
logU) for general rectangles

to O(1) or 1 ± ε, using deterministic transformations.
Moreover, it would be interesting to evaluate our algo-
rithm experimentally in a real-time setting.

Acknowledgements: We are indebted to Srikanta
Tirthapura for helpful suggestions for the problem.

References

[1] N. Alon, Y. Matias, and M. Szegedy. The space com-
plexity of approximating the frequency moments. In
STOC, pages 20–29, 1996.

[2] M. Benedikt and L. Libkin. Exact and approximate
aggregation in constraint query languages. In PODS,
pages 102–113, 1999.

[3] J. Bentley. Algorithms for Klee’s rectangle problems,
Unpublished notes, Computer Science Department,
Carnegie Mellon University. 1978.

[4] K. Bringmann. An improved algorithm for Klee’s mea-
sure problem on fat boxes. Comput. Geom. Theory
Appl., 45(5-6):225–233, 2012.

[5] K. Bringmann and T. Friedrich. Approximating the
volume of unions and intersections of high-dimensional
geometric objects. Comput. Geom. Theory Appl., 43(6-
7):601–610, 2010.

[6] E. Y. Chen and T. M. Chan. Space-efficient algorithms
for Klee’s measure problem. In CCCG, pages 27–30,
2005.

[7] V. Klee. Can the measure of ∪[ai, bi] be computed in
less than O(n logn) steps? American Mathematical
Monthly, 84(4):284–285, 1977.

[8] G. Kuper, L. Libkin, and J. Paredaens. Constraint
Databases. Springer, 1st edition, 2010.

[9] J. A. Orenstein and T. H. Merrett. A class of data
structures for associative searching. In PODS, pages
181–190, 1984.

[10] A. Pavan and S. Tirthapura. Range-efficient counting
of distinct elements in a massive data stream. SIAM J.
Comput., 37(2):359–379, 2007.

[11] S. Tirthapura and D. P. Woodruff. Rectangle-efficient
aggregation in spatial data streams. In PODS, pages
283–294, 2012.

[12] J. Vahrenhold. An in-place algorithm for Klee’s mea-
sure problem in two dimensions. Inf. Process. Lett.,
102(4):169–174, 2007.

24th Canadian Conference on Computational Geometry, 2012

88

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Finding Shadows among Disks

Nataša Jovanović∗ Jan Korst† Zharko Aleksovski† Wil Michiels† Johan Lukkien∗ Emile Aarts∗

Abstract

Given a set of n non-overlapping unit disks in the plane,
a line ` is called blocked if it intersects at least one of
the disks and a point p is called a shadow point if all
lines containing p are blocked. In addition, a maximal
closed set of shadow points is called a shadow region.
We derive properties of shadow regions, and present an
O(n4) algorithm that outputs all shadow regions. We
prove that the number of shadow regions is Ω(n4) for
some instances, which implies that the worst-case time
complexity of the presented algorithm is optimal.

1 Introduction

Let D be a set of n closed and non-overlapping unit
disks, i.e., disks with radius 1, in the two-dimensional
plane. A line ` is called blocked if it intersects at least
one of the disks in D. A point p is called a shadow point,
if all lines containing p are blocked. A point that is not
a shadow point, is called a light point.

For a light point p it holds that there is at least one
line in the plane that does not intersect any of the disks
in D. It follows that all the points outside the convex
hull spanned by the disks are light points. In other
words, all shadow points defined by the disks in D are
inside the convex hull spanned by the disks, denoted as
H(D).

A closed shape S in the plane is a shadow region if
each point in S is a shadow point and if S is maximal
in the sense that there is no shape S′ containing only
shadow points for which S ⊂ S′. It follows that the
collection of shadow regions partitions the set of shadow
points. By definition, each disk δ ∈ D is contained in a
shadow region.

Shadow Regions Problem. Given D, determine
the set S of shadow regions in the plane.

In other words, we are interested in designing an ef-
ficient algorithm that outputs the set of all shadow re-
gions, for a given set D of disks. Figure 1 illustrates a set
of 17 shadow regions defined by 14 randomly positioned
unit disks.

Motivation. Hollemans et al. [4] describe a method
for detecting objects. It uses light emitters and sensors
placed on the boundary of a rectangular detection area.

∗Eindhoven University of Technology, n.jovanovic@tue.nl
†Philips Research Eindhoven, jan.korst@philips.com

Figure 1: The shadow regions defined by 14 unit disks.

The shadow regions problem is related to the accuracy
of the method in the following way. Each sensor con-
tinuously determines the set of emitters from which it
receives light and the set of emitters from which it does
not receive light because the line of sight is blocked by
an object. Using this information, one can determine
the set of shadow regions. As each object is located in a
shadow region, this gives an approximation of the place-
ment of the objects. Ideally, we have n shadow regions,
each with a size that is exactly equal to the object it
contains. However, this ideal situation will not occur
since, besides being part of an object, a point can also
be a shadow point because: (1) the density of emitters
and sensors is too low, and (2) all lines going through
the point can be blocked by surrounding objects. The
shadow points resulting from the latter cause are an in-
trinsic shortcoming of the method. By subtracting the
objects from the solution of the shadow regions prob-
lem we get the shadow areas where detection fails due
to this occlusion.

Related work. The problem considered by Du-
mitrescu and Jiang in [3] is to some extent related to
the shadow regions problem. The authors show the ex-
istence of dark points [10] in maximal disk packings. A
point is called dark within a set of disks if any ray with
apex in that point intersects at least one of the disks.
Note that any dark point is by definition a shadow point,
but not vice versa. In addition, they present an algo-
rithm for finding all of the dark points that are on the
boundary of disks in a given set. While these authors’
interest is in the dark points, we focus on the shadow
points. Furthermore, we present an optimal algorithm
to determine all shadow points in the plane defined by
the disks, not only the ones on the disk boundaries. The
problem of detecting circular objects in the plane is con-
sidered by Jovanović, Korst and Pronk in [5], where the

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

89

24th Canadian Conference on Computational Geometry, 2012

authors present two algorithms to approximate the ob-
jects by convex polygons, using a finite set of line seg-
ments, defined by a given set of emitters and sensors.
More remotely related problems are the problems on
illumination of convex bodies [9, 11] and the visibility
problems concerning hiding or blocking points and unit
disks by a set of unit disks [6, 7, 8].

2 Introducing shadow regions

Let ` be a line in the plane such that it intersects the
convex hull H(D) of disks. The line ` is called a defining
line for a shadow region S if it contains an edge of S.
One can prove the following lemma.

Lemma 1 Let ` be a defining line for a shadow region
S. Then the following holds:

• ` does not intersect any disk in D in more than one
point

• ` is tangent to at least two disks in D

• ` is not tangent to any three disks δ1, δ2 and δ3,
where δ1 and δ2 are on the same side of ` and δ3
is such that its point of tangency with ` is between
the points of tangency of δ1 and δ2 with `.

Now, let us take a look at a small example of D con-
sisting of only three disks, so that we can get a notion
on the size, shape and the number of shadow regions
defined by the disks. Each two non-tangent disks define
four common tangent lines: a pair of parallel tangent
lines and a pair of crossing (intersecting) tangent lines.
The four tangent lines define four shadow areas that are
attached to the disks; see Figure 2. By definition, a disk
and all its attached shadow areas represent one shadow
region. Note that the size of these shadow regions de-
pends on the distance between the disks: the closer the
disks, the larger the shadow regions. Depending on the

Figure 2: The shadow regions defined by 3 unit disks;
the arrows point at the free shadow areas.

mutual distance, the three disks may define one or more
free shadow regions, i.e., shadow regions that are not at-
tached to any of the disks; see Figure 2. A free shadow
region is bounded by line segments only, thus, it has the
shape of a polygon. It can be shown that three disks

can define at most 4 free shadow regions, which implies
that they can define 1 to 7 shadow regions in total.

A shadow region can be formally represented by a
cyclic sequence of points p0, p1, . . . , pk, where each two
neighboring points are connected by either a line seg-
ment or a circular arc of radius 1.

Generally, n disks define at most 2n(n − 1) common
tangent lines, which can partition the plane into O(n4)
non-overlapping convex polygons that contain either
shadow points only or light points only. In Section 5, we
will prove that there are instances for which the number
of shadow regions defined by n disks is Ω(n4).

Lemma 2 A shadow region is convex.

Proof. We prove the lemma by contradiction. Hence,
assume that a shadow region S is not convex. Let p
be a light point inside the convex hull H(S) of S and
outside S. Each line containing p intersects the shadow
region S, which implies that it is blocked. This implies
that p is a shadow point, which is in contradiction with
the assumption of p being a light point. �

As a consequence of Lemma 1, in the process of deter-
mining the shadow regions, we consider only the set T
of defining lines.

Let t ∈ T be a line tangent to two disks δ1 and δ2
in D. The points of tangency between the line t and
the disks δ1 and δ2 divide t into three parts: one line
segment denoted by s, and two rays denoted by r and
r′. One can prove the following lemma.

Lemma 3 If disks δ1 and δ2 are not on the same side
of t, line segment s does not define a shadow region. If
disks δ1 and δ2 are on the same side of t, the rays r and
r′ do not define a shadow region.

Figure 3: Parts of the tangent lines that define the
shadow regions.

From Lemma 3, each crossing tangent line may be in-
volved in the definition of shadow regions through the
pair of rays with apices in the points of tangency. The
parallel tangent lines are involved in the definition of
shadow regions through the line segments connecting
the points of tangency; see Figure 3.

24th Canadian Conference on Computational Geometry, 2012

90

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

3 Modelling light corridors

Let L be the set of all lines in the plane that do not
intersect any disk, hence, L is the set of lines that only
contain light points. Set L can be partitioned into two
subsets, dividing lines and non-dividing lines. For a non-
dividing line all disks are on the same side of that line.
Each dividing line specifies a bipartition of the set of
disks into non-empty sets. All dividing lines specifying
the same bipartition of disks in D form a light corridor;
see Figure 4. Note that each light point is contained
in one or more light corridors. This means that the
collection of shadow regions is given by the difference
between H(D) and the union of all light corridors.

Let T be the set of all defining lines. A light corridor
can be characterized by its two crossing tangent lines t
and t′ in T that are clockwise fixed and counterclockwise
fixed, respectively; see Figure 4. For t this means that
it cannot be rotated in clockwise direction around any
point on the line over any angle θ such that it does
not intersect at least one of the disks in more than one
point. An analogous interpretation holds for t′. These
lines define the “in” and “out” of the corridor through
H(D). Inside the convex hull H(D), each light corridor
is an open non-convex area, bounded by a set of line
segments and a set of circular arcs of radius 1.

Figure 4: An example of a light corridor.

Lemma 4 The number of light corridors defined by n

non-overlapping unit disks is at most n(n−1)
2 .

Proof. The n disks define at most n(n−1) crossing tan-
gent lines in T . Each crossing tangent line in T defines
one bipartition of disks, which corresponds to exactly
one light corridor. Hence, the number of light corridors
is not larger than the number of crossing tangent lines
in T . Moreover, each light corridor is characterized by
a pair of crossing tangent lines, which implies that the
number of light corridors is at most n(n− 1)/2. �

4 Algorithm

In this section, we present an algorithm for determin-
ing the set of all shadow regions defined by n non-
overlapping unit disks. We give the algorithm in a step-
by-step manner and discuss its overall time complexity.

The algorithm for determining all shadow regions de-
fined by n unit disks consists of the following four main
steps:

1. Determine the convex hull H(D);

2. Determine the set T of all defining tangent lines;

3. Determine all light corridors inside H(D);

4. Determine the union U of all light corridors and
next, the set of all shadow regions, by finding the
set difference between H(D) and U .

Let us now take a closer look at each step of the algo-
rithm and its worst-case time complexity. In the first
step, it is needed to compute first the convex hull of the
disk centers, and then to compute an offset polygon,
which can be done in O(n log n) time [2].

As defined in Section 2, the set T of defining lines are
the lines tangent to at least two disks in D that do not
intersect any of the disks in D in more than one point.
Now, we can determine the set T of all defining lines in
O(n2 log n) time, as follows. For each disk in D, we sort
radially the other n − 1 disks, which takes O(n log n)
time. This structure allows to find all defining lines of
one disk in linear time. In addition to each defining line
determined, we keep the information on tangent disks
and the tangency points, the type of the tangent line,
i.e., whether it is a crossing line or not, and the part(s)
of the line which are involved in the definition of the
shadow regions, i.e., the rays or the line segment, as
explained in Lemma 3. Hence, it takes O(n log n) time
to determine all defining lines of one disk and all the
additional properties. Therefore, finding the set T of
defining tangent lines for all n disks takes O(n2 log n)
time.

In order to determine the set of all light corridors,
for each of the disks we need the sorted list of all its
points of tangency, in a cyclic order. Such a list can
be determined in O(n2 log n) time since all the defining
lines are determined, hence, all the points of tangency
for each of the disks.

As mentioned in the proof of Lemma 4, a crossing tan-
gent line in T characterizes one light corridor. Starting
with a crossing line from T , we determine the corre-
sponding light corridor as follows. We start by includ-
ing one ray of the chosen crossing line. Then, we simply
look up the corresponding point of tangency on the tan-
gent disk and take the successor point of tangency from

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

91

24th Canadian Conference on Computational Geometry, 2012

the sorted list of points for that disk. That point is a
starting point for either a line segment, or a ray of some
other tangent line. In the case of a starting point of a
line segment, we look up the ending point on the next
disk, etc. The computation of one side of the corridor is
finished when a ray occurs in the sequence. The other
side is determined in the same way, starting with the
other ray of the originally chosen crossing tangent line.

From Lemma 4, the number of light corridors is
O(n2). In addition, the number of all defining tangent
lines is also quadratic in the number of disks, which
implies that the total number of all rays (2 rays per
crossing tangent) and line segments (1 line segment per
parallel tangent) together is also O(n2). In this way,
amortized over all iterations, the light corridors can be
determined in O(n2) time, which implies that the total
time complexity of the third step of the algorithm is
O(n2 log n).

The problem of determining the union U of all light
corridors comes down to the problem of finding the in-
tersections of a set of line segments and circular arcs.
This is a well-known and extensively studied problem
[2]. Using the deterministic algorithm by Balaban [1],
the intersections of N line or curve segments can be
determined in O(N logN +K) time, where K is the
number of intersecting pairs. Given that we have O(n2)
line segments and circular arcs, the number K of inter-
secting pairs is O(n4). Therefore, using this algorithm,
the union U of all light corridors can be determined in
O(n4) time. The set of all shadow regions is then simply
determined as a complement set of U within the convex
hull H(D).

With the discussion above, we get to the following
result.

Theorem 5 The set of all shadow regions defined by n
non-overlapping unit disks can be determined in O(n4)
time.

5 Determining the number of shadow regions

In the previous section we presented an O(n4) algorithm
for deriving all shadow regions created by a set of n
disks. From this it follows that a set of n disks defines
O(n4) shadow regions. In this section we show that
this bound is tight, i.e., that problem instances exist
with Ω(n4) shadow regions. This implies the interesting
result that the O(n4) worst-case time complexity of the
presented algorithm is optimal.

To construct a problem instance with Ω(n4) shadow
regions, we place the disks in two ”columns”, where
each column contains n equidistant disks, such that each
disk of one column is directly opposite to a disk of the
other column. The idea behind the construction is to
obtain a quadratic number of thin light corridors that
pass between the disks of the two columns, i.e., in the

left to right direction. If these corridors do not intersect
within some finite area of width w, then adding another
2n disks that, in the same way, create quadratic number
of light corridors in the top-bottom direction, results in
Θ(n4) shadow regions; see an illustration in Figure 5. If
we need to add only linear number of mutually tangent
disks to block the light corridors that come from other
(e.g., diagonal) directions, we then have a linear number
of disks creating Θ(n4) shadow regions.

Figure 5: Constructing Ω(n4) shadow regions with a
linear number of disks - an illustration.

Let L be the line connecting the centers
O1, O2, . . . , On of the disks δ1, δ2, . . . , δn in the
left column and, in the same fashion, let R be the
line connecting the centers O′1, O

′
2, . . . , O

′
n of the

disks δ′1, δ
′
2, . . . , δ

′
n in the right column; see Figure 6.

Furthermore, let h denote the distance between the
columns, i.e., the distance between L and R, and let d
denote the distance between two neighboring disks in
one column, measured from center to center. Given h,
the distance d is chosen so that the top two disks of one
column and the bottom two disks of the other column
are all tangent to the same line. In this way, there
is no light corridor defined by these top-bottom pairs
of disks, however, there is exactly one light corridor
between any other two pairs of neighboring disks in
different columns. From the congruence of the two gray
triangles in Figure 6, the relation between the distances
d and h is given by

d =
2h√

h2 − 4(n− 2)2
(1)

For the time being, we only consider the light corri-
dors between pairs (δi, δi+1) of neighboring disks from
the left column and pairs (δ′j , δ

′
j+1) of neighboring disks

from the right column, where i, j ∈ {1, . . . , n− 1}.
The distance d between the neighboring disks deter-

mines the width of the corridors. From Equation (1),
we get that if h → ∞, then d → 2. Furthermore, us-
ing elementary calculus, it can be shown that increasing

24th Canadian Conference on Computational Geometry, 2012

92

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Figure 6: The columns of disks, each column containing
n disks.

the distance h between the columns results in decreas-
ing the width of the corridors. Note that the corridors
are not all of the same width, i.e., the longer corridors
are thinner than the shorter corridors.

It remains to be shown that there is an area between
the columns where no two corridors intersect. Further-
more, we want to show that for some h, the width w
of that area can be at least nd. In this way, overlap-
ping (or intersecting) this area containing the left to
right corridors with the area containing the top to bot-
tom non-intersecting corridors, results in creating Θ(n4)
shadow regions.

In Section 3 we showed that each light corridor is
characterized by a pair of two crossing tangent lines. In
this special case of disks being placed in two columns,
one can easily show that, between the columns, each
corridor is bounded by a pair of parallel line segments.
Considering the left column as the beginning and the
right column as the end of the corridors, among the
intersection points of the corridors’ bounding line seg-
ments, we can distinguish two subsets of points: the
splitting points and the meeting points; see Figure 7.
The splitting point of two light corridors that begin
between the same pair of disks is the common (inter-
section) point of these corridors furthest from L. In a
similar way, the meeting point of two corridors that do
not begin between the same pair of disks is the inter-
section point of these two corridors closest to L. Let Ps

denote the vertical line containing the splitting point(s)
furthest from L and let Pm denote the vertical line con-
taining the meeting point(s) closest to L. Clearly, if the
distance h̄s between Ps and L is smaller than the dis-
tance h̄m between Pm and L, the area between the two
vertical lines Ps and Pm, gives an area inside which no
two corridors intersect. In addition, the width w of the

Figure 7: The splitting points and the meeting points
of nine light corridors passing between eight disks in the
columns.

area is given by

w = h̄m − h̄s (2)

Next, we express the distance h̄s as a function of the
distance h between the columns of disks. Let us consider
only the n−1 light corridors that all begin between one
pair of neighboring disks in the left column. One can
show that among the splitting points of these corridors,
the splitting point furthest from L, is the splitting point
of two neighboring light corridors, i.e., the corridors that
end between the neighboring pairs of disks in the right
column. Let hs be the distance from the splitting point
P of an arbitrary pair of neighboring corridors to the
line L. By definition, h̄s is the maximum of all distances
hs of the splitting points of all neighboring corridors.
Using elementary calculus, one can prove the following
lemma.

Lemma 6 For an arbitrary pair of neighboring light
corridors Cj and Cj+1, it holds that

lim
h→∞

hs = 0.

In other words, for h large enough, all light corridors
split on distance ε from the line L and ”enter” the area
in which they do not intersect.

From Equation (2), to determine the width w of the
area where the light corridors do not intersect, besides
the distance h̄s, we also need to determine the distance
h̄m, i.e., the distance from the closest meeting point(s)
to the line L. We first determine the light corridors that
define the closest meeting point(s).

One can show that the light corridors that define the
closest meeting point(s) begin between two neighboring
pairs of disks; see Figure 7. More precisely, the bottom-
most corridor Cb of all corridors beginning between
the pair of disks (δj+1, δj) and the top-most corridor
Ct of all corridors beginning between the pair of disks
(δj , δj−1) define (one of) the closest meeting point(s) to
the line L. Let hm be the distance from the splitting
point P ′ of the corridors Cb and Ct to the line L. Note
that Cb ends between the bottom pair of disks (δ′1, δ

′
2)

and Ct ends between the top pair of disks (δ′n, δ
′
n−1) in

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

93

24th Canadian Conference on Computational Geometry, 2012

the right column. In a similar way as Lemma 6, using
elementary calculus, one can prove the following lemma.

Lemma 7 For the distance hm, it holds that hm →∞,
when h→∞.

From Lemma 6 and Lemma 7 and Equation (2), we can
conclude that for h large enough, the width w of the area
where corridors do not intersect can be of size nd. Note
that the area is not in the middle between the columns.
Instead, we have two such areas of non-intersecting cor-
ridors adjacent to the left and to the right column, re-
spectively. In the next step of the construction, we add

Figure 8: A linear number of unit disks defining Θ(n4)
shadow regions - the thin light corridors pass between
the white disks; the black disks are mutually tangent,
hence, representing the blocking disks.

2n disks organized in two rows that are on the top and
the bottom side, as we mentioned earlier in this section,
and such that the areas of non-intersecting corridors
completely overlap. Each of the O(n2) light corridors
in the left to right direction intersects each of the O(n2)
light corridors in the top to bottom direction. Hence,
they partition the square area of size (nd)2 into Θ(n4)
regions. In order for these regions to be the shadow
regions, the light coming from directions different than
left, right, top or bottom must be blocked. Therefore,
in addition to the 4n disks used in this construction,
we “close the gaps” by extending, for example, the top
row and the left column by

⌈
n
2

⌉
tangent disks each and

the right column and the bottom row with 2n tangent
disks each; see Figure 8. These blocking disks ensure
that there are no additional corridors intersecting the
area partitioned into shadow regions by the constructed
light corridors.

6 Concluding remarks

We considered the problem of determining all shadow
regions defined by a set of n non-overlapping unit disks
in the plane. We discussed the basic properties of the
shadow regions and we presented an O(n4) algorithm
for determining them. We showed that the number of
shadow regions can be Ω(n4). Hence, the presented al-
gorithm determines all the shadow regions in worst-case
optimal time.

References

[1] I.J. Balaban. An optimal algorithm for finding segment
intersections. In Proc. of the 11th ACM Symposium
on Computational Geometry, 1995, Vancouver, Canada,
211–219.

[2] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Algorithms
and Applications, 2nd Edition, 2000, Springer.

[3] A. Dumitrescu, and M. Jiang. The forest hiding prob-
lem. In Proc. of the 21st ACM-SIAM Symposium on
Discrete Algorithms, 2010, Austin, Texas, USA.

[4] G. Hollemans, T. Bergman, V. Buil, K. van Gelder,
M. Groten, J. Hoonhout, T. Lashina, E. van Loenen,
and S. van de Wijdeven. Entertaible: multi-user multi-
object concurrent input. In Proc. of the 19th Annual
ACM Symposium on User Interface Software and Tech-
nology, 2006, Montreux, Switzerland, 55–56.

[5] N. Jovanović, J. Korst, and V. Pronk. Object detection
in flatland. In Proc. of the 3rd International Conference
on Advanced Engineering Computing and Applications
in Sciences, 2009, Sliema, Malta.

[6] N. Jovanović, J. Korst, and A.J.E.M. Janssen. Min-
imum blocking sets of circles for a set of lines in the
plane. In Proc. of the 20th Canadian Conference on
Computational Geometry, 2008, Montréal, Canada, 91–
94.

[7] N. Jovanović, J. Korst, R. Clout, V. Pronk, and L. Tol-
huizen. Candle in the woods: asymptotic bounds on
minimum blocking sets. In Proc. of the 25th ACM
Symposium on Computational Geometry, 2009, Aarhus,
Denmark, 148–152.

[8] N. Jovanović, J. Korst, Z. Aleksovski, and R. Jovanović.
Hiding in the crowd: asymptotic bounds on minimum
blocking sets. In Proc. of the 26th European Workshop
on Computational Geometry, 2010, Dortmund, Ger-
many, 197–200.

[9] H. Martini, and V. Soltan. Combinatorial problems on
the illumination of convex bodies. Aequationes Mathe-
maticae 57, 1999, 121–152.

[10] J. Mitchell. Dark points among disks. In Open Prob-
lems from the 2007 Fall Workshop in Computational
Geometry, Hawthorne, New York, USA.

[11] L. Szabo, and Z. Ujvary-Menyhart. Clouds of planar
convex bodies. In Aequationes Mathematicae 63, 2002,
292–302.

24th Canadian Conference on Computational Geometry, 2012

94

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Computing the Coverage of an Opaque Forest ∗

Alexis Beingessner Michiel Smid †

Abstract

We consider the problem of taking an opaque forest and
determining the regions that are covered by it. We pro-
vide a tight upper bound on the complexity of this prob-
lem, and an algorithm for computing this area, which is
worst-case optimal.

1 Introduction

Let a region be any bounded, closed, and connected set
of points in R2. Then a barrier, or opaque forest, of
a finite set R of regions, is any finite set B of closed
and bounded line segments, such that for any line `: if `
intersects R then ` also intersects B. A previously stud-
ied problem is as follows: given some set R or regions,
compute a barrier B such that the length of all the seg-
ments in B, |B|, is minimal. The exact solution to this
problem is not known even for specific cases, such as
when R is a unit square. The best known bounds for
this instance of the problem are 2 ≤ |B| ≤

√
2 +
√

6/2.
[2]

The general problem of computing a minimal bar-
rier for a given set of regions is a very difficult one.
Currently there are no proven algorithms for comput-
ing this precisely, nor even known solutions for specific
cases. For the internally optimal barrier, there is also
no known algorithm. However, by further restricting the
problem, it is reducible to well studied problems. If the
internally optimal barrier is restricted to a single con-
nected component, then this is easily reducible to the
Minimal Steiner Tree Problem. If the barrier is further
restricted to a single polygonal chain, then the problem
is reducible to the Travelling Salesman Problem. Both
of these problems are known to be NP-Hard in general,
but can be much more easily computed or approximated
when the input points are in convex position, which is
the case for this problem [2].

In this paper we consider the following problem: given
some barrier B, compute a maximal set R of regions
such that B is a barrier for R. More precisely, given a
set B of n line segments, compute R(B) = {p ∈ R2 :
every line through p intersects B}. We say that R(B)
is the coverage of B.

We give an algorithm that computes the coverage of

∗This work was supported by NSERC
†School of Computer Science, Carleton University

an opaque forest in O(n4) time. We also provide an
example of an opaque forest whose coverage has size
Ω(n4). Thus, our algorithm is worst-case optimal.

2 Maximal Regions

Let a maximal region of a set P of points be a region
R such that for every point p in R, there exists an open
ball A centered at p such that A ∩R = A ∩ P .

Lemma 1 If a maximal region of R(B) is a line seg-
ment, then that line segment is part of B.

Proof. Assume this is not the case. Then there is some
line segment S ∈ R(B) that is a maximal region, but is
not in B. Therefore all lines that pass through a point
p in S intersect B, and there exists an open ball A of
points around p such that every point q in A that is not
in S has a line ` through it which does not intersect B.

Consider such a point q. The line ` through q that
does not intersect B cannot intersect S, or else the
points it intersects in S are not actually in R(B). We
can select a point q′ such that it is arbitrarily close to p,
and the line `′ must therefore become ever more parallel
to the line S lays on to avoid intersection. Therefore it
must be the case that the line collinear with S intersects
B, but the line `′ that is parallel to S and arbitrarily
close to it does not. Therefore, there must exist some
line segment S′ ∈ B that is parallel to S. Further, there
must be some opaque forests to the left and right of S
that do not meet each other or S′, or else ` can pass
through S. Therefore, there is a space for parallel lines
to the left and right of S. However, this implies that
there is a line `′′ that enters through one space and exits
through the other which does not intersect B but passes
through S, which means there are points in S which are
not in R(B). If this were not the case, then `′ would
intersect B. So we have a contradiction, therefore if S
is in R(B), S is in B. �

Lemma 2 R(B) may contain maximal regions that are
single points, but are not part of B.

Proof. Consider the construction of three line segments
found in Figure 2.
p is not part of B. Every line that passes through p

intersects B, so p ∈ R(B). Yet there exists an open ball
of points centred at p such that every point in this ball

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

95

24th Canadian Conference on Computational Geometry, 2012

SS′ `′

`′′

Figure 1: There is a line `′′ which does not intersect
B but passes through S

p

Figure 2: A construction that creates a maximal re-
gion that is exactly one point

except for p has a line through it that does not intersect
B. Therefore p is a maximal region of R(B). �

3 Connected Components

B is a set of n line segments consisting of m connected
components B1, . . . , Bm. Further, Conv(Bi) is the con-
vex hull of the connected component Bi. Then for some
point p ∈ R2, we define Lp(Bi) as follows:

1. If Bi is a single line segment, and p is collinear to
Bi, then Lp(Bi) = ∅

2. Otherwise, if p lies on a vertex of Conv(Bi), then
Lp(Bi) is the double-wedge defined by the lines of
the two edges of Conv(Bi) that meet at p.

3. Otherwise, if p lies inside Conv(Bi), or on its
boundary, ∂Conv(Bi), then Lp(Bi) = R2

4. Otherwise, Lp(Bi) is the double-wedge defined by
the tangents of Conv(Bi) that pass through p.

Intuitively, Lp(Bi) can be thought of as the set of all
lines that pass through p and intersect Bi. However this
is not strictly true. For parts (3) and (4) of the defini-
tion, this does in fact hold. However, (2) describes the
limiting behaviour of a point as it tends towards a vertex
of Conv(Bi) from outside. (1) ignores the behaviour of
points collinear to a single disjoint line segment. This
definition may seem counter-intuitive, but it is useful
for us. Further, we will consider Lp(Bi) to be a subset
of R2, and not the actual lines that pass through p.

p

p

p
Bi Bi

Lp(Bi) Lp(Bi)

Lp(Bi)

Bi

Figure 3: Various possible cases for Lp(Bi)

4 Clear and Blocked Points

Let a blocked point be a point p with respect to some
barrier B such that for every line ` which passes through
p, ` intersects B. Then a clear point is a point which
is not blocked. Every point of B is a blocked point.
Moreover, R(B) is the set of all blocked points with
respect to B, and the complement R(B) or R(B) is the
set of all clear points.

Theorem 3 For every barrier B, each maximal region
C ⊆ R(B) is the intersection of halfplanes defined by
lines that pass through two vertices of B.

Proof. Assume there exists some line ` which is tangent
to the boundary of a maximal region C ⊆ R(B), but `
does not touch B. Then, because the complement of B
is an open set, ` can be translated to intersect C without
intersecting B. However that would mean C contains
clear points, which is a contradiction. Therefore, ` must
be tangent to B at at least one point. Now assume
` is tangent to B at exactly one point. Then ` can
still be rotated around the point of tangency, once more
intersecting C. This once more contradicts the fact that
C is a subset of R(B). Therefore ` must be tangent to
at least two points of B. Further, since B is a set of line
segments, only the end points of these segments need
be considered, as tangency to a line segment is simply
tangency to its two end points. �

Remark that this also implies that we need only
finitely many halfplanes to define a maximal region of
R(B), and that every maximal region of R(B) is convex.

Lemma 4 Every point in Lp(Bi) ∪Bi is a clear point
with respect to Bi.

Proof. In case (1), where Bi is a single line segment
and p is a point collinear with it, this follows trivially,
as R(Bi) = Bi. Therefore, even though Lp(Bi) = R2,

24th Canadian Conference on Computational Geometry, 2012

96

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

C

B

C

B

``

Figure 4: The line ` must be tangent to B at two
vertices, if it defines the boundary of part
of R(B)

the only points that aren’t clear are those of Bi itself.
In case (2), because Bi is a closed set, we can get points
arbitrarily close to the vertex p lies on. Therefore while
it is not the case that some line ` that makes up Lp(Bi)
passes through p and does not intersect Bi, there exists
some line `′ arbitrarily close to ` for which this is true.
In case (3), where p lies inside of or on Conv(Bi) this
also follows trivially, as Lp(Bi) is empty. In case (4),
where p lies outside of Conv(Bi), the set of all lines
that pass through p and intersect Bi are exactly those
that are between the two tangents of Bi with respect to
p. Therefore Lp(Bi) is a set of clear points. �

We now define Lp(B) =

m⋃

i=1

Lp(Bi) to be the set of

all lines which intersect B and pass through p, ignoring
previously established special cases.

pB

Lp(B)

Figure 5: Lp(B) is the set of all lines that intersect
B and pass through some point p

Since Lp(Bi) ∪Bi is a set of clear points with respect

to Bi, we can further conclude that Lp(B) ∪B has this
property with respect to the whole of B. Further, for
some points r and s, since Lr(B) ∪B and Ls(B) ∪B
have this property, Lr(B) ∪B∪Ls(B) ∪B also has this
property. By DeMorgan’s law for set compliments, we
can also conclude that (Lr(B) ∩ Ls(B)) ∪B has this
property as well. Therefore given

L(B) =
m⋂

i=1

⋂

p: vertex of Conv(Bi)

Lp(B)

we know L(B) ∪B is a set that also has this property.

Theorem 5 Let CI be the closure of the interior of a
set of points, then CI(L(B)) ∪ B ⊆ R(B) ⊆ L(B) ∪ B.
Further, R(B)\(CI(L(B))∪B) is a finite set of disjoint
points.

Proof. Since R(B) is the set of all clear points with
respect to B, and L(B) ∪B is a set of some clear
points with respect to B, R(B) ⊇ L(B) ∪B. There-
fore, R(B) ⊆ L(B) ∪B.

From Lemmas 1 and 2, we know that the only zero
area maximal regions of R(B) that aren’t in B are indi-
vidual points. Remark that CI(L(B)) differs from L(B)
in that only the zero area maximal regions of L(B) have
been removed. Therefore, if CI(R(B)) = CI(L(B)),
all that R(B) and CI(L(B)) may differ by are dis-
joint points. Since R(B) ⊆ L(B) ∪ B, and B has
zero area, CI(R(B)) ⊆ CI(L(B)), so all that remains
to be proven is CI(L(B)) ⊆ CI(R(B)). Equivalently,
CI(R(B)) ⊆ CI(L(B))

Assume some postive-area region P of points is in
CI(R(B)). Consider a point p ∈ P . There is some
line ` through p that does not intersect B. Then ` can
be rotated around p without intersecting B until it is
tangent with some connected component Bi at some
point p′. We will call this rotated line l′. Now if p /∈
CI(L(B)), then there exists some Lq(Bj), j 6= i, which
p is in. This would mean there is some line `′′ through
p and p′ such that `′′ intersects Bj .

P
p

`

`′p′
Bi

Bj

Lq(Bj)

q

Figure 6: There exists some Lq(Bj), j 6= i, which p
is in

However `′′ is `′, and if `′ intersects Bj then there
are three possibilities. Either ` intersects Bj , we should
have stopped at Bj before we got to Bi, or `′ is tan-
gent to Bj as well. For the first two cases we have a
contradiction, so `′ must be tangent to Bj . However,
since p is part of some region with positive area, we
may take a point p′′ /∈ `′ adjacent to p such that it lies
on no such tangent, and for which this case is therefore
not possible. Therefore p′′ ∈ CI(L(B)) or else there is
a contradiction. Remark that this argument holds for
any choice of p′′ that does not lie on a tangent between
two connected components. If the points on these tan-
gents were not in CI(L(B)) this would imply a region

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

97

24th Canadian Conference on Computational Geometry, 2012

of zero area exists in CI(L(B)), but this is impossible.
Therefore all points around p must be in CI(L(B)), and
therefore p must be as well. Therefore, if p ∈ CI(R(B)),
p ∈ CI(L(B)), and therefore CI(L(B)) ⊆ CI(R(B)).

Since CI(R(B)) = CI(L(B)), R(B) \ CI(L(B)) is a
set of disjoint points. To prove that there are finitely
many points, recall that by Theorem 3 each maximal
region of R(B) is an intersection of halfplanes defined
by the vertices of B. The only way to get a point from
this process is where three or more halfplane boundaries
intersect at a point. Since there are finitely many ver-
tices and therefore finitely many halfplanes, it follows
that there are finitely many points. �

5 Computing the Coverage of a Barrier

Theorem 5 provides a procedure for computing R(B).

We will assume our input is given as a list B of
m connected components B1, . . . , Bm, totalling n line
segments. The first step of our algorithm will be to
compute the convex hulls of all m components. Next,
for each vertex pk of each Conv(Bi), we will compute
Lpk

(Bj) for each Conv(Bj), and union together these
Lpk

(Bj) into Lpk
(B) by sorting them by angle. Then

we will construct an arrangement using all the lines of
the Lpk

(B). We can then determine our final result
by determining how many Lpk

(B) one cell is part of,
and then traversing the dual while changing our count
according to whether a given edge exits or enters an
Lpk

(B). Then we simply output those regions which
were in every Lpk

(B), as well as B itself. However this
process returns CI(L(B))∪B, so we may still be missing
a finite number of points.

To compute these points, recall that they must lay at
the intersection of 3 or more halfplanes. While this is
necessary, it is not sufficient. The only way we know
of to be certain a point is in R(B) is to perform a ra-
dial plane sweep on B from that point. Since there
are O(mn) lines in the arrangement, there are O(m2n2)
candidate points. We will consider a line ` that makes
up the arrangement. There are O(mn) points of in-
tersection on this line. First we will perform a radial
plane sweep on one of these points p to construct a set
Θ = {θ1, . . . , θk} of points on the interval 0 to π, where
each point θi represents the angle of a tangent to some
Bj from p, and each point is labelled with the number
of connected components the line through p at the angle
θi + ε intersects. If every θi is labelled with a non-zero
value, then p ∈ R(B) and we return it. Now consider
the intersection point q on ` that is adjacent to p. While
most of the exact values of Θ will change, the ordering
and labelling of the points will only change for those
related to the tangents that bound this segment of `.
We can store this data in the vertices of the arrange-
ment during construction, so we can just query p and q

for this information. By updating just these values and
checking if any are now labelled with 0, we now know if
q is in R(B). Repeating this process for all the points on
`, and then for all choices of `, we will have determined
all the points in R(B).

Computing the convex hulls will take O(n log n) time.
Computing Lpk

(Bj) requires computing two lines. In
all the special cases this takes constant time, however
in the case where we must actually compute the lines
as tangents, we take O(log n) time to binary search
Conv(Bj)’s vertices for the most extreme points. Since
there are O(m) Bj , it takes O(m log n) time to compute
them all for one pk. Further, to union them together
into Lpk

(B), we need to sort their lines by angle, which
will take O(m logm) time. Since there are O(n) pk, we
take O(nm(log n + logm)) time to compute them all.
Since we now have O(nm) lines from all our Lpk

(B),
our arrangement will take O(m2n2) time to compute,
whose dual we can navigate in O(m2n2) time.[1]

For each line of the arrangement we take at most
O(m2) time to perform the plane sweep of the first
point. Then for each other point, there are an amor-
tized O(1) other lines intersecting at this point, and we
do O(1) work per intersection, so we do O(mn) work
per line. Therefore this step takes O(m2n2) time.

Therefore our algorithm runs in O(m2n2) time. Now
we must determine whether this is good or not.

Since m is at most n, our algorithm will run in O(n4)
time in the worst case. Consider the following barrier:
Take a regular n-gon, and shrink all the edges by a
small amount, so that there are gaps where the vertices
were. Now there are small regions of space where lines
can travel between each pair of vertices. These regions
are equivalent to the planar embedding of Kn. This
partitions the space into Θ(n4) convex regions [3]. So
to even write the output it would take Ω(n4) time and
space. Therefore, our algorithm is indeed worst-case
optimal.

Figure 7: The worst known case barrier and its cov-
erage

6 Deciding Whether a Point is Part of a Barrier’s
Coverage

Given a barrier B one can fairly simply determine
whether a point p is in R(B) in O(n log n) time and
O(n) space using a plane sweep. However if R(B) is al-
ready constructed, point queries can be done in O(log k)
time using a structure that takes O(k2) extra space and

24th Canadian Conference on Computational Geometry, 2012

98

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

O(k2 log k) time to construct [4], where k is the number
of edges in R(B).

References

[1] M. de Berg. Computational Geometry: Algorithms and
Applications. Springer-Verlag, 2008.

[2] A. Dumitrescu and J. Pach. Opaque sets. CoRR,
abs/1005.2218, 2010.

[3] J. W. Freeman. The number of regions determined by
a convex polygon. Mathematics Magazine, 49(1):23–25,
1976.

[4] D. Kirkpatrick. Optimal search in planar subdivisions.
SIAM Journal on Computing, 12(1):28–35, 1983.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

99

24th Canadian Conference on Computational Geometry, 2012

100

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Open Problems from CCCG 2011

Erik D. Demaine∗ Joseph O’Rourke†

The following is a description of the problems pre-
sented on August 10, 2011 at the open-problem session
of the 23rd Canadian Conference on Computational Ge-
ometry held in Toronto, Ontario, Canada.

Blocking visibility with cylinders
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

Suppose you have a supply of infinite-length,
opaque, unit-radius cylinders, and you would like
to block all visibility from a point p ∈ R3 to infin-
ity with as few cylinders as possible. (The cylin-
ders are infinite length in both directions.) The
cylinders may touch but not interpenetrate, and
they should be disjoint from p, leaving a small ball
around p empty. (Another variation would insist
that cylinders be pairwise disjoint, i.e., not touch-
ing one another.)

A collection of parallel cylinders arranged to form
a “fence” around p do not suffice, leaving two line-
of-sight ± rays to infinity. Perhaps a grid of cylin-
ders in the pattern illustrated in Figure 1 (left) suf-
fice, but at least if there are not many cylinders,
there is a view from an interior point to infinity
(Figure 1, right).

Figure 1: A grid of cross cylinders. A view from inside
shows not all visiblity is blocked.

This question was originally posed on MathOver-
flow [OR11a], and several ideas contributed there
suggest to start with the six cylinder arrangment in
Figure 2 (left), supplemented by a circular “forest”
to block the remaining lines of sight, three-quarters

∗MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar Street, Cambridge, MA 02139, USA, edemaine@mit.edu
†Department of Computer Science, Smith College, Northamp-

ton, MA 01063, USA. orourke@cs.smith.edu

of which are illustrated in Figure 2 (right). The il-
lustrated configuration needs 18 cylinders, but per-
haps as few as 10 suffice for this plan?

Figure 2: Six cylinders block all but some “diagonal”
lines of sight. Erecting a vertical fence should then block
all lines of sight.

What is the minimum number of infinite cylin-
ders that can block visibility from a point?

References

[OR11a] J. O’Rourke. Blocking visibility with
cylinders. http://mathoverflow.net/
questions/69963/ 11 May 2011.

The Rain Hull and the Rain Ridge
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

Rain falls steadily on an island, a 2-manifold
M , which you may assume, as you prefer, is:
(a) smooth, or (b) a PL-manifold, or perhaps (c) a
triangulated irregular network (TIN). After a time,
M is saturated, in the sense that every raindrop
drains into the ocean rather than filling yet-unfilled
crevices or basins. At this point, we have what
I will dub the rain hull of M , HR(M), a uni-
directional version of the the reflex-free hull defined
by Jack Snoeyink at the 13th CCCG [ACCS04]

(1) How difficult is to compute the rain hull
HR(M)?

This question was originally posed on Math-
Overflow [OR11b] and a respondent there (Joel
Hamkins) argued that at least it can be computed
in polynomial time. Nonlocal effects such as that
illustrated in Figure 3 must be accommodated.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

101

24th Canadian Conference on Computational Geometry, 2012

(a) (b)

Figure 3: (a) The connecting tube rises too high to fill
the other, protected basin. (b) A lower tube does overflow
into the other catch-basin.

Let us assume we have M = HR(M) computed
or given. A raindrop falling on p ∈ M might
follow a unique trickle path (that is the technical
term: e.g., see [dBHT11]) to the ocean, or the drop
may randomly ‘fracture’ to follow distinct paths to
the ocean. Define the rain ridge (my terminology)
R(M) to be the complement of the points of M
that have a unique trickle path.

So points on the rain ridge are akin to points on
a cut locus, in that they have two or more distinct
paths to ∂M . They are, in a sense, continental-
divide points [Hay09].

(2) What can be said about the structure of the
rain ridge R(M)? And how quickly can it be com-
puted?

Unlike the cut locus or “ridge tree,” the rain
ridge is not always a tree. All the points in a filled
basin are in the rain ridge, for when a raindrop
lands in a filled basin, it is natural to assume it
“spreads out” and spills in equal portions over ev-
ery boundary point of the basin. But surely there
are substantive properties to investigate. Surely
the rain ridge R(M) cannot be an arbitrary subset
of M?

(3) Can an extended metric be assigned to M so
that its geodesics are its trickle paths?

An extended metric is one that permits d(x, y) =
∞ (e.g., for points not on the same trickle path).
What I am hoping for here is a way to view the
rain ridge as a cut locus of ∂M , and then apply a
century of knowledge on the cut locus to the rain
ridge.

References

[ACCS04] H.K. Ahn, S.W. Cheng, O. Cheong,
and J. Snoeyink. The reflex-free hull.
International Journal of Computational
Geometry and Applications, 14(6):453–
474, 2004.

[dBHT11] M. de Berg, H. Haverkort, and
C. Tsirogiannis. Implicit flow routing on
terrains with applications to surface net-
works and drainage structures. In Proc.
22nd ACMSIAM Symp. on Discrete Al-
gorithms (SODA), pages 285–296, 2011.

[Hay09] B. Hayes. Dividing the Continent.
In Group Theory in the Bedroom, and
Other Mathematical Diversions. Hill
and Wang, 2009. pp. 107–123.

[OR11b] J. O’Rourke. The rain hull and the
rain ridge. http://mathoverflow.net/
questions/69963/ 10 July 2011.

Long Alternating Paths
Jorge Urrutia
Universidad Nacional Autónoma de México
urrutia@matem.unam.mx

Let Pkn be a point set with kn points in general
position. A k-coloring of Pkn is a partitioning of
Pkn into k disjoint subsets S1, . . . , Sk, each with n
elements. The sets S1, . . . , Sk, are called the chro-
matic classes of Pkn.

An alternating path Π of Pkn is a simple polyg-
onal path connecting a subset of the points of Pkn
such that there are no monochromatic edges in the
path.

Conjecture Any 3-colored point set P3n contains
an alternating path with at least 2n elements.

We have been unable to prove that P3n always
contains an alternating path with 3

2n points; this
seems to be a challenging weaker open problem.
For 3-colored point sets P3n in convex position,
it is known there always exists a path that cov-
ers 2n points, and that this bound is tight [MSU].
Tight bounds for 2-colored point sets are not
known for point sets in convex, or in general po-
sition [AGHNP].

References

[AGHNP] M. Abellanas, J. Garcia, G. Hernandez,
M. Noy, and P. Ramos. Bipartite embed-
dings of trees in the plane. Discrete Appl.
Math. 93 (1999), 141148.

[AU] J. Akiyama, and J. Urrutia. Simple alter-
nating path problem. Discrete Math, (1990)
84: 101-103.

[MSU] C. Merino, G. Salazar and J. Urrutia. On
the length of the longest alternating path
for multicoloured point sets in convex po-
sition. Discrete Mathematics, Vol. 360, no.
15, pp. 1791-1797, 2006.

24th Canadian Conference on Computational Geometry, 2012

102

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

[PKT] J. Pach, J. Kynčl, and G. Tóth. Long alter-
nating paths in bicolored point sets. Dis-
crete Mathematics, 308 (2008), 4315–4322.

Monochromatic Empty Triangles
Jorge Urrutia
Universidad Nacional Autónoma de México
urrutia@matem.unam.mx

Let Pn be a set of n points in general position
on the plane, each of which is colored red or blue.
A triangle with vertices in P is called empty if it
contains no point of P in its interior, it is called
monochromatic if all of its vertices are red, or all
are blue.

Conjecture Any bicolored point set Pn contains
Ω(n2) monochromatic empty triangles.

A liner bound was established in [DHKS]. It was

improved to cn
5
4 in [AFHU], and to cn

4
3 in [PT].

References

[AFHU] O. Aichholzer, R. Fabila-Monroy, D.
Flores-Peñaloza, T. Hackl, C. Huemer, and
J. Urrutia, Monochromatic empty trian-
gles. Computational Geometry, Vol. 42,
Issue 9, November 2009, Pages 934–938.

[DHKS] O. Devillers, F. Hurtado, Gy. Károlyi, and
C. Seara, Chromatic variants of the Erdõs-
Szekeres theorem on points in convex po-
sition, Computational Geometry, Vol. 26,
Issue 3, 2003, pp. 193–208.

[PT] J. Pach, and G. Tóth. Monochromatic
empty triangles in two-colored point sets.
Geometry, Games, Graphs and Education:
the Joe Malkevitch Festschrift (S. Gar-
funkel, R. Nath, eds.), COMAP, Bedford,
MA, 2008, 195-198. Also in: Discrete Ap-
plied Mathematics, submitted.

Shortest Periodic Light Ray
Boaz Ben-Moshe
Ariel University Center of Samaria
benmo@g.ariel.ac.il

Given a simple polygon, find the shortest peri-
odic path of a light ray reflecting from the polygon
edges as perfect mirrors. This problem is solved for
rational triangles, those whose angles are rational
multiples of π, but seems to be open for arbitrary
triangles.

The Geometry of Golf
Alejandro López-Ortiz
University of Waterloo
alopez-o@uwaterloo.ca

After repeated unsuccessful attempts to get the ball
in the hole from a particular point in the green, a
golfer walks away in frustration and declares: That
shot is impossible!

A mathematician happens to be standing nearby
and says outloud: Hmmm, is it true that one can
always putt a golf ball into the hole on this or any
other arbitrary green?

A computer scientist overhears the mathemati-
cian and thinks: for given a green and ball location
can I use my smartphone to determine if the shot
is possible and if so in what direction and speed
should I hit the ball?

More formally, the mathematician’s question be-
comes: does every smooth two-dimensional mani-
fold under a gravitational potential field is “con-
nected” in the sense that a point particle at an
arbitrary point on it can be made to roll into any
other point on the manifold given a proper nudge
(initial velocity vector) in the right direction.

The answer for this question is no. A simple
counterexample folds the surface into caves, but
this is not strictly necessary: there are C∞ mani-
folds which are described by the plot of a function
f : R×R→ R and yet do not allow rolling motions
into the hole. To see this consider a green with a
mountain ridge between the ball and the hole, as
depicted in Figure 4. If the slope on the hole side of

Figure 4: The hole is at the top center. This particular
example is due to Jaap Eldering at http://mathoverflow.
net/questions/84033/.

the ridge is sufficiently steep the ball can be made
to become airborne and overfly the hole; see Fig-
ure 5.

The computer scientist’s questions, posed for-
mally, become: first, given a description of a green
(perhaps discretized as a TIN) give an efficient al-
gorithm that determines if the hole can always be

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

103

24th Canadian Conference on Computational Geometry, 2012

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(√5/3, 2/3)

√1−x2

x x0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

cos2x

Figure 5: (a) Not gently falling. (b) Gently falling. Fig-
ure from [OR11c].

reached from all points, and second, given a ball
position in said green can we compute the direc-
tion and speed of the putting action that will roll
the ball into the hole?

Several variations of the question

Putting. Under what conditions can a given ball
on a C∞ manifold, with a quadratic gravita-
tional field, reach the hole?

Golf green design. Under what conditions can
every putt on a C∞ manifold, with a quadratic
gravitational field, reach the hole?

Hole location design. Given a C∞ manifold,
which points on it are reachable from all oth-
ers and hence would be reasonable choices for
location of the hole?

Chipping. What if you can chip, i.e., loft the ball?

Driving. Under what conditions is it possible to
achieve a “hole-in-one” from the driving tee if
we consider obstacles such as trees?

Sand Save. Under what shape conditions can you
chip out of a sand trap and always move closer
to the hole.

To understand the physics of the problem we
study the 2D setting of a ball rolling down a curve.

First consider the instantaneous version of the
problem: given a ball on the curve and moving at
a certain speed will it become airborne at this in-
stant?

We consider first the case where the particle was
at rest. In this setting two forces are acting on the
ball, namely gravity and surface resistance. Grav-
ity is a vertical vector pointing downwards with
magnitude 9.8m/s2. The surface resistance is a
vector perpendicular to the tangent to the curve.

Observe that the magnitude of the resistance vec-
tor is exactly equal to to the projection of the grav-
itational vector on the normal direction to the tan-
gent to the curve at all times. This is easier to
see when the particle is at rest: if the forces on

the direction of the surface were not perfectly can-
celed with that of gravity then the particle would
either burrow into the surface until equilibrium is
achieved (think of a really heavy ball making a
dent) or would magically start hovering over it,
both of which do not happen with a rolling golf
ball.

Hence the only movement possible for a parti-
cle at rest is in the direction of the tangent to the
surface and the surface resistance must perfectly
cancel any force in any other direction.

The ball will then move along the direction of the
tangent at a speed which is given by the addition
of the resistance vector to that of the force of grav-
ity. Let Γ(t) = (x(t), y(t)) denote the trajectory of
the particle parameterized by the time t. Then the
speed vector v(t) is given by dΓ/dt, and the instan-
taneous change in speed is given by the differential
equation v′(t) = ||Γ′(t)||−1(Γ′(t) ·(0,−g))+(0,−g).

The particle becomes airborne if the speed vector
ever lies above the tangent to the curve which would
result in a ski-like take off along the direction of the
speed vector.

If the particle is already in motion then the same
equations apply and the only change is in the initial
condition v(t) which for the particle at rest case was
v(t0) = ~0 and now becomes v(t0) = (vx(t0), vy(t0)).

We can test for the airborne state if we recall that
the cross product of two vectors ~a = (a1, a2), = ~b =
(b1, b2) in the plane is the vector (0, 0, a1b2−a2b1),
where the last coordinate is positive if and only if
~a is below ~b. Substituting the speed vector and the
tangent vector above we get that the ball remains
on the surface iff

vx(t)ay(t)− vy(t)ax(t) ≤ 0

We can now use this equation together with an
iterative differential equation solver to numerically
test this property along the entire trajectory of a
putting path.

Update. In [OR11c] differential equations are de-
rived for what can be considered a one-dimensional
version of the putting problem.

References

[OR11c] J. O’Rourke. Gently falling functions.
MathOverflow. http://mathoverflow.net/
questions/68114/ 18 June 2011.

24th Canadian Conference on Computational Geometry, 2012

104

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Polygon Triangulation Without Large Angles
Alexander Rand
University of Texas at Austin
arand@ices.utexas.edu

Let P be a generic convex polygon with vertices
V1, V2, . . ., Vn (and define V0 := Vn and Vn+1 := V1
for simplicity). For γ < π, we will say that P
belongs to the set Sγ if for any i /∈ {j, j + 1} then
∠VjViVj+1 < γ, i.e., no vertex forms a large angle
with any opposite side of the polygon. See Figure 6.

Vi

Vj Vj+1

α

Figure 6: If ∠VjViVj+1 (denoted by α in the figure) is
large, then no triangulation exists without a large angle. If
this angle is bounded for all pairs of vertices and opposite
edges, we expect some acceptable triangulation can be
formed.

Open Problem For γ < π, give an algorithm
that, for any convex polygon in Sγ , adds some ver-
tices to the interior of the polygon and produces a
triangulation with no angles larger than θ(γ) < π.

• Most related problems/algorithms in the liter-
ature (e.g., [BMR95, MPS07]) involve insert-
ing vertices on the boundary of the polygon,
which we have disallowed.

• The restriction to the set Sγ is essential: an
obtuse triangle with largest angle very near π
cannot be triangulated satisfying our require-
ments.

• The specific relationship between θ and γ can
be selected at the discretion of the solver. The
best solution hopefully has a form π − θ(γ) =
Ω(π − γ).

• The number of points added by the algorithm
is unimportant for the original motivation of
the problem, but it makes sense to ask what
is the fewest number of vertices which can be
added (which examples suggest is small; see
conjecture below). Simple approaches often
involve O(n) vertices. Adding a very large
number of vertices is not particularly helpful
as any vertex placed too close to a boundary
edge produces a large angle in the triangula-
tion.

• At least one vertex can be necessary. Any tri-
angulation of the regular n-gon without any
additional vertices will produce at least one

triangle of three consecutive vertices and, for
large n, this has a large angle. Adding a sin-
gle vertex at the center of the polygon gives
an acute triangulation. See Figure 7.

• Moreover, it appears that at least two vertices
must be inserted in some cases. See Figure 8.

Conjecture There exists an algorithm and some
function θ(γ) which solve the problem above using
at most two additional vertices.

Figure 7: For a regular n-gon with n large, any trian-
gulation without additional vertices includes a triangle of
three consecutive vertices and thus a large angle. Adding
a single vertex in the center yields an acute triangulation.

Figure 8: An example which requires two additional ver-
tices (or at least appears to). This can be extended to
any extreme γ or θ thresholds by adding more vertices to
the semi-circles and making the full example wider in the
horizontal direction.

Update. This problem is a special case of one
less formally stated in the conclusion of [BDE92].
Specifically, Bern et al. ask for an algorithm
and class of polygons yielding quality triangula-
tions (i.e. without large angles) using only interior
Steiner points.

References

[BDE92] M. Bern, D. Dobkin, and D. Eppstein.
Triangulating polygons without large an-
gles. Proceedings of the 8th Annual
Symposium on Computational Geometry,
pages 222–231, 1992.

[BMR95] M. Bern, S. Michell, and J. Ruppert.
Linear-size nonobtuse triangulation of
polygons. Discrete Computational Geom-
etry, 14(1):411–428, 1995.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

105

24th Canadian Conference on Computational Geometry, 2012

[MPS07] G. Miller, T. Phillips, and D. Sheehy.
Size competitive meshing without large
angles. In 34th International Colloquium
on Automata, Languages and Program-
ming, pages 655–666, 2007.

24th Canadian Conference on Computational Geometry, 2012

106

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Disk Constrained 1-Center Queries

Luis Barba ∗

Abstract

We show that a set P of n points in the plane can be pre-
processed in O(n log n)-time to construct a data struc-
ture supporting O(log n)-time queries of the following
form: Find the minimum enclosing circle of P with cen-
ter on a given disk.

1 Introduction

Given a set P of n points in the plane, the minimum
enclosing circle problem, originally posed by Sylvester
in 1857 [14], asks to identify a point cP in the plane such
that the maximum Euclidean distance from the points
of P to cP is minimized. Therefore, this problem can be
thought as that of finding the center of the minimum en-
closing circle of P . For ease of notation we say that ev-
ery circle containing P is a P -circle. An O(n2)-time al-
gorithm was presented by Elzinga and Hearn [5] to find
the minimum P -circle. Later, Preparata in [11], and
Shamos and Hoey in [13], independently proposed two
algorithms to solve this problem in O(n log n)-time. Lee
presented the farthest-point Voronoi diagram, which
can be also used to solve this problem in O(n log n)-
time [9]. Finally, Megiddo proposed an optimal O(n)-
time algorithm to find the center of the minimum P -
circle using a prune and search approach [10]. Further-
more, the problem of finding the minimum enclosing
d-sphere that contains a given set of n points in Rd can
be solved in O(n)-time for any fixed d [3][4].

Several constrained versions of the minimum P -circle
problem have been studied lately. Hurtado, Sacristan
and Toussaint presented an optimal O(n + m)-time al-
gorithm to find the minimum P -circle whose center is
constrained to satisfy m linear inequalities [6]. Bose
and Toussaint considered the generalized version of this
problem by restricting the center of the P -circle to
lie inside a simple polygon of size m. They proposed
an O((n + m) log(n + m) + k)-time algorithm to solve
this problem, where k is the number of intersections
of Q with the farthest-point Voronoi diagram of P [2].
Megiddo studied the problem of finding the minimum
P -circle with center on a given straight line and pro-
posed an O(n)-time algorithm to solve this problem [10].
He also posed the on-line version of this problem in

∗Département d’Informatique, Université Libre de Bruxelles,
Brussels, Belgium, lbarbafl@ulb.ac.be

which a preprocessing of the point set P is allowed and
the objective is to answer the following query: Given a
straight line `, find the minimum P -circle with center on
`. Das, Karmakar, Nandy and Roy first addressed this
problem and proposed an O(n log n)-time preprocess-
ing on P , which allows them to answer these queries in
O(log2 n)-time [12]. They improved the query running
time to O(log n) using O(n2) preprocessing time and
space [7]. Finally, Bose, Langerman and Roy showed
an O(n log n)-time preprocessing to construct a linear
space data structure that answers queries in O(log n)-
time [1].

In this paper, we address a generalized version of this
problem in which the center of the minimum P -circle is
constrained to lie on a query disk. This problem has a
direct application in wireless communication: think of
a set of locations that need to receive a certain message
(represented by P) and think of a main moving antenna
that is broadcasting a message within a certain range
(represented by a query disk Q). Our objective is then
to determine the location for a re-transmitter C, inside
the range of Q, such that every location in P receives
the message from C at the lowest cost.

We propose an O(n log n)-time preprocessing on the
point set P , to construct a linear space data structure
that answers both disk and line queries, in O(log n)-
time.

2 Preliminaries

In this paper, the words disk and circle refer to the
same geometric object. The former refers to the query
objects while the latter to the solutions of the query.
Given S ⊂ R2, ∂S denotes its boundary while int(S)
denotes its interior.

Let P be a set of n points in the plane. A circle
containing P is called a P -circle. Given a disk Q with
center on q, let pQ be a point in P such that q lies in
the farthest-point Voronoi region associated with pQ.
The farthest-point Voronoi diagram of P can be seen
as a tree with n unbounded edges and is denoted in
this paper by V(P). For any point p of P , let R(p) be
the farthest-point Voronoi region associated with p. Let
CP be the minimum enclosing circle of P and let cP be
its center. If cP is not a vertex of V(P), we insert it
into V(P) by splitting the edge where it belongs. We
consider V(P) as a rooted tree at cP . Given a point x
on V(P), πx denotes the unique path joining cP with x

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

107

24th Canadian Conference on Computational Geometry, 2012

contained in V(P). Given a set S ⊆ R2, let C(S) be the
minimum P -circle with center on S and let c(S) be its
center. We say that c(S) is the query center of S. When-
ever S = {x}, C(x) denotes the minimum P -circle with
center on x and we let ρ(x) be its radius. If x belongs to
R(p) for some vertex p of P , then C(x) passes through
p and hence, ρ(x) = d(p, x), where d(∗, ∗) represents
the Euclidean distance between two points in the plane.
Given a disk Q with center on q and a point x outside
Q, the projection of x on Q, denoted by σ(x,Q), is the
intersection of the segment [x, q] with the circumcircle
of Q.

3 The minimum P -circle with center on Q

Proposition 1 Let w be a point on an edge of V(P).
The function ρ is monotonically increasing along the
path πw starting at cP .

Proof. In [12] (Result 2), it is shown that if x is an
ancestor of y on the rooted tree V(P), then ρ(x) < ρ(y).
Since ρ(x) is a convex function [1] (Lemma 3), it is also
convex when restricted to any segment of πw. �

LetQ be a disk with center on q. The following results
characterize the position of c(Q) with respect to V(P).

Proposition 2 The point c(Q) lies on ∂Q if and only
if cP /∈ int(Q).

Proof. →) If cP ∈ int(Q), then C(Q) = CP and hence
c(Q) = cP lies in int(Q).
←) Assume that c(Q) lies in the interior of Q but cP

does not. Let p be a point of P such that c(Q) belongs
to R(p). Two cases arise:

If c(Q) ∈ int(R(p)), then there is a point x in the
vicinity of c(Q), slightly closer to p, such that x belongs
to Q ∩R(p). Therefore, ρ(x) < ρ(c(Q)) which is a con-
tradiction. Otherwise, if c(Q) lies on an edge of V(P),
we can consider a point x slightly closer to cP along the
path πc(Q), such that x still belongs to Q. Thus, by
Proposition 1 ρ(x) < ρ(c(Q)) which is also a contradic-
tion. Therefore, if cP does not belong to the interior of
Q, then c(Q) lies on the boundary of Q. �

From now on we assume that cP is not contained in
Q. Otherwise, cP is trivially the query center of Q.

Lemma 3 Given a disk Q with center on q. If pQ is a
point of P such that q ∈ R(pQ), then:

1. The circumcircle of C(Q) passes through exactly
one point p of P , if and only if p = pQ and
σ(pQ, Q) ∈ int(R(pQ)). In this case, c(Q) =
σ(pQ, Q).

2. The circumcircle of C(Q) passes through at least
two points of P , if and only if c(Q) lies on an edge
of V(P).

pQ

q

Q

σ(pQ, Q)

R(pQ)

`⊥

`

C(Q)

Figure 1: Case 1 of Lemma 3 where the projection of pQ on
Q lies inside R(pQ) and determines the center of C(Q).

Proof. 1 →) If C(Q) passes through only one point p
of P , then c(Q) ∈ int(R(p)). Let ` be the line joining
p with c(Q) and let `⊥ be the perpendicular line to `
that passes through c(Q); see Figure 1. Note that `⊥
must leave all points of Q on the halfplane defined by `⊥
that is farther away from p. Otherwise, we can choose
a point x inside Q ∩ R(p) such that x is closer to p
than c(Q)—a contradiction since C(x) would be a P -
circle with smaller radius than C(Q). Since `⊥ leaves
all points of Q in one halfplane, `⊥ is tangent to Q and
hence c(Q) = σ(p,Q). Moreover, the points q, c(Q) and
p are collinear. Thus, the circle with center on q and
passing through p is also a P -circle, which means that
q ∈ R(p), i.e. p = pQ.

1 ←) Let C be the circle with center on σ(pQ, Q)
and radius d(σ(pQ, Q), pQ) Since σ(pQ, Q) is the clos-
est point of Q to pQ, C is the smallest circle contain-
ing pQ with center on Q. Moreover, since σ(pQ, Q) ∈
int(R(pQ)), C is a P -circle passing only through pQ and
any other P -circle with center on Q must contain pQ.
Thus, C(Q) = C and it passes only through one point
of P .

2) Follows from the definition of the farthest-point
Voronoi diagram; see Figure 2. �

If case 1 of Lemma 3 holds we are done since C(Q)
will be the circle with center on σ(pQ, Q) and radius
d(σ(pQ, Q), pQ). Therefore, we assume from now on
that c(Q) is a point lying on an edge of V(P).

4 Sketch of the algorithm

The idea behind the algorithm that we will present is
to shrink the disk Q, obtaining in this way a new disk

24th Canadian Conference on Computational Geometry, 2012

108

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

pQ

q
Q

σ(pQ, Q)

R(pQ)
c(Q)

C(Q)

Figure 2: Case 2 of Lemma 3 where c(Q) lies on an edge of
V(P) and C(Q) passes through two points of P . Moreover,
the projection of pQ on Q lies outside of R(pQ).

Q′ with the same center, such that case 1 of Lemma 3
holds for Q′. Thus, c(Q′) can be efficiently computed
and we can scale Q′ back to its original size, tracking
the position of c(Q′) during this scaling.

Let ` be the line joining q with pQ and let ω be the
intersection of ` with ∂R(pQ). It is well known that this
intersection is unique. Let Q′ be the circle with center
on q and radius d(q, ω). Note that Q′ can be seen as the
disk Q scaled down such that ω is the projection of pQ
on Q′ and ω lies in R(pQ). Thus, by Lemma 3, C(Q′)
is the circle with center on ω and radius d(ω, pQ); see
Figure 3.

The idea is now to scale back Q′ to Q, without losing
the position of the query center of Q′ along the process.
In order to do that, we construct a family of disks repre-
senting this scaling as follows. Assume that r and r′ are
the radius of Q and Q′, respectively, and let Q(t) be the
disk with center on q and radius r′+ t(r− r′), t ∈ [0, 1].
Note that Q(t) represents a continuous scaling starting
with Q(0) = Q′ and ending with Q(1) = Q. Let γ(t) be
the curve described by query center of Q(t), t ∈ [0, 1].

Lemma 4 The curve γ(t) is a continuous curve such
that γ(0) = ω, γ(1) = c(Q) and γ(t) lies on πω for
every 0 ≤ t ≤ 1.

Proof. The curve γ(t) is continuous since ρ is a contin-
uous function. Thus, it only remains to prove that γ(t)
is contained in V(P).

Q

q

Q′

pQ

R(pQ)

ω

C(Q′)

Figure 3: The disk Q′ as the reduction of Q. In this case,
c(Q′) = ω is the projection of pQ on Q′.

Since every Q(t) is centered on q, pQ = pQ(t) for ev-
ery 0 ≤ t ≤ 1. Furthermore, for every 0 < t ≤ 1, the
projection of pQ on Q(t) lies outside R(pQ); see Fig-
ure 3. Therefore, Lemma 3 implies that every Q(t) has
its query center lying on an edge of V(P). In other
words, the curve γ(t) is completely contained in V(P).

Since we assumed that cP lies outside Q and since
Q(t) ⊆ Q(t′) for every 0 ≤ t < t′ ≤ 1, the value of
ρ(γ(t)) decreases monotonically as t increases. Thus,
because γ(t) is contained in V(P), Proposition 1 implies
that γ(t) is contained on the path joining cP with ω. �

Our objective will be to find c(Q) along the path πω
using a binary search. However, the boundary of a disk
may intersect a path on V(P) more than once. Thus,
we need the following result.

q

Q(1)

Q(t0)

Q(0)

pQ

ω

πω

x0

x1

R(pQ)

Figure 4: The point x0 is an accumulation point of γ(t)
while x1 represents a discontinuity of γ(t).

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

109

24th Canadian Conference on Computational Geometry, 2012

Lemma 5 There is a unique intersection point between
the path πω and the boundary of Q.

Proof. Proceed by contradiction and assume that the
boundary of Q = Q(1) intersects πω in at least two
points. Recall that Q′ = Q(0) intersects πω at a unique
point ω = σ(pQ, Q

′). Let t0 be the minimum value
in [0, 1] such that ∂Q(t0) intersects πω in more than 2
points. Let x0, . . . , xk be the points of intersection be-
tween Q(t0) and πω, and assume that they are sorted
in decreasing order with respect to their depth on the
tree V(P). Note that, for every 0 ≤ t < t0, Q(t) in-
tersects πω in exactly one point and, by Lemma 4, this
intersection defines the position of γ(t). Therefore, x0
is an accumulation point of the curve γ(t); see Figure 4.
However, Proposition 1 implies that ρ(x0) > . . . > ρ(xk)
and hence γ(t0) must be equal to xk. This represents
a discontinuity of the curve γ(t) and hence a contradic-
tion. �

Using both lemmas presented in this section, we ob-
tain the following result.

Corollary 6 The point c(Q) is the unique intersection
point between πω and ∂Q.

5 The algorithm

Recall that our objective is to design a data structure
on P to answer the following query: Given any disk Q,
find the minimum P -circle with center on Q.

In the previous section we presented the relation ex-
isting between the query center of Q and V(P). In this
section, we use that relation to construct a data struc-
ture on V(P), that allow us to perform a binary search
for c(Q) along the paths contained in V(P).

5.1 Preprocessing

Compute V(P) and cP in O(n log n)-time [13]. Assume
that V(P) is stored as a binary tree with n (unbounded)
leaves, so that every edge and every vertex of the tree
has a set of pointers to the vertices of P defining it.
Every vertex p of P has a pointer to R(p) which is stored
as a convex polygon. Construct a point location data
structure on top of the farthest-point Voronoi diagram
in O(n log n)-time [8] so that we can answer furthest-
point queries in O(log n)-time. If cP is not a vertex of
V(P), we insert it to V(P) by splitting the edge that it
belongs to.

We will use an operation on the vertices of V(P) called
PointBetween with the following properties. Given
two vertices u, v in πω, PointBetween(u, v) returns
a vertex z that splits the path on πω joining u and v
into two subpaths. Moreover, if we discard the subpath
that does not contain c(Q) and we proceed recursively

on the other, then, after O(log n) iterations, the search
interval becomes only an edge of πω containing c(Q).

A data structure that supports this operation was
presented in [12]. This data structure can be con-
structed on top of V(P) in O(n) time and uses linear
space.

5.2 The search for c(Q)

Given a query disk Q with center on q and radius r, we
present an algorithm to determine the position of c(Q)
in O(log n)-time using the data structure described in
the previous section. Let pQ be a point of P such that q
belongs to R(pQ). To find pQ, an O(log n)-time point-
location query on the farthest-point Voronoi diagram
suffices.

Let ` be the line joining q with pQ and let ω be the in-
tersection of the boundary of R(pQ) with `. Since R(pQ)
is a convex polygon, this intersection can be computed
in O(log n)-time. Let Q′ be the disk with center on q
and radius d(q, ω). By Corollary 6, c(Q) is the unique
intersection between πω and ∂Q. Thus, we search on
πω for c(Q) as follows:

The procedure PointBetween(w, cP) provides a
point z that splits πω into two subpaths. Let π (resp.
π′) be the subpath joining z with cP (resp. ω with z)
contained in πω. If z ∈ Q (resp. z /∈ Q), then c(Q)
lies on π (resp. π′). Thus, we can discard either π or π′

and continue the search on the subpath containing c(Q).
We proceed until finding two consecutive vertices on πω,
such that the first one lies inside Q but the second one
does not. The details can be found in Algorithm 1.

Algorithm 1 Algorithm to find c(Q) given the path
πω = (ω = u0, . . . , ur = cP)

1: Define the initial search interval:
u← u0, v ← ur.

2: if uv is an edge of πω then
3: Finish and report the segment s = [u, v].
4: end if
5: z ← PointBetween(u, v).
6: if z ∈ Q then
7: Move forward, let u← z and return to step 2.
8: else
9: Move backwards, let v ← z and return to step 2.

10: end if

When our algorithm finishes, it reports an edge s =
[u, v] of the path πω, such that u is contained in Q but
v is not. By Corollary 6, we conclude that c(Q) is the
intersection point between s and ∂Q. Since the number
of steps on this binary search is O(log n) [12] and since
each step requires a constant number of operations, the
overall running time of the algorithm is O(log n).

24th Canadian Conference on Computational Geometry, 2012

110

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Theorem 7 After preprocessing a set P of
n points in O(n log n)-time, the minimum
P -circle with center on a query disk Q can be
found in O(log n)-time.

References

[1] P. Bose, S. Langerman, and S. Roy. Smallest enclosing
circle centered on a query line segment. In CCCG’08,
pages 167–170, 2008.

[2] P. Bose and G. Toussaint. Computing the constrained
euclidean, geodesic and link centre of a simple polygon
with applications. In Computer Graphics International,
1996. Proceedings, pages 102 –111, jun 1996.

[3] B. Chazelle and J. Matoušek. On linear-time deter-
ministic algorithms for optimization problems in fixed
dimension. In Proceedings of SODA, pages 281–290,
Philadelphia, PA, USA, 1993. Society for Industrial and
Applied Mathematics.

[4] M. E. Dyer. On a multidimensional search technique
and its application to the Euclidean one centre problem.
SIAM J. Comput., 15:725–738, August 1986.

[5] J. Elzinga and D. W. Hearn. Geometrical solutions
for some minimax location problems. Transportation
Science, 6(4):379–394, 1972.

[6] F. Hurtado, V. Sacristan, and G. Toussaint. Some
constrained minimax and maximim location problems.
Studies in Locational Analysis, 15:17–35, 2000.

[7] A. Karmakar, S. Roy, and S. Das. Fast computation
of smallest enclosing circle with center on a query line
segment. Information Processing Letters, 108(6):343 –
346, 2008.

[8] D. G. Kirkpatrick. Optimal search in planar subdivi-
sions. Technical report, University of British Columbia,
Vancouver, BC, Canada, Canada, 1981.

[9] D. Lee. Farthest neighbor Voronoi diagrams and appli-
cations. Report 80-11-FC-04, Dept. Elect. Engrg. Com-
put. Sci., 1980.

[10] N. Megiddo. Linear-time algorithms for linear program-
ming in R3 and related problems. SIAM Journal on
Computing, 12(4):759–776, 1983.

[11] F. Preparata. Minimum spanning circle. Steps in Com-
putational Geometry, pages 3–5, 1977.

[12] S. Roy, A. Karmakar, S. Das, and S. C. Nandy. Con-
strained minimum enclosing circle with center on a
query line segment. Computational Geometry, 42(6-
7):632 – 638, 2009.

[13] M. Shamos and D. Hoey. Closest-point problems. In
Proceedings of FOCS, pages 151–162, Washington, DC,
USA, 1975. IEEE Computer Society.

[14] J. J. Sylvester. A question in the geometry of situation.
Quarterly Journal of Pure and Applied Mathematics, 1,
1857.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

111

24th Canadian Conference on Computational Geometry, 2012

112

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Circle Separability Queries in Logarithmic Time

Greg Aloupis∗ † Luis Barba∗ Stefan Langerman∗‡

Abstract

In this paper we preprocess a set P of n points so that we
can answer queries of the following form: Given a convex
m-gon Q, report the minimum circle containing P and
excluding Q. Our data structure can be constructed in
O(n log n) time using O(n) space, and answers queries
in O(log n+ logm) time.

1 Introduction

The planar separability problem consists of construct-
ing, if possible, a boundary that separates the plane into
two components such that two given sets of geomet-
ric objects become isolated. Typically this boundary
is a single curve such as a line, circle or simple poly-
gon, meaning that each component of the plane is con-
nected. Probably the most classic instance of this prob-
lem is to separate two given point sets with a circle (or
a line, which is equivalent to an infinitely large circle).
A separating line can be found, if it exists, using linear
programing. This takes linear time by Megiddo’s algo-
rithm [9]. For circle separability (in fact spherical sep-
arability in any fixed dimension), O’Rourke, Kosaraju
and Megiddo [10] gave a linear-time algorithm for the
decision problem improving earlier bounds [3, 8]. They
also gave an O(n log n) time algorithm for finding the
largest separating circle and a linear-time algorithm for
finding the minimum separating circle between any two
finite point sets. With these ideas, Boissonat et al. [4]
gave a linear-time algorithm to report the smallest sep-
arating circle for two simple polygons, if any exists.

Augustine et al. [1] showed how to preprocess a point
set (or a simple polygon) P , so that the largest cir-
cle isolating P from a query point can be found in
logarithmic time. For the line separability problem,
Edelsbrunner showed that a point set P can be pre-
processed in O(n log n) time, so that a separating line
between P and a query convex m-gon Q can be com-
puted in O(log n + logm) time [7]. In 3D, Dobkin and
Kirkpatrick showed that two convex polyhedra of size
n and m can be preprocessed in linear time, so that
a separating plane, if any exists, can be computed in

∗Département d’Informatique, Université Libre de
Bruxelles, Brussels, Belgium, aloupis.greg@gmail.com,

{lbarbafl,slanger}@ulb.ac.be
†Chargé de recherches du F.R.S.-FNRS
‡Mâıtre de recherches du F.R.S.-FNRS

O(log n · logm) time [6]. In this paper we show that
a set P on n points can be preprocessed in O(n log n)
time, using O(n) space, so that for any given convex m-
gon Q we can find the smallest circle enclosing P and
excluding Q in O(log n + logm) time. This improves
the O(log n · logm) bound presented in [2], which is de-
scribed in this paper as well.

2 Preliminaries

Let P be a set of n points in the plane and let Q be a
convex m-gon. A P -circle is a circle containing P and
a separating circle is a P -circle whose interior does not
intersect Q. A separating line is a straight line leaving
the interiors of P and Q in different halfplanes.

Let C∗ denote the minimum separating circle and let
c∗ be its center. Note that C∗ passes through at least
two points of P , hence c∗ lies on an edge of the farthest-
point Voronoi diagram V(P), which is a tree with leaves
at infinity [5]. For each point p of P , let R(p) be the
farthest-point Voronoi region of p.

Let CP be the minimum enclosing circle of P . If CP

is constrained by three points of P then its center, cP ,
is at a vertex of V(P). Otherwise CP is constrained by
two points of P (forming its diameter). In this case,
cP is on the interior of an edge of V(P) and we insert
cP into V(P) by splitting the edge where it belongs.
Thus, we can think of V(P) as a rooted tree on cP . For
any given point x on V(P) there is a unique path along
V(P) joining cP with x. Throughout this paper we will
denote this path by πx.

Given any point y in the plane, let C(y) be the mini-
mum P -circle with center on y and let ρ(y) be the radius
of C(y). We say that y is a separating point if C(y) is
a separating circle.

3 Properties of the minimum separating circle

In this section we describe some properties of C∗, and
the relationship between c∗ and V(P). Several results
in this section have been proved in [2].

Let CH(P) denote the convex hull of P . We assume
that the interiors of Q and CH(P) are disjoint, oth-
erwise there is no separating circle. Also, if Q and CP

have disjoint interiors, then CP is trivially the minimum
separating circle.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

113

24th Canadian Conference on Computational Geometry, 2012

Observation 1 Every P -circle contained in a separat-
ing circle is also a separating circle.

Lemma 2 [2] Let x be a point on V(P). The function
ρ is monotonically increasing along every edge of the
path πx starting at cP .

We remark that Lemma 2 has also been shown to hold
on vertices of πx (not edge interiors), in [12].

Theorem 3 [2] Let s be a point on V(P). If s is a
separating point, then c∗ belongs to πs.

Given a separating point s, we claim that if we move
a point y continuously from s towards cP on πs, then
C(y) will shrink and approach Q, becoming tangent to
it for the first time when y reaches c∗. To prove this
claim in Lemma 6, we introduce the following notation.

Let x be a point lying on an edge e of V(P) such that
e lies on the bisector of p, p′ ∈ P . Let C−(x) and C+(x)
be the two closed convex regions obtained by splitting
the disk C(x) with the segment [p, p′]. Assume that x
is contained in C−(x); see Figure 1.

Observation 4 Let x, y be two points lying on an edge
e of V(P). If ρ(x) > ρ(y), then C+(x) ⊂ C+(y) and
C−(y) ⊂ C−(x).

e

p

p′

xy

C+(x)

C+(y)

C−(x)

C−(y)

Figure 1: Observation 4 when ρ(x) > ρ(y).

Lemma 5 Let s be a point on V(P) and let x and y be
two points on πs. If ρ(x) > ρ(y), then C+(x) ⊂ C+(y)
and C−(y) ⊂ C−(x).

Proof. Note that if x and y lie on the same edge, then
the result holds by Observation 4. If they are on differ-
ent edges, we consider the path Φ = (x, v0, . . . , vk, y)
contained in πs joining x and y, such that vi is a

vertex of V(P), i ∈ {0, . . . , k}. Thus, Observation 4
and Lemma 2 imply that C+(x) ⊂ C+(v0) ⊂ . . . ⊂
C+(vk) ⊂ C+(y) and that C−(y) ⊂ C−(vk) ⊂ . . . ⊂
C−(v0) ⊂ C−(x). �

Note that C∗ = C(c∗) must be tangent to the bound-
ary of Q. Otherwise, c∗ could be pushed closer to the
root on V(P), while keeping it as a separating point
until it reaches Q. From now on we refer to φ′ as the
tangency point between C∗ and Q. We claim that φ′

lies on the boundary of C+(c∗). Assume to the con-
trary that φ′ lies on C−(c∗). Let ε > 0 and let cε be the
point obtained by moving c∗ a distance of ε towards cP
on V(P). Note that by Lemma 2, ρ(cε) < ρ(c∗). In ad-
dition, Lemma 5 implies that C−(cε) ⊂ C−(c∗). Since
we assumed that φ′ lies on the boundary of C−(c∗), we
conclude that φ′ does not belong to C(cε). This implies
that, for ε sufficiently small, C(cε) is a separating circle
which is a contradiction to the minimality of C∗. The
following result was mentioned in [2] without a proof.

Lemma 6 Let s be a separating point. If x is a point
lying on πs, then C(x) is a separating circle if and only
if ρ(x) ≥ ρ(c∗). Moreover, C∗ is the only separating
circle whose boundary intersects Q.

Proof. We know by Theorem 3 that c∗ belongs to
πs. Let x1 and x2 be two points on πs such that
ρ(x1) < ρ(c∗) and ρ(c∗) < ρ(x2). Lemma 5 implies that
C+(c∗) ⊂ C+(x1) and since φ′ belongs to the boundary
of C+(c∗), we conclude C(x1) contains φ′ in its interior.
Therefore C(x1) is not a separating circle.

On the other hand, C(x2) contains no point of Q.
Otherwise, let q ∈ Q be a point lying in C(x2). Two
cases arise: Either q belongs to C−(x2) or q belongs
to C+(x2). In the former case, since ρ(s) > ρ(x2),
q ∈ C−(x2) ⊂ C−(s)— a contradiction since C(s) is a
separating circle. In the latter case, since ρ(x2) > ρ(c∗),
Lemma 5 would imply that q belongs to the interior of
C∗ which would also be a contradiction. �

The basis of our algorithm is to find a separating point
s and then perform a binary search on πs to find a
separating circle tangent to Q with center on this path.

4 Preprocessing

We first compute V(P) and cP in O(n log n) time [13].
Assume that V(P) is stored as a binary tree with n
(unbounded) leaves, so that every edge and every vertex
of the tree has a set of pointers to the vertices of P
defining it. Every Voronoi region is stored as a convex
polygon and every vertex p of P has a pointer to R(p).
If cP is not a vertex of V(P), we split the edge that
it belongs to. We want our data structure to support
binary search queries on any possible path πs of V(P).

24th Canadian Conference on Computational Geometry, 2012

114

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Thus, to guide the binary search we would like to have
an oracle that answers queries of the following form:
Given a vertex v of πs, decide if c∗ lies either between
cP and v or between v and s in πs. By Lemma 6, we
only need to decide if C(v) is a separating circle.

We will use an operation on the vertices of V(P) called
PointBetween with the following properties. Given
two vertices u, v in πs, PointBetween(u, v) returns
a vertex z that splits the path on πs joining u and v
into two subpaths. Moreover, if we use our oracle to
discard the subpath that does not contain c∗ and we
proceed recursively on the other, then, after O(log n)
iterations, the search interval becomes only an edge of
πs containing c∗.

A data structure that supports this operation was
presented in [12]. This data structure can be con-
structed in O(n) time and uses linear space.

5 The algorithm

Since Q is a convex m-gon, we can check in O(logm)
time if CP is a separating circle [7]. Thus, assume that
CP is not the minimum separating circle. To determine
the position of c∗ on V(P), we first find a separating
point s and then search for c∗ on πs using our data
structure. To find s, we construct a separating line L
between P and Q in O(log n + logm) time [7]. Let
p

L
be the point of P closest to L and assume that no

other point in P lies at the same distance; otherwise
rotate L slightly. Let L⊥ be the perpendicular to L
that contains p

L
and let s be the intersection of L⊥

with the boundary of R(p
L

); see Figure 2. We know
that L⊥ intersects R(p

L
) because L can be considered

as a P -circle, containing only p
L

, with center at infinity
on L⊥.

s

Q

L

L⊥pL

P

R(pL)

C(s)

Figure 2: Construction of s. Figure borrowed from [2].

Since s is on the boundary of R(p
L

), C(s) passes
through p

L
. Furthermore C(s) is contained in the same

halfplane defined by L that contains P . So C(s) is a
separating circle. Assume that s lies on the edge xy
of V(P) with ρ(x) > ρ(y) and let πs = (u0 = s, u1 =
y, . . . , ur = cP) be the path of length r + 1 joining s
with cP in V(P). Theorem 3 implies that c∗ lies on πs.

It is then possible to use our data structure to perform
a binary search on the vertices of πs, computing, at each
vertex v, the radius of C(v) and the distance to Q in
O(logm) time. This way we can determine if C(v) is a
separating (or intersecting) circle. This approach finds
cP in O(log n · logm) time and was the algorithm given
in [2]. However, an improvement can be obtained by
using the convexity of Q.

To determine if some point v on πs is a separating
point, it is not always necessary to compute the distance
between v and Q. One can first test, in O(1) time, if
C(v) intersects a separating line tangent to Q. If not,
then C(v) is a separating circle and we can proceed with
the binary search. Otherwise, we can try to compute a
new separating line, tangent to Q, not intersecting C(v).
The advantage of this is that while doing so, we reduce
the portion of Q that we need to consider in the future.
This is done as follows:

Compute the two internal tangents L and L′ be-
tween the convex hull of P and Q in O(log n + logm)
time. The techniques to construct these tangents are
shown in Chapter 4 of [11]. Let q and q′ be the respec-
tive tangency points of L and L′ with the boundary of
Q. Consider the clockwise polygonal chain ϕ = [q =
q0, . . . , qk = q′] joining q and q′ as in Figure 3. Recall
that φ′ denotes the intersection point between C∗ and
the boundary of Q and note that the tangent line to C∗

at φ′ is a separating line. Therefore, φ′ must lie on an
edge of ϕ since no separating line passes through any
other boundary point of Q.

Q

L

L′

q′

q

ϕ

P

Figure 3: The construction of ϕ.

If q = q′, then φ′ = q and hence we can ignore Q and
compute the minimum separating circle between P and

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

115

24th Canadian Conference on Computational Geometry, 2012

q. As mentioned previously, this takes O(log n) time.
Assume from now on that q 6= q′, as shown in Figure 3.

For each edge ei = qiqi+1 (0 ≤ i ≤ k − 1) of ϕ, let
`i be the line extending that edge. By construction, we
know that each `i separates P and Q. We say that a
point x on `i but not on ei lies to the left of ei if it is
closer to qi, or to the right if it is closer to qi+1.

Our algorithm will essentially perform two parallel
binary searches, the first one on πs and the second one
on ϕ, such that at each step we discard either a section
of πs or a linear fraction of ϕ. As we search on πs, every
time we find a separating circle, we move towards cP .
When we confirm that a P -circle intersects Q, we move
away from cP . To confirm if a vertex v is a separating
point, we compare C(v) to some separating line `i for
intersection in constant time. If C(v) is a separating
circle, we discard the section of the path lying below v on
V(P). If C(v) does intersect `i, we make a quick attempt
to check if C(v) intersects Q by comparing C(v) and
the edge ei for intersection. If they intersect, v is not
a separating point and we can proceed with the binary
search on πs. Otherwise, the intersection of C(v) with
`i lies either to the left or to the right of ei. However,
in this case we are not able to quickly conclude whether
C(v) intersects Q or not. Thus, we suspend the binary
search on V(P) and focus on C(v), using its intersection
with `i to eliminate half of ϕ. Specifically, the fact that
C(v) intersects `i to one side of ei (right or left) tells
us that no future P -circle on our search will intersect
`i on the other side of ei. This implicitly discards half
of ϕ from future consideration, and is discussed in more
detail in Theorem 7. Thus, in constant time, we manage
to remove a section of the path πs, or half of ϕ. The
entire process is detailed in Algorithm 1.

Theorem 7 Algorithm 1 finds the edge of πs contain-
ing c∗ in O(log n+ logm) time.

Proof. Our algorithm maintains two invariants. The
first is that C(u) is never a separating circle and C(v)
is always a separating circle. To begin with, C(u) =
C(s) is a separating circle while C(v) = CP is not. If
either of these assumptions does not hold, the problem
is solved trivially, without resorting to this algorithm.
Changes to u and v occur in steps 14 or 17, and in
both the invariant is preserved. Thus, c∗ always lies
on the path joining u with v. As a second invariant, φ′

always lies on the clockwise path joining qa with qb along
ϕ. We already explained that the invariant holds when
a = 0 and b = k, corresponding to the inner tangents
supporting P and Q. Thus, we only need to look at
steps 20 and 22 where a and b are redefined. We analyze
Step 20, however Step 22 is analogous.

In Step 20 we know that C(z) intersects `j to the left
of ej and that ej does not intersect C(z). We claim that
for every point w lying on an edge of πs, if C(w) is a

Algorithm 1 Given ϕ = [q = q0, . . . , qk = q′] and
πs = (u0 = s, u1 = y, . . . , ur = cP), find the edge of πs
that contains c∗.

1: Define the initial subpath of πs that contains c∗,
u← s, v ← cP

2: Define the initial search interval on the chain ϕ,
a← 0, b← k

3: if u and v are neighbors in V(P) and b = a+1 then
4: Finish and report the segment S = [u, v] and the

segment H = [qa, qb]
5: end if
6: Let z ← FindPointBetween(u, v), j ← ba+b

2 c
7: Let ej ← qjqj+1 and let `j be the line extending ej
8: if b > a+ 1 then
9: Compute ρ(z) and let δ ← d(z, `j), ∆← d(z, ej)

10: else
11: Compute ρ(z) and let δ ← d(z, ej), ∆← d(z, ej)
12: end if
13: if ρ(z) ≤ δ, that is C(z) is a separating circle then
14: Move forward on πs, u← z and return to Step 3
15: else
16: if ρ(z) > ∆ , that is if C(z) is not a separating

circle then
17: Move backward on πs, v ← z and return to

Step 3
18: else
19: if C(z) intersects `j to the left of ej then
20: Discard the polygonal chain to the right of

ej , b← max{j, a+ 1}
21: else
22: Discard the polygonal chain to the left of ej ,

a← j
23: end if
24: Return to Step 3
25: end if
26: end if

24th Canadian Conference on Computational Geometry, 2012

116

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

separating circle that intersects `j , then it intersects it
to the left of ej . Note that if our claim is true, we can
ignore the polygonal chain lying to the right of ej since
no separating circle will intersect it. To prove our claim,
suppose that there is a point w on πs, such that C(w)
is a separating circle and C(w) intersects `j to the right
of ej . Let x and x′ be two points on the intersection
of `j with C(w) and C(z), respectively. First suppose
that ρ(w) < ρ(z) and recall that by Lemma 5, since x′

lies on C+(z) ⊂ C+(w), x′ lies in C(w). Thus, both
x and x′ belong to C(w) which by convexity implies
that ej is contained in C(w). Therefore C(w) is not a
separating circle which is a contradiction. Analogously,
if ρ(w) > ρ(z), then ej is contained in C(z) which is
directly a contradiction since we assumed the opposite.
Thus, our claim holds.

Note that in each iteration of the algorithm, a, b, u
or v are redefined so that either a linear fraction of
ϕ is discarded, or a part of πs is discarded and a
new call to PointBetween is performed. Recall that
our data structure guarantees that O(log n) calls to
PointBetween are sufficient to reduce the search in-
terval in πs to an edge [12]. Thus, the algorithm finishes
in O(log n+ logm) iterations.

One additional detail needs to be considered when
b = a + 1. In this case only one edge e = [qa, qa+1]
remains from ϕ, and φ′ lies on e. Thus, if the line `
extending e intersects C(z) but e does not, then either
Step 20 or 22 is executed. However, nothing will change
in these steps and the algorithm will loop. In order to
avoid that, we check in Step 8 if only one edge e of ϕ
remains. If this is the case, we know by our invariant
that φ′ belongs to e and therefore we continue the search
computing the distance to e instead of computing the
distance to the line extending it. This way, the search
on ϕ stops but it continues on πs until the edge of V(P)
containing c∗ is found.

Since we ensured that every edge in V(P) has point-
ers to the points in P that defined it, every step in
the algorithm can be executed in O(1) time. Thus, we
conclude that Algorithm 1 finishes in O(log n + logm)
time. Since both invariants are preserved during the
execution, Lemma 6 implies that the algorithm returns
segments [u, v] from πs containing c∗, and [qa, qb] from
ϕ containing φ′. �

From the output of Algorithm 1 it is trivial to obtain
c∗ in constant time.

Corollary 8 After preprocessing a set P of n points
in O(n log n) time, the minimum separating circle be-
tween P and any query convex m-gon can be found in
O(log n+ logm) time.

References

[1] J. Augustine, S. Das, A. Maheshwari, S. C. Nandy,
S. Roy, and S. Sarvattomananda. Localized geometric
query problems. CoRR, abs/1111.2918, 2011.

[2] L. Barba and J. Urrutia. Dynamic circle separability
between convex polygons. In Proceedings of the Span-
ish Meetings in Computational Geometry, pages 43–46,
2011.

[3] B. K. Bhattacharya. Circular separability of planar
point sets. Computational Morphology, pages 25–39,
1988.

[4] J.-D. Boissonnat, J. Czyzowicz, O. Devillers, and
M. Yvinec. Circular separability of polygons. Algo-
rithmica, 30:67–82, 2001.

[5] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Algorithms
and Applications. Springer-Verlag, third edition, 2008.

[6] D. P. Dobkin and D. G. Kirkpatrick. Fast detection of
polyhedral intersection. Theoretical Computer Science,
27(3):241 – 253, 1983.

[7] H. Edelsbrunner. Computing the extreme distances
between two convex polygons. Journal of Algorithms,
6(2):213 – 224, 1985.

[8] C. E. Kim and T. A. Anderson. Digital disks and a dig-
ital compactness measure. In STOC ’84: Proceedings
of the sixteenth annual ACM symposium on Theory of
computing, pages 117–124, New York, NY, USA, 1984.
ACM.

[9] N. Megiddo. Linear programming in linear time when
the dimension is fixed. J. ACM, 31(1):114–127, Jan.
1984.

[10] J. O’Rourke, S. Rao Kosaraju, and N. Megiddo. Com-
puting circular separability. Discrete and Computa-
tional Geometry, 1:105–113, 1986.

[11] F. Preparata and M. Shamos. Computational geometry:
an introduction. Springer-Verlag, 1985.

[12] S. Roy, A. Karmakar, S. Das, and S. C. Nandy. Con-
strained minimum enclosing circle with center on a
query line segment. Computational Geometry, 42(6-
7):632 – 638, 2009.

[13] M. I. Shamos and D. Hoey. Closest-point problems. In
Foundations of Computer Science, 1975., 16th Annual
Symposium on, pages 151 –162, oct. 1975.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

117

24th Canadian Conference on Computational Geometry, 2012

118

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Flip Distance Between Two Triangulations of a Point-Set is NP-complete

Anna Lubiw∗ Vinayak Pathak∗

Abstract

Given two triangulations of a convex polygon, comput-
ing the minimum number of flips required to transform
one to the other is a long-standing open problem. It is
not known whether the problem is in P or NP-complete.
We prove that two natural generalizations of the prob-
lem are NP-complete, namely computing the minimum
number of flips between two triangulations of (1) a poly-
gon with holes; (2) a set of points in the plane.

1 Introduction

Given a triangulation in the plane, a flip operates on two
triangles that share an edge and form a convex quadri-
lateral. The flip replaces the diagonal of the convex
quadrilateral by the other diagonal to form two new
triangles. A sequence of flips can transform any tri-
angulation to any other triangulation—this is true for
triangulations of a convex polygon, and more generally
for triangulations of a point set, and for triangulations
of a polygon with holes.

In this paper we investigate the complexity of com-
puting the flip distance, which is the minimum number
of flips to transform one triangulation to another. This
is particularly interesting for convex polygons, where
the flip distance is the rotation distance between two
binary trees (see below).

The main result of our paper is that it is NP-complete
to compute the flip distance between two triangulations
of a polygon with holes, or of a set of points in the plane.

After submitting this paper, we learned that Pilz [20]
independently proved the same result. The differences
between our proofs are discussed later on.

1.1 Flip distance and rotation distance

Binary search trees are a widely used data structure,
and rotations are the basic operations used to balance
them. Despite the importance of rotations, the com-
plexity of computing the minimum number of rotations
to convert one labelled binary search tree to another,
called the “rotation-distance”, has been open since at
least 1982 [6]. It is not known if the problem is NP-
complete.

∗Cheriton School of Computer Science, University of Waterloo,
Waterloo, Canada{alubiw,vpathak}@uwaterloo.ca

There is a bijection between binary trees with n − 1
labeled leaves and triangulations of an n-vertex convex
polygon. Moreover, a rotation in the tree corresponds
to a flip in the polygon. Thus, computing the rotation
distance between two trees is exactly equivalent to com-
puting the flip distance between two triangulations of a
convex polygon. See [23].

1.2 Generalizations and related work

Flips have been studied in the geometric setting for tri-
angulations of point sets and of polygons. In this con-
text, a convex polygon is equivalent to a point set in
convex position. The former generalizes to simple poly-
gons, and the latter to planar point sets. Both of these
are contained in the most general case of a polygon with
holes (a “polygonal region”), so long as we consider a
point as a one vertex polygonal hole. There is a survey
on flips by Bose and Hurtado [4]. It also covers flips
in the combinatorial setting of maximal planar graphs,
which we will not discuss. Flips are often studied in
terms of the flip graph which has a vertex for every tri-
angulation and an edge when two triangulations differ
by one flip, see e.g., [10].

The foundational result is that the flip graph is con-
nected. This was proved first by Lawson [14] for the
case of point sets. He then re-proved the result [13] by
arguing that any triangulation can be flipped to the De-
launay triangulation, which then acts as a “canonical”
triangulation from which any other triangulation can be
reached. The constrained Delaunay triangulation can
be used in the same way to argue that any polygonal
region has a connected flip graph [2]. For more direct
proofs see [9, 12, 18].

Regarding the number of flips needed to transform
one triangulation to another, flipping via the [con-
strained] Delaunay triangulation takes O(n2) flips—in
fact, a more exact bound is the number of visibility
edges, see [2]. Hurtado, Noy and Urrutia [12] proved
that Ω(n2) flips may be required even for triangulations
of a polygon. For the case of a convex polygon, Sleator
et al. [23] proved that for large values of n, the flip dis-
tance between two triangulations of an n-gon is at most
2n− 10, and that 2n− 10 flips are sometimes necessary.

The problem of computing the exact flip distance be-
tween two given triangulations is especially interesting
for convex polygons, as mentioned above. Lucas [16]
gave a polynomial time algorithm for special cases. The

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

119

24th Canadian Conference on Computational Geometry, 2012

best approximation factor is trivially 2, and can be im-
proved in some special cases [15]. Recently it was proved
that the problem is fixed parameter tractable in the flip
distance [5]. Attempts have also been made to com-
pute good upper and lower bounds on the flip distance
efficiently. See, for example, [1, 19, 17, 7].

The more general problem of computing the flip dis-
tance between two triangulations of a point set is stated
as an open problem in the survey by Bose and Hur-
tado [4], and the book by Devadoss and O’Rourke [8,
Unsolved Problem 12]. Hanke et al. [11] proved that the
flip-distance is upper bounded by the total number of
intersections between the overlap of the initial and final
triangulations. Eppstein [10] provided an algorithm to
compute a lower bound on the flip-distance efficiently.
He also showed that the lower bound is equal to the
flip-distance for certain special kinds of point-sets.

2 Triangulations of polygonal regions

Theorem 1 The following problem is NP-complete:
Given two triangulations of a polygon with holes and
a number k, is the flip distance between the two trian-
gulations at most k?

2.1 Proof idea

Note that the problem lies in NP. We prove hardness by
giving a polynomial time reduction from vertex cover on
3-connected cubic planar graphs [3, 24], which is known
to be NP-complete [3, 24].

The idea is to take a planar straight-line drawing of
the graph and create a polygonal region by replacing
each edge by a “channel” and each vertex by a “vertex
gadget”. We then construct two triangulations of the
polygonal region that differ on the channels, and show
that a short flip sequence corresponds to a small vertex
cover in the original graph.

We begin by describing channels and their triangula-
tions, because this gives the intuition for the proof. A
channel is a polygon that consists of two 7-vertex reflex
chains joined by two end edges, as shown in Figures 1(a)
and 1(b). Note that every vertex on the upper reflex
chain sees every vertex on the lower reflex chain and
vice versa. We identify two triangulations of a channel:
a left-inclined triangulation as shown in Figure 1(a); and
a right-inclined triangulation as shown in Figure 1(b).

A channel is the special case n = 7 of the polygons
Hn of Hurtado et al. [12]. They prove in Theorem 3.8
that the flip distance between the right-inclined and left-
inclined triangulations of Hn is (n− 1)2. We include a
different proof in order to generalize:

Property 1 Transforming a left-inclined triangulation
of a channel to a right-inclined triangulation takes at
least 36 flips.

Proof. In any triangulation of a channel, each edge of
the upper reflex chain is in a triangle whose apex lies
on the bottom reflex chain. This apex must move from
lower right (B7) to lower left (B1), in order to trans-
form the left-inclined triangulation to the right-inclined
triangulation. Similarly, each edge of the lower reflex
chain is in a triangle whose apex lies on the upper reflex
chain, and must move from upper left to upper right.
However, one flip can only involve one edge of the up-
per chain and one edge of the lower chain (no other 4
vertices form a convex quadrilateral), and thus can only
move one upper and one lower apex, and only by one
vertex along the chain. Twelve triangles times six apex
moves per triangle divided by two apex moves per flip
gives a lower bound of 36 flips. �

We now show that the number of flips goes down if a
channel has a cap, an extra vertex that is visible to all
the channel vertices, as shown in Figure 1(c).

Property 2 The flip distance from a left-inclined to a
right-inclined triangulation of a capped channel is 24.

Proof. The “canonical” triangulation shown in Fig-
ure 1(d) is 12 flips away from both the left-inclined and
the right-inclined triangulations of a capped channel: To
flip the left-inclined triangulation to the canonical tri-
angulation, flip edges A1B1, . . . , A1B7 followed by edges
A2B7, . . . , A6B7 in that order. Similarly for the right-
inclined triangulation.

For the lower bound, we follow the same idea as
above. In any triangulation, each edge of the upper
[lower] reflex chain is in a triangle whose apex is either
the cap or a vertex of the lower [upper] chain. There
are only two kinds of flips: (1) a flip involving the cap
vertex, an edge of one chain, and a vertex of the other
chain; and (2) a flip involving one edge of each chain.
A flip of type (1) moves the apex of only one triangle,
and moves the apex to or from the cap. If a triangle is
altered by a flip of type (1) then at least two such flips
are required, one to move the apex to the cap and one
to move the apex from the cap. If a triangle is only al-
tered by flips of type (2), then, as above, it costs 3 flips
to get the apex to its destination. Thus the 12 triangles
require at least 24 flips. �

We now elaborate on the idea of our reduction. We
create a polygonal region by replacing each edge in
the planar drawing by a channel, and each vertex by
a vertex gadget. We make two triangulations of the
polygonal region. In triangulation T1 all edge channels
are left-inclined and in T2 all edge channels are right-
inclined. The triangulations are otherwise identical. We
design vertex gadgets so that making a few flips in a ver-
tex gadget creates a cap for a channel connected to it.
Since transforming a channel from left-inclined to right-
inclined is less costly if it is capped, the minimum flip

24th Canadian Conference on Computational Geometry, 2012

120

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

A1 A2 A3 A4 A5 A6
A7

B1
B2 B3 B4 B5 B6 B7

(a) A left-inclined channel.

A1 A2 A3 A4 A5 A6
A7

B1
B2 B3 B4 B5 B6 B7

(b) A right-inclined channel.

O

A1 A2 A3 A4 A5 A6
A7

B1
B2 B3 B4 B5 B6 B7

(c) A capped channel.

O

A1 A2 A3 A4 A5 A6
A7

B1
B2 B3 B4 B5 B6 B7

(d) The canonical channel

A1 A2 A3 A4 A5 A6
A7

B1
B2 B3 B4 B5 B6 B7

(e) Narrow (shaded) and wide (dashed) mouths.

Figure 1: Channels

sequence that transforms all the channels is obtained by
choosing the smallest set of vertices that covers all the
edges and using them to cap all the channels. Thus,
intuitively, a minimum flip sequence corresponds to a
minimum vertex cover.

One complication is that we cannot construct a vertex
gadget for a sharp vertex—a vertex of degree 3 where
one of the three incident angles in the planar drawing
is ≥ π. Therefore, we first show how to eliminate sharp
vertices. Let G be our given 3-connected cubic planar
graph. Using a result of Rote and Bárány [21], we can
find, in polynomial time, a strictly convex drawing of
G on a polynomial-sized grid. Strictly convex means
that each face is a strictly convex polygon. Thus the
only sharp vertices of this drawing are the vertices of
the outer face. We replace each sharp vertex v by a
3-vertex chain v1, v2, v3 as shown in Figure 2. We claim
that G has a vertex cover of size ≤ k if and only if
the modified graph has a vertex cover of size ≤ k + t,
where t is the number of vertices on the outer face of
G. This is because any minimum vertex cover of the
modified graph can be adjusted to use either {v1, v3}
(corresponding to v being in the vertex cover of G), or
{v2} (corresponding to v not being in the vertex cover
of G).

⇒
v v1

v2 v3

Figure 2: Eliminating sharp vertices

We remark that Pilz’s independent NP-hardness re-
duction [20] is from general (non-planar) vertex cover.
His construction begins with the same channel gadgets,
but then uses channels that overlap geometrically while
flipping independently.

2.2 Details of the reduction

For the remainder of the proof we will assume that we
have a graph G with vertices of degree 2 and 3, and a
straight-line planar drawing, Γ, of the graph on a poly-
nomial sized grid with no sharp vertices.

We define the narrow and wide mouths of a channel
as shown in Figure 1(e). Any point inside the narrow
mouth but outside the channel can be a potential cap
for the channel. We show below that a vertex outside
the wide mouth does not reduce the flip distance.

We now describe the triangulated vertex gadgets. See
Figures 3(a) and 3(b). Each of the 2 or 3 channels at-
tached to the vertex gadget will have one potential cap.
We place a convex quadrilateral CDEF with diagonal

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

121

24th Canadian Conference on Computational Geometry, 2012

CE, called the lock, that separates each channel from
its potential cap. Thus the lock CE must be flipped, or
“unlocked”, in order to cap any channel.

For the degree-2 gadget (see Figure 3(a)), place point
C in the smaller angular sector (of angle < π) between
the two channels, so that C is outside the wide mouths
of both channels. Place points D, E, and F in the
other angular sector, with D inside channel 1’s narrow
mouth and outside channel 2’s wide mouth, E outside
the wide mouth of both channels, and F inside channel
2’s narrow mouth and outside channel 1’s wide mouth.
Triangulate as shown. Thus D is a potential cap for
channel 1 and F is a potential cap for channel 2.

For the degree-3 gadget (see Figure 3(b)), note that
because the vertex is not sharp, the mouth of each chan-
nel exits between the other two channels. We place ver-
tices in the angular sectors as shown in the figure. Place
D inside the intersection of the narrow mouths of chan-
nels 1 and 2, and outside the wide mouth of channel 3.
Place F inside channel 3’s narrow mouth and outside
channel 1 and 2’s wide mouths. Place C and E out-
side the wide mouths of all the channels. Triangulate
as shown. Thus D is a potential cap for both channel 1
and 2 and F is a potential cap for channel 3.

Observe that every channel is blocked from its unique
potential cap by exactly 3 edges. (For example, in Fig-
ure 3(b), channel 1 is separated from its potential cap D
by edges FA, FE, and CE.) Observe furthermore that
for each vertex gadget, the sets of blocking edges of the
channels have one edge in common, namely the locking
edge CE, and are otherwise disjoint. These properties
are crucial for correctness.

We will say that a vertex gadget is locked if the diag-
onal CE exists and unlocked otherwise. We first show
what is possible with unlocked vertex gadgets.

Property 3 If we unlock a vertex gadget then, for each
channel attached to it, there is a sequence of 28 flips
that transforms the channel triangulation and returns
the vertex gadget to its (unlocked) state.

Proof. We first claim that there is a 2-flip sequence
that caps the channel. We enumerate the possibilities
(refer to Figure 3). Note that we handle channels one
at a time, not simultaneously. For the degree-2 gadget:
flip CF followed by CA for channel 1; flip CD followed
by CB′ for channel 2. For the degree-3 gadget: flip FE
followed by FA for channel 1; flip CF followed by CA′

for channel 2; flip ED followed by EA′′ for channel 3.
Once the channel is capped, we can transform the left-
inclined triangulation to the right-inclined triangulation
in 24 flips by Property 2. Then we undo the 2 flips that
capped the channel. The total number of flips is 28. �

Next we give lower bounds on the number of flips.
First, note that the proof of Property 1 carries over to:

Property 4 Transforming a left-inclined triangulation
of a channel to a right-inclined triangulation takes at
least 36 flips even in the presence of other vertices, so
long as the other vertices lie outside the wide mouths at
either end of the channel.

We now consider what happens when we unlock some
vertex gadgets. Let T ′1 be the triangulation obtained
from T1 by unlocking some vertex gadgets. Let T ′2 be the
triangulation obtained from T2 by unlocking the same
vertex gadgets. Let C be the set of channels that have
a locked vertex gadget at both ends. Then:

Property 5 If the vertex gadgets at the ends of the
channels of C remain locked, then the number of flips re-
quired to transform T ′1 to T ′2 is at least 28|E−C|+36|C|.

Proof. Consider a channel of C, with a locked vertex
gadget at both ends. The cap vertices of the channel
are not useable. By construction, the other vertices are
outside the wide mouths of the channel. Therefore, by
Property 4, we need 36 flips to transform it.

Consider the channels with an unlocked vertex gadget
at one end. We only save flips by capping the channel.
To do this, we must flip the two edges that block the
channel from its cap. Because the edges that block one
channel are disjoint from the edges that block any other
channel, we must do two flips per channel, and we must
re-flip those edges to return to the original state. Fi-
nally, by Property 2 it takes at least 24 flips to transform
a capped channel. (Note that the proof of Property 2
carries over even if the channel is capped at both ends.)
The total number of flips is 28 per channel. �

2.3 Putting it all together

Lemma 2 G has a vertex cover of size ≤ k if and only
if the flip distance between the two triangulations T1 and
T2 is ≤ 2k + 28|E|.

Proof. Suppose that G has a vertex cover of size k.
Unlock the corresponding k vertex gadgets. Each edge
channel has an unlocked gadget at one end, so by Prop-
erty 3 we can transform between the two triangulations
of the channel in 28 flips. When all channels have been
transformed, we relock the k vertex gadgets. The total
number of flips is 2k + 28|E|.

For the other direction, suppose that there is a flip
sequence between T1 and T2 of length ≤ 2k + 28|E|.
Let L be the set of vertices whose gadgets are unlocked
in the flip sequence. Let C be the set of edges not
covered by vertex set L. By adding one vertex to cover
each edge of C, we observe that G has a vertex cover
of size |L| + |C|. Thus it suffices to show that |L| +
|C| ≤ k. By Properties 4 and 5 the number of flips is at
least 2|L|+ 36|C|+ 28(|E − C|) ≥ 2|L|+ 28|E|+ 8|C|.

24th Canadian Conference on Computational Geometry, 2012

122

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Channel 1

Channel 2

C D

E

F
A

B

A' B'

(a) Degree 2

Channel 1
E

F

C

D

Channel 2

Channel 3A

B

A' B'

A''

B''

(b) Degree 3

Figure 3: Gadgets for vertices

By assumption, the number of flips was ≤ 2k + 28|E|.
Therefore 2|L| + 8|C| ≤ 2k, which implies that |L| +
|C| ≤ k, as required. �

The last ingredient of the NP-completeness proof is
to show that the reduction takes polynomial time. We
need the following claim.

Claim 1 The size of the coordinates used in the con-
struction is bounded by a polynomial in n.

Proof. We give the main idea here, with further details
in the full version. We begin with a straight line draw-
ing of a graph on a polynomial size grid. Expand the
grid, and allocate a square region around each vertex

for the vertex gadget. Expand each edge to two paral-
lel line segments. These line segments will become the
channel, but for now, the reflex vertices of the chan-
nel are all collinear, which means that the channel’s
wide mouth is equal to its narrow mouth. The points
C,D,E, F of the vertex gadget go in feasible regions
defined by the wide and narrow mouths (e.g. in the 3-
channel gadget, point D lies in the narrow mouth of
channels 1 and 2, but outside the wide mouth of chan-
nel 3). We make the channels narrow enough so that all
the feasible regions intersect the square region allocated
to the gadget. We claim that we can choose the channel
end points A,B,A′, B′, A′′, B′′ on the expanded grid so
that the resulting channels satisfy this property.

Now we pick points C,D,E, F inside the appropri-
ate regions. Because the boundaries of the feasible re-
gions are determined by pairs of points on the expanded
grid, the new points can be chosen to have polynomial
size (because solutions to linear programs have polyno-
mial size as shown in Theorem 10.1 of [22]). Finally
we place the reflex points of each channel. The feasible
region wherein each set of reflex points can be placed is
bounded by lines through pairs of points already placed.
Thus, we can choose reflex points of polynomial size. �

3 Triangulations of point-sets

We prove the NP-hardness of computing the flip dis-
tance between two triangulations of a point set by re-
ducing from computing the flip distance between two
triangulations of a polygonal region. Given two trian-
gulations T1 and T2 of a polygonal region R, we trian-
gulate all the holes and pockets of R the same way in
both triangulations. Next, we repeat each edge on the
boundary of the holes and pockets n2 times (as shown
in Figure 4). This gives two triangulations of a point
set. We claim that the flip distance between the two
triangulations of the point set will be the same as the
flip distance between the original T1 and T2. We use the
fact that the flip distance to the constrained Delaunay
triangulation is at most

(
n
2

)
[2]. Thus the flip distance

between T1 and T2 is less than n2, but dismantling a
single set of repeated edges will itself require more flips.
The exact details on how we repeat the edges can be
found in the full version of our paper.

Theorem 3 The following problem is NP-complete:
Given two triangulations of a point set in the plane,
and a number k, is the flip distance between the trian-
gulations at most k?

4 Conclusion

We have shown that it is NP-complete to compute the
flip distance for triangulations of a polygonal region, or

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

123

24th Canadian Conference on Computational Geometry, 2012

Figure 4: Repeating edges on the boundary of holes.

a point set. The problem remains open for a convex
polygon, or a simple polygon.

Acknowledgements. We thank Therese Biedl for
helpful suggestions.

References

[1] J.-L. Baril and J.-M. Pallo. Efficient lower and
upper bounds of the diagonal-flip distance be-
tween triangulations. Information Processing Let-
ters, 100:131–136, 2006.

[2] M. Bern and D. Eppstein. Mesh generation and
optimal triangulation. In Computing in Euclidean
Geometry, 2nd edition, pages 47–123. World Scien-
tific, Lecture Notes Series on Computing, 1995.

[3] T. Biedl, G. Kant, and M. Kauffman. On trian-
gulating planar graphs under the four-connectivity
constraint. Algorithmica, 19(4):427–446, 1997.

[4] P. Bose and F. Hurtado. Flips in planar graphs.
Computational Geometry: Theory and Applica-
tions, 42:60–80, 2009.

[5] S. Cleary and K. St. John. Rotation distance
is fixed-parameter tractable. Inf. Process. Lett.,
109(16):918–922, July 2009.

[6] K. Culik II and D. Wood. A note on some tree
similarity measures. Information Processing Let-
ters, 15(1):39–42, 1982.

[7] P. Dehornoy. On the rotation distance between bi-
nary trees. Advances in Mathematics, 223(4):1316–
1355, 2010.

[8] S. L. Devadoss and J. O’Rourke. Discrete and
Computational Geometry. Princeton University
Press, 2011.

[9] N. Dyn, I. Goren, and S. Rippa. Transforming tri-
angulations in polygonal domains. Computer Aided
Geometric Design, 10:531–536, 1993.

[10] D. Eppstein. Happy endings for flip graphs. J.
Computational Geometry, 1, 2010.

[11] S. Hanke, T. Ottmann, and S. Schuierer. The edge-
flipping distance of triangulations. Journal of Uni-
versal Computer Science, 2(8):570–579, 1996.

[12] F. Hurtado, M. Noy, and J. Urrutia. Flipping edges
in triangulations. Discrete and Computational Ge-
ometry, 22:333–346, 1999.

[13] C. Lawson. Software for C1 surface interpolation.
In J. Rice, editor, Mathematical Software III, pages
161–194. Academic Press, New York, 1977.

[14] C. L. Lawson. Transforming triangulations. Dis-
crete Mathematics, 3(4):365–372, 1972.

[15] M. Li and L. Zhang. Better approximation of
diagonal-flip transformation and rotation transfor-
mation. In Proceedings of the 4th Annual In-
ternational Conference on Computing and Com-
binatorics, COCOON ’98, pages 85–94. Springer-
Verlag, 1998.

[16] J. M. Lucas. Untangling binary trees via rotations.
The Computer Journal, 47(2), 2004.

[17] F. Luccio, A. M. Enriquez, and L. Pagli. Lower
bounds on the rotation distance of binary trees.
Information Processing Letters, 110(21):934–938,
2010.

[18] E. Osherovich and A. Bruckstein. All triangula-
tions are reachable via sequences of edge-flips: an
elementary proof. Computer Aided Geometric De-
sign, 25:157–161, 2008.

[19] J. Pallo. An efficient upper bound of the rotation
distance of binary trees. Information Processing
Letters, 73:87–92, 2000.

[20] A. Pilz. Flip distance between triangula-
tions of a planar point set is NP-complete.
http://arxiv.org/abs/1206.3179.

[21] G. Rote and I. Bárány. Strictly convex drawings of
planar graphs. Documenta Mathematica, 11:369–
391, 2006.

[22] A. Shrijver. Theory of Linear and Integer Program-
ming. John Wiley & Sons, 1986.

[23] D. D. Sleator, R. E. Tarjan, and W. P. Thurston.
Rotation distance, triangulations, and hyperbolic
geometry. J. Amer. Math. Soc, 1:647–681, 1988.

[24] T. Watanabe, T. Ae, and A. Nakamura. On the
node cover problem of planar graphs. In Proceed-
ings of the International Symposium on Circuits
and Systems, pages 78–81, 1979.

24th Canadian Conference on Computational Geometry, 2012

124

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Steiner Reducing Sets of Minimum Weight Triangulations

Cynthia M. Traub∗

Abstract

This paper develops techniques for computing the mini-
mum weight Steiner triangulation of a planar point set.
We call a Steiner point P a Steiner reducing point of a
planar point set X if the weight (sum of edge lengths) of
a minimum weight triangulation of X ∪{P} is less than
that of X. We define the Steiner reducing set St(X)
to be the collection of all Steiner reducing points of X.
We provide here necessary conditions for membership
in the Steiner reducing set. We prove that St(X) can
be topologically complex, containing multiple connected
components or even holes. We construct families of sets
X for which the number of connected components of
St(X) grows linearly in the cardinality of X. We fur-
ther prove that St(X) need not be simply connected,
and the rank of H1(St(X)) (i.e. the number of holes)
can also grow linearly in the cardinality of X.

1 Introduction

We consider minimum weight triangulations of point
sets that properly contain an initial input set X of
n points. We examine the topology of the collection
of Steiner points distinguished by the property that
adding one such point to the input set results in a min-
imum weight triangulation of a set of n+ 1 points with
weight less than that of X. We call these distinguished
Steiner points Steiner reducing points; the collection of
all Steiner reducing points is called the Steiner reduc-
ing set St(X). We present necessary conditions for a
point to be a Steiner reducing point. Our two main re-
sults prove that the number of connected components of
St(X) can grow linearly in the size of the input set, and
St(X) may fail to be simply connected, as illustrated
in Figure 1. In Section 2 we will present two necessary
conditions for constructing Steiner reducing sets. The
topology of Steiner reducing sets is studied in Section 3.

1.1 Definitions and Techniques

A triangulation of a finite set X of points in R2 is an
inclusion-maximal set of non-intersecting straight line
segments between pairs of points in X. The weight of
a triangulation is defined as the sum of the Euclidean
lengths of its line segments, hence, a minimum weight

∗Department of Mathematics and Statistics, Southern Illinois
University Edwardsville, cytraub@siue.edu

FD

B

E

AC

R

H
I

K
L

J

P

M
N

O
Q

G

Figure 1: The Steiner reducing set of the point set whose
minimum weight triangulation is illustrated in Figure
7; empty circles represent points that are not Steiner
reducing points

triangulation of X is a triangulation (not necessarily
unique) with weight less than or equal to that of any
other triangulation of X. We denote the weight of
a minimum weight triangulation of a point set X by
mwt(X). An edge AB is unavoidable if every triangu-
lation of X contains the edge AB. The edges of the
boundary of the convex hull are all unavoidable, as are
any edges interior to the convex hull which are not prop-
erly intersected by any other possible edge. We direct
the reader to a standard topology book [9] for formal
definitions of the topological terms used in this paper.
For our purposes here, the rank of H0(Z) counts the
number of connected components in the point set Z,
and the rank of H1(Z) counts the number of holes or
handles in a set Z. A path-connected set without holes
is called simply connected.

Calculations of minimum weight triangulations given
in this paper were made using integer programming over
the universal polytope, or for small examples, verified

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

125

24th Canadian Conference on Computational Geometry, 2012

by hand. The program universalbuilder written by De
Loera and Peterson was used to generate a system of
inequalities defining the universal polytope of each in-
put set X, which was then input to the optimization
engine CPLEX. This process found the weight of the
minimum weight triangulation as well as the triangles
used. A Bash shell script was used to test the effects
of adding an additional point at each location in an
n× n grid. In order to show that a minimal weight tri-
angulation has a specific structure for each element of
a 1- or 2-dimensional set of Steiner points, we appeal
to the β−skeleton, unavoidable edges, and the trian-
gle inequality, as well as the interaction between certain
curves called k−ellipses and the chambers of the hyper-
plane arrangement induced by specific pairs of points.

1.2 Background and Previous Work

The minimum weight triangulation decision problem
“Given a finite planar point set X and a positive in-
teger b, is there a triangulation of X with weight b or
less?” has been a problem of theoretical and computa-
tional interest for over thirty years [6]. The problem
was shown to be NP-hard in 2006 [12], yet determina-
tion of minimum weight triangulations of special classes
of point sets, such as polygonal domains, can be done in
polynomial time [7, 11]. The shortest edge [7] and spe-
cific subsets of edges such as the β-skeleton [2, 10] have
been proven to belong to all minimum weight triangula-
tions. The simultaneous addition of many Steiner points
to certain point sets can reduce triangulation weight by
a significant amount, as shown in [4]. Practical motiva-
tions for the study of Steiner points include improving
the ability of meshes to approximate fine details [1], and
allowing approximation of the minimum weight triangu-
lation of an input point set [4]. Our work presented here
is the first to define and study the shape of the Steiner
reducing set.

In order to find all edges of a minimum weight tri-
angulation (after perhaps identifying a subset of the
edges), one algorithmic approach applies integer pro-
gramming to the universal polytope. This polytope has
vertices corresponding to each triangulation ofX. Thus,
even though the minimum weight triangulation problem
is known to be NP-hard, there are algorithmic means
for finding the minimum weight triangulation of planar
point sets of up to several hundred points that do not
rely on ad-hoc methods [3]. Note that no polynomial
time algorithm is known to verify that a proposed tri-
angulation is indeed minimal.

In this paper we reveal topological complexity behind
the minimum weight triangulation problem by giving
conditions that allow the addition of a Steiner point to
a fixed input set to reduce the weight of a minimum
weight triangulation. This answers a question posed
by Jesús De Loera in 2003 during the MSRI Summer

Q

B

D

C

A

Figure 2: The shaded area is the Steiner reducing set of
Y = {A,B,C,D}, shown with Steiner reducing point Q

Graduate Workshop on Triangulations of Point Sets.

2 Steiner Reducing Sets: Necessary Conditions

In this section, we give a means for identifying sub-
sets of the Steiner reducing set via the combinatorial
structure of a minimal triangulation and the geometric
properties of an associated multi-focal ellipse (known as
a k-ellipse). To our knowledge, all known examples of
Steiner reducing points are located either outside the
interior of the convex hull of X (as in Figure 2), or in
the interior of a non-convex polygon formed by edges
that belong to a minimum weight triangulation of X
(as in Figure 5). The non-convexity of such a polygon
will lead to Steiner reducing sets with interesting topol-
ogy. It remains an open question whether there exist
convex polygons which admit Steiner reducing points
in the interior of their convex hulls.

It is simple to show that no set of three points admits
a Steiner reducing point. Case analysis of four-point sets
reveals that no such set will admit a Steiner reducing
point in the interior of its convex hull. There are four-
point sets, however, which allow Steiner reducing points
exterior to and on the edges of their convex hulls. One
illustration of such a set is shown in Figure 2.

The minimum weight triangulation of Y ∪{Q} forQ =
(x, y), y < 0, will use edges AQ,BQ,CQ,DQ, when Q
is “close” to Y, in addition to edges AB,BC,CD, as
seen in Figure 2. Since the new edges replace edges
AC and AD from the original triangulation, the Steiner
reducing set St(Y) consists of all points Q which satisfy
the inequality
|AQ|+ |BQ|+ |CQ|+ |DQ| < |AC|+ |AD| = 10 +

√
65.

The curved boundary of St(Y) is part of a curve
known as a 4-ellipse. More generally, the locus of all
points P ∈ R2 such that the sum of distances from P
to each of k distinguished foci is constant is called a
k-ellipse. Under this definition, the circle is a 1-ellipse,
and the standard ellipse is a 2-ellipse. Let

E(Q; d) =

{
P ∈ R2 :

k∑

i=1

|PQi| = d

}

denote the k-ellipse with foci in Q =
{
Q1, . . . , Qk

}
and

corresponding distance sum d. Note that E(Q; d) is a

24th Canadian Conference on Computational Geometry, 2012

126

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

closed curve. For k > 2, the interior of this level set does
not necessarily contain its foci Qi, though the curve
represented by the level set will be convex for every
value of k ≥ 1, as proven in [15]. Denote by E<(Q; d)
the points in its interior of the k-ellipse.

The history of the k-ellipse reaches back to Fermat,
who posed the following challenge: “Given three points
in a plane, find a fourth point such that the sum of
its distances to the three given points is as small as
possible.” (The smallest possible 3-ellipse consists of this
single point.) A solution to the problem of Fermat was
provided by Evangelista Torricelli around 1640, and the
distance minimizing point, termed the Fermat-Torricelli
point [8], remains a topic of active research. In the late
1600’s, Tschirnhaus generalized the standard string and
pins construction of an ellipse, illustrating how to draw a
3-ellipse by hand in [18]. Due to a lack of standardized
nomenclature for this object, it has been rediscovered
many times throughout the literature, receiving such
names as Tschirnhaussche Eiflächen [16], Wn curves [5],
polyellipses [19], and egglipses [14]. A survey article
of k-ellipses and their basic properties appears in [15].
Noting that the 1- and 2-ellipse both appear as the level-
zero set of degree two polynomials, Nie, Parillo, and
Sturmfels used semidefinite programming to show that
the k-ellipse appears as part of the level zero set of a
polynomial of degree 2k if k is odd and degree 2k−

(
k
k/2

)

if k is even [13]. The author’s Ph.D. thesis [17] was the
first work detailing the connection between k-ellipses
and minimum weight triangulations.

The k-ellipse provides a criterion for measuring prox-
imity to multiple distinct points. For the Steiner reduc-
ing set to be non-empty, the sum of lengths of edges in-
cident to new Steiner point(s) must be less than the sum
of the lengths of the replaced edges minus the lengths
of new edges not incident to the Steiner point. Al-
though it is common for k-ellipses to appear as part
or all of the boundary of different Steiner reducing sets,
these Steiner reducing sets are not simply unions of sets
E<
(
Xi; di

)
for various pairs Xi, di of foci and distance

sums. This is an issue of feasibility ; locations of Q in-
terior to quadrilateral ABCD lie within the necessary
4-ellipse, but do not give a complete triangulation. For
Q to be a Steiner reducing point, it must lie in the inter-
section of the 4-ellipse with the appropriate feasibility
set, as shown in Figure 3. The intersection of these two

A D

B C

Figure 3: The intersection of E<(Y ; 10 +
√

65) with
F
(
Y,Π

)

X2

X3

X1

Figure 4: Any triangulation of X ∪ {V } for V within
the shaded feasibility set uses the same set of edges.

sets gives the Steiner reducing set of Y .
We now formally define what we mean by feasibility.

Definition 1 Given a set X ⊂ R2 of n distinct points,
an abstract (yet to be located) vertex V /∈ X, and a
graph G = (X ∪ {V },Π), the feasibility set F (X,Π) is
the set of points P ∈ R2\X such that if V = P , then the
straight line drawing of the graph G is a triangulation
of X ∪ {P}.

In general, a feasibility set F (X,Π) is comprised of
unions of chambers (together with some boundary seg-
ments or rays) of the line arrangement formed by ex-
tending the segments of Π between pairs of points of X
into lines. Thus, each feasibility set can be described
via linear inequalities. Feasibility sets need not be con-
nected, as can be shown by taking X to be a set of three
non-collinear points as in Figure 4.

The intersections of feasibility sets with k-ellipses are
the basic building blocks of Steiner reducing sets. In the
next section we will explore the geometry and topology
which occurs as we take unions of such intersections.

3 Topological Properties of Steiner Reducing Sets

3.1 Connectivity

Our first contribution to the study of the topology of
Steiner reducing sets is to show that the sets need not
be connected. This can be demonstrated with a point
set with as few as five points, as shown in Figure 5.

Theorem 2 There exist sets X of 5n points such that
the rank of H0

(
St(X)

)
is at least 2n.

Proof. Let Z = {(0, 0), (2, 1), (8, 1), (10, 0), (5, 18)},
denoted by A,B,C,D,E, respectively. We will prove
that a quadrilateral of non-Steiner reducing points en-
circles the component of the Steiner reducing set of Z

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

127

24th Canadian Conference on Computational Geometry, 2012

that lies in the interior of the convex hull. Note first that
edges AB,BC,CD,BE and CE are all unavoidable in a
triangulation of Z since no other possible triangulation
edges intersect these. It follows that Z has exactly two
triangulations, and both are minimal. Choose MWT(Z)
to be the minimum weight triangulation of Z that uses
edge AC.

E

CB
DA

E

CB
DA

Figure 5: At left, a Steiner reducing set with four con-
nected components; at right, the boundary of the in-
terior component is formed by intersecting a feasibility
set and a 5-ellipse

Since the minimum weight triangulation of Z contains
the same configuration of edges as the minimum weight
triangulation of Y from Figure 2, we know that certain
points on or below segment AD will be Steiner reducing
points. However, a quick calculation shows P = (5, 3)
is also a Steiner reducing point.

Let SP be the connected component of the Steiner re-
ducing set that contains P . Then SP = E<(Z; 2

√
298)∩

F (Z,Φ), where 2
√

298 is the length of the edges replaced
from MWT(Z), and the feasibility set is the collection
of points within the convex hull that can be connected
to all five points of Z without intersecting any edges of
a minimal triangulation of Y = {A,B,C,D}.

In order to establish that the subset SP of the Steiner
reducing set is not path connected to St(Y), consider

quadrilateral EFGH, where F =
←→
BE ∩ ←→CD,G =←→

AB ∩ ←→CD, and H =
←→
CE ∩ ←→AB. This shape surrounds

SP , and its edges contain no Steiner reducing points,
a fact which we now prove. To verify that no points
of FG or GH are Steiner reducing points, we consider
without loss of generality points R = (x, 12x) within the
convex hull of Z and for x ≥ 5. Such points R lie on

the ray
−−→
GH, which makes edges BE,AB,BC, and CD

all unavoidable in any triangulation of Z ∪ {R}. Since
the triangle inequality implies |CR|+ |ER| ≥ |CE|, the
point R is not a Steiner reducing point. A similar ar-
gument shows that no point Q on segments FE or EH
will be a Steiner reducing point. Therefore there are at
least two connected components in St(Z).

Figure 6: St
(
Z [4]

)
has at least 12 connected compo-

nents

To prove that St(Z) has four connected components,
we verify that the three components outside the convex
hull in Figure 5 are not path connected to one another.
This can be done, as above, by showing no points of
lines y = 1/2, y = 16 are Steiner reducing points.

By arranging four copies of the point set Z as shown
in Figure 6, we can construct a point set with a Steiner
reducing set that has at least 8 connected components.
The left and right exterior components of the Steiner
reducing set from each individual copy of Z are lost,
but the the other two components from each copy of Z
remain. For this particular example, the midpoint of
each boundary edge is a Steiner reducing point, each
belonging to its own connected component. By arrang-
ing copies of Z so that the images of E from the original
set lie on the vertices of an n-gon with sufficiently long
edges (relative to the size of Z), we can get a point set
denoted Z [n] whose minimum weight triangulation con-
tains all edges of the minimum weight triangulation of
each copy of Z. Thus, X = Z [n] is a point set with 5n
points that has at least 2n connected components in its
Steiner reducing set. �

In the previous example, we had Y ⊆ Z and the cor-
responding Steiner reducing sets St(Y) ⊆ St(Z). We
note that in general, X ⊆ W does not imply either
MWT(X) ⊆ MWT(W) or St(X) ⊆ St(W). Even if we
have containment of both the point sets X ⊆ W and
the edge sets MWT(X) ⊆ MWT(W), we may not have
St(X) ⊆ St(W). We further note that it is possible
for the number of connected components of the Steiner
reducing set to exceed the number of points in the set.

24th Canadian Conference on Computational Geometry, 2012

128

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

D F

B

E

AC

N

RM

O P

G

J I
HK

L

Q

Figure 7: A minimum weight triangulation of Y using
the edge set MWT(Y)

An example of a 15-point set X that admits a Steiner
reducing set St(X) such that H0

(
St(X)

)
has rank at

least 20 is given in the author’s Ph.D. thesis [17].

3.2 Simple Connectivity

Our second topological result is to show that Steiner
reducing sets need not be simply connected.

Theorem 3 There exists a set Y of 18 points such that
the rank of H1

(
St(Y)

)
is at least 13.

We first describe the structure of a minimum weight
triangulation of the point set Y under consideration,
then find a connected subset of the Steiner reducing set
of Y. We prove this subset is not simply connected by
demonstrating 13 curves that lie in the Steiner reducing
set of Y and are representatives of linearly independent
homology classes within H1(St(Y)).

Proof. Let Y = G6 ∪G12, where

G6 =

{(
83 cos

σj
12
, 83 sin

σj
12

)∣∣∣∣j = 1, . . . , 6

}
, and

G12 =

{(
20 cos

σj
24
, 20 sin

σj
24

)∣∣∣∣j = 1, . . . , 12

}
,

where σj = 2π(2j − 1). An illustration of Y together
with a minimal weight triangulation is given in Figure
7.

M1

e

a

b

f

d

m

o n
l

q

p
j

i
h

g

c
k

M4

M3

M2

M5

J I

H

G

K

Figure 8: Five subsets Mi of the Steiner reducing set of
Y

The set Y is preserved under the standard group ac-
tion of D6, the dihedral group of order 12. Let Γ be
the orbit of AG under the induced action of D6 on the
edges. The edges of the interior 12-gon formed from the
points in G12 belong to the β-skeleton of Y , and thus
will belong to every minimum weight triangulation of
Y . The edges in Γ ∪ {AI,BK,CM,DO,EQ,FG} tri-
angulate the region between the convex hulls of G6 and
G12. No other subset of 18 edges which lie in the an-
nular region between G6 and G12 has smaller weight,
so these edges belong to a minimum weight triangula-
tion of Y . Denote by MWT(Y) a fixed minimum weight
triangulation of Y which uses these 18 edges.

Let H be the line arrangement formed by extend-
ing into lines the segments that form the boundaries of
conv(G6) and conv(G12). In Figure 8 we illustrate five
polygons Mi, 1 ≤ i ≤ 5, whose interiors lie in specific
chambers of this line arrangement and belong to the
Steiner reducing set St(Y). The chamber will deter-
mine the available triangulation edges. For example, if
a Steiner point Z is added in chamber associated with
M2, Z can be adjacent to any of G,H, I, or J , but
cannot be adjacent to K since the edges of the interior
12-gon still belong to a minimum weight triangulation
of the augmented point set. We further simplify our
search for the Steiner reducing set by utilizing the con-
vexity of k-ellipses. Namely, if W ⊆ Y is a set of d
points whose convex hull lies inside a specific feasibility
region, and if the points of W all lie in a region bounded
by an appropriate k-ellipse, then conv(W) ⊆ St(Y). By
checking the weight of the proposed triangulation at the
vertices of the polygons Mi, we use convexity to deter-
mine that the interior of each Mi is indeed a subset of a
corresponding k-ellipse, and build the Steiner reducing
set by verifying minimal triangulations for points that
fall on chamber boundary lines.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

129

24th Canadian Conference on Computational Geometry, 2012

To finish the proof of Theorem 3, we prove the exis-
tence of 13 holes within the Steiner reducing set St(Y).
To do so, we find generators of linearly independent ho-
mology classes in H1(St(Y)). The technique requires
finding 13 points in the interior of conv(St(Y)) that
are not Steiner reducing points, together with 13 closed
curves γi such that γi ⊂ St(Y) for 1 ≤ i ≤ 13 and each
bounds a compact subset of R2 that contains a point
which is not a Steiner reducing point.

None of the points (0, 35), (18, 32), or (0, 0), as well
as rotations of these by multiples of π

3 are Steiner re-
ducing points. It is not difficult to use sets Mi to con-
struct three generators γ1, γ2, γ3 of linearly independent
homology classes in H1(St(Y)) such that (0, 35) lies in-
terior to curve γ1, (18, 32) lies interior to γ2, and (0, 0)
lies interior to γ3. It follows that no path homotopy
exists within the set St(Y) from γi to γj , i 6= j, so the
holes detected are distinct. Define γi for 4 ≤ i ≤ 13
to be the distinct images of γ1 and γ2 under rotations
about the origin by integer multiples of π/3 radians. �

As in the proof of the first theorem, by aligning copies
of Y with the vertices of an n-gon with sufficiently long
edges (relative to the size of Y), we can get a point set
Y [n] whose minimum weight triangulation contains all
edges of the minimum weight triangulation of each copy
of Y , thus giving a point set with 18n points that has
at least 13n holes.

4 Future Work

These results have implications for the design of algo-
rithms to search for minimum weight Steiner triangula-
tions. Questions remain about whether two points can
be better than one: in a case when the Steiner reducing
set St(X) is empty, is it possible that two Steiner points
P and Q can team up to cause the weight of a minimal
weight triangulation of X ∪ {P,Q} to be less than that
of X? It may be possible to use the structures of the k-
ellipse and feasibility sets to design faster algorithms to
find the minimal weight triangulation of certain classes
of point sets in an efficient manner.

References

[1] M. Bern and D. Eppstein. Mesh generation and opti-
mal triangulation. In Computing in Euclidean geom-
etry, volume 1 of Lecture Notes Ser. Comput., pages
23–90. World Sci. Publishing, River Edge, NJ, 1992.

[2] S.-W. Cheng and Y.-F. Xu. On β-skeleton as a sub-
graph of the minimum weight triangulation. Theoret.
Comput. Sci., 262(1-2):459–471, 2001.

[3] J. A. De Loera, J. Rambau, and F. Santos. Trian-
gulations: Structures for Algorithms and Applications,
volume 25 of Algorithms and Computation in Mathe-
matics. Springer-Verlag, Berlin, 2010.

[4] D. Eppstein. Approximating the minimum weight
Steiner triangulation. Discrete Comput. Geom.,
11(2):163–191, 1994.

[5] P. Erdős and I. Vincze. On the approximation of con-
vex, closed plane curves by multifocal ellipses. J. Appl.
Probab., (Special Vol. 19A):89–96, 1982.

[6] M. R. Garey and D. S. Johnson. Computers and in-
tractability: A guide to the theory of NP-completeness.
W. H. Freeman and Co., San Francisco, 1979.

[7] P. Gilbert. New results in planar triangulations. Mas-
ter’s thesis, University of Illinois, 1979.

[8] C. Groß and T.-K. Strempel. On generalizations of
conics and on a generalization of the Fermat-Torricelli
problem. Amer. Math. Monthly, 105(8):732–743, 1998.

[9] A. Hatcher. Algebraic topology. Cambridge University
Press, Cambridge, 2002.

[10] J. M. Keil. Computing a subgraph of the minimum
weight triangulation. Comput. Geom., 4(1):13–26, 1994.

[11] G. T. Klincsek. Minimal triangulations of polygonal
domains. Ann. Discrete Math., 9:121–123, 1980.

[12] W. Mulzer and G. Rote. Minimum weight triangula-
tion is NP-hard. In Computational geometry (SCG’06),
pages 1–10. ACM, New York, 2006.

[13] J. Nie, P. A. Parrilo, and B. Sturmfels. Semidefinite
representation of the k-ellipse. In Algorithms in alge-
braic geometry, volume 146 of IMA Vol. Math. Appl.,
pages 117–132. Springer, New York, 2008.

[14] P. V. Sahadevan. The theory of the egglipse—a new
curve with three focal points. Internat. J. Math. Ed.
Sci. Tech., 18(1):29–39, 1987.

[15] J. Sekino. n-ellipses and the minimum distance sum
problem. Amer. Math. Monthly, 106(3):193–202, 1999.

[16] G. Sz.-Nagy. Tschirnhaus’sche Eiflächen und Eikurven.
Acta Math. Acad. Sci. Hungar., 1:36–45, 1950.

[17] C. Traub. Topological Effects Related to Minimum
Weight Steiner Triangulations. PhD thesis, Washington
University in St. Louis, 2006.

[18] E. W. v. Tschirnhaus. Medicina mentis, sive artis
inveniendi praecepta generalia. J. Thomann Fritsch,
Leipzig, 1695.

[19] A. Varga and C. Vincze. On a lower and upper bound
for the curvature of ellipses with more than two foci.
Expo. Math., 26(1):55–77, 2008.

24th Canadian Conference on Computational Geometry, 2012

130

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

On the Space-Efficiency of the “Ultimate Planar Convex Hull Algorithm”

Jan Vahrenhold∗

Abstract

The output-sensitive “ultimate planar convex hull algo-
rithm” of Kirkpatrick and Seidel [16] recently has been
shown by Afshani et al. [1] to be instance-optimal. We
revisit this algorithm with a focus on space-efficiency
and prove that it can be implemented as an in-place
algorithm, i.e., using O(1) working space.

1 Introduction

How much working space does an algorithm require?
This question may be asked on its own accord, but
there are important practical implications as well. In so-
called resource-constrained systems, at least one of the
resources needed for working on a problem instance is
limited by practical constraints and thus scarce relative
to the size of the problem instance. Examples include
sensors or smartphones where memory and energy are
limited, but also workstations where the main memory
is scarce relative to terabyte-sized or larger data sets.

In this note, we are working in the space-efficient
model of computation, where the primary objective is
to analyze the space an algorithm needs in addition to
representing the input. An algorithm is said to be in
situ if it requires O(logN) extra words of memory, and
it is said to be in-place if the extra space requirement is
O(1) words. Since the input elements must not be de-
stroyed or modified, an in-place algorithm can be seen as
permuting the input such that it represents the output.
As usual, we assume that a word of memory is capa-
ble of representing an input element or an index, thus,
when measured in bits, these space bounds translate to
O(log2N) bits and O(logN) bits.

The study of space-efficient algorithm goes back to
fundamental one-dimensional problems such as sorting,
merging, and selecting [12, 17, 21]; in the past decade,
it has been extended to problems for point sets in two
and three dimensions [4, 5, 6, 7, 8, 10, 13, 14, 19, 20].
Recently, also problems for polygons and special classes
of graphs have been investigated in the space-efficient
model of computation [2, 3].

∗Department of Computer Science, Westfälische Wilhelms-
Universität Münster, jan.vahrenhold@uni-muenster.de. Part of
this work has been supported by Deutsche Forschungsgemein-
schaft (DFG) within the Collaborative Research Center SFB
876 “Providing Information by Resource-Constrained Analysis”
(http://sfb876.tu-dortmund.de), project A2.

Among the above results, two are of particular impor-
tance for our work: Brönnimann et al. [8] investigated
the space-efficiency of planar convex hull algorithms,
i.e., the complexity of computing the H-element con-
vex hull of a set of N points in two dimensions. The
authors proved that both the “ultimate” algorithm by
Kirkpatrick and Seidel [16] and its simplified variant by
Chan, Snoeyink, and Yap [11] can be implemented as
in situ algorithms, i.e., using O(logN) extra words of
space, while maintaining an output-sensitive, optimal
running time of O(N logH). Since, however, not only
Graham’s optimal algorithm [15] but also Chan’s op-
timal, output-sensitive algorithm [9] was shown be im-
plementable as an in-place algorithm, Brönnimann et
al. [8] conjectured Chan’s algorithm to be the “more
ultimate” planar convex hull algorithm. The second
relevant result was proved by Bose et al. [6]; we devel-
oped a framework for simulating a balanced divide-and-
conquer scheme using only O(1) working space. In par-
ticular, we showed how such a recursive scheme can be
implemented using a constant-sized (in terms of words)
stack and, among other results, developed linear-time,
in-place algorithms for selecting, un-selecting, and k-
selection in sorted arrays.

The optimal, output-sensitive algorithms by Kirk-
patrick and Seidel [16] and by Chan, Snoeyink, and
Yap [11] recently have been shown by Afshani et al. [1]
to be instance-optimal in the sense that the maximum
running time (over all possible permutations of the in-
put) of the algorithm does not differ by more than a
constant factor from the minimum of the average run-
ning times (again, over all possible permutations of the
input) over all algorithms that solve this problem. Af-
shani et al. pointed out that such an instance-optimal
algorithm is “immediately also competitive against ran-
domized (Las Vegas) algorithms” [1, p. 130]. In this
note, we prove:

Theorem 1 The deterministic, time-optimal, output-
sensitive, and instance-optimal planar convex hull algo-
rithm by Kirkpatrick and Seidel can be realized as an
in-place algorithm, i.e., using O(1) working space.

Since Chan’s algorithm is known to be time-optimal,
output-sensitive, and implementable as an in-place algo-
rithm but not known to be instance-optimal, the above
theorem improves the state-of-the-art of characterizing
the “ultimate planar convex hull algorithm” in favor of
Kirkpatrick and Seidel’s algorithm.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

131

24th Canadian Conference on Computational Geometry, 2012

2 The Algorithm by Kirkpatrick and Seidel

The convex hull algorithm by Kirkpatrick and Sei-
del [16] uses a divide-and-conquer approach where, just
like in the quicksort algorithm, the bulk of the work is
done prior to recursion. To compute the upper hull of
a given point set, the algorithm first finds a “bridge”,
i.e., a hull edge crossing the median x-coordinate of the
point set, removes all points in the slab spanned by the
endpoints of the bridge, and recurses on the remaining
non-trivial point sets. The lower hull is computed analo-
gously. Assuming that the bridge can be found in linear
time, Kirkpatrick and Seidel upper-bound the running
time f(N,H) for computing the H-element convex hull
of an N -element point set as follows [16, p. 290]:

f(N,H) ≤
{

cn if H = 2

cn + max
H`+Hr=H

{
f
(
N
2 , H`

)
+ f

(
N
2 , Hr

)}
if H > 2

Here, H` and Hr denote the number of hull points left
and not to the left of the median x-coordinate. Solving
this equation yields an upper bound of O(N logH).

To determine the bridge (or, rather, its endpoints)
in linear time, the authors first determine the median
x-coordinate using a k-selection algorithm. They then
consider pairs of points and again use a k-selection algo-
rithm to find a pair of points inducing a line with median
slope. If this line cannot be shown to induce the bridge,
its slope is used to prune away a constant fraction of
the points, and the algorithm recurses on the remain-
ing points.1 Each invocation of this algorithm runs in
linear time as long as both k-selection and the pruning
procedure can be executed in linear time.

Special care must be taken to handle pairs of points
inducing lines with infinite slope (in this case, the pair is
excluded from the k-selection algorithm, and the lower
point is pruned immediately). Also, to ensure instance-
optimality, Afshani et al. [1] require that all points
strictly below the line through the leftmost and right-
most point of the point set need to be pruned prior to
determining the median x-coordinate.

3 Space-Efficient Building Blocks

As we will see, there are three building blocks that need
to be made in-place: selecting a subset of the input,
finding the k-th element according to some order, and
running a divide-and-conquer algorithm. Previously, we
gave linear-time algorithms for the first two tasks [6].
For the sake of self-containedness, we present the pseu-
docode for the selection task:

1There is a simplified version of this algorithm using random-
ized 2D linear programming [8, 18]. It is unclear, however, if
instance-optimality can be shown for the resulting convex hull al-
gorithm and, more important, whether such a characterization is
meaningful for a randomized algorithm.

Algorithm 1 SubsetSelection(A, b, e, f): selecting a
subset from an array A[b, . . . , e−1] using a (0, 1)-valued
function f that can be evaluated in constant time [6]. If
A is sorted, there is a linear-time inverse oblivious of f .

Ensure: A[b, . . . , i − 1] contains all elements of
A[b, . . . , e− 1] for which f evaluates to one.

1: i← b, j ← b and m← b+ 1.
2: while i < e and j < e do
3: while i < e and f(A[i]) = 1 do
4: i← i+ 1. . Move i such that f(A[i]) = 0.

5: j ← max{i+ 1, j + 1};
6: while j < e and f(A[j]) = 0 do
7: j ← j + 1. . Move j such that f(A[j]) = 1.

8: if j < e then
9: swap A[i]↔ A[j].

10: Return i.

Also, we discussed how to use a bit stack of O(log n)
bits, i.e., O(1) words, to implement the following tem-
plate for the case of an almost perfectly balanced divide-
and-conquer, i.e., for the case that the size of the “left”
part of the recursion always is a power of two.

Algorithm 2 Recursive(A, b, e): Standard template
for recursive divide-and-conquer algorithms [6].

1: if e− b ≤ 2h0 (=size of the recursion base) then
2: BaseCode(A, b, e) . Solve small instances
3: else
4: PreCode(A, b, e)

. Setup Subproblem 1 in A[b, . . . , b(b+ e)/2c − 1]
5: Recursive(A, b, b(b+ e)/2c) . Recurse left
6: MidCode(A, b, e)

. Setup Subproblem 2 in A[b(b+ e)/2c, . . . , e− 1]
7: Recursive(A, b(b+ e)/2c, e) . Recurse right
8: PostCode(A, b, e)

. Merge Subproblems 1 and 2 in A[b, . . . , e− 1]

While, in most situations, requiring an almost
perfectly balanced partition is not a constraint for
divide-and-conquer algorithms, such a partition cannot
be guaranteed for Kirkpatrick and Seidel’s algorithm
which, due to several pruning steps, does not balance
the sizes of the subproblems effectively handled in the
recursive calls. Thus, the central algorithmic problem
we need to address is how to recover the original values
of b and e after returning from a call to Recursive,
i.e., prior to calling MidCode and PostCode, using
globally no more than O(1) working space.

4 An Implementation With O(1) Working Space

In this section, we show how to implement the algorithm
by Kirkpatrick and Seidel using O(1) working space. To

24th Canadian Conference on Computational Geometry, 2012

132

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

pmin = pmin,`

pmax,`

pmax = pmax,r

pmin,r

x = a.x

bridge

Figure 1: Extremal hull points.

facilitate the exposition, we first describe how to adapt
the general divide-and-conquer template (Algorithm 2)
to deal with unbalanced recursive calls (Section 4.1).
We then show how to represent and combine the output
of the recursive calls (Section 4.2). Finally, we present
a linear-time, in-place algorithm for finding the bridge
needed for the divide-step (Section 4.3).

4.1 Adapting the Divide-and-Conquer Template

Using the terminology of the preceding section, the al-
gorithm by Kirkpatrick and Seidel will be run on an
array A[0, . . . , n − 1] where in each recursive step, i.e.,
for parameters b and e, we first invoke PreCode to do
the following (see Figure 1):

1. Identify the extremal hull points pmin and pmax.
2. Prune away all points strictly below pminpmax, i.e.,

in the light gray area in Figure 1 (this guarantees
instance-optimality [1, Section 3.1]).

3. Determine the point a with median x-coordinate
among the remaining points.

4. Compute the bridge, i.e., the segment induced by
the maximal2 hull point pmax,` to the left of a and
the minimal hull point pmin,r not to the left of a.

5. Prune away all points below the bridge, i.e., in the
dark gray area in Figure 1.

6. Adjust the indices b and e such that A[b, . . . , e− 1]
contains all unpruned points not to right of pmax,`.

After returning from the recursive call processing the
unpruned points, we need to call MidCode with the
original values of b and e, i.e., with the same values
that PreCode had been called with. Similarly, after
returning from the second recursive call, these original
values need to be passed to PostCode. Unlike in the
standard divide-and-conquer template (Algorithm 2) we
cannot simply assume that number of points passed to a
recursive call is exactly half the number of points origi-
nally passed to the invoking method; in fact, the central
point that allows for proving the optimal O(N logH)
time complexity is that this is not the case.

It turns out, however, that three simple invariants
allow for reconstructing these values in time O(e− b):
Invariant (A): Prior to executing and after having ex-

ecuted Recursive(A, b, e), the two vertices of
the upper hull that have extremal coordinates in
A[b, . . . , e− 1] are stored in A[b] and A[b+ 1].

2As usual, points lying on a hull edge, i.e., points in degenerate
position, are not considered to be hull points.

Invariant (B): The points passed to Recursive(A,
b, e) are exactly the points in A[0, . . . , n − 1] that
lie between A[b] and A[b + 1] as characterized in
Invariant (A).

Invariant (C): After having executed Recursive(A,
b, e), the values of b and e have been restored.

Using one linear scan and two swap operations, In-
variant (A) can be trivially established prior to invok-
ing Recursive(A, 0, n). Since the points with extremal
coordinates in A[0, . . . , n− 1] are also the extremal hull
vertices, Invariant (B) holds as well. It is also easy to
realize that all invariants can be guaranteed to be main-
tained using O(1) time and working space for constant-
sized recursion base cases.

Lemma 2 If Invariant (A) holds prior to invoking
PreCode, this method can be implemented as a linear-
time method with O(1) working space such that Invari-
ant (A) also holds prior to invoking Recursive for the
“left” recursion.

Proof. We consider each step of PreCode (as de-
scribed above) in turn. Since Invariant (A) holds
prior to invoking PreCode, Step 1 (identification
of pmin and pmax) trivially is a constant-time oper-
ation. Step 2 (pruning) can be implemented using
SubsetSelection(A, b, e, f) where f(p) = 0 holds iff p
is strictly below A[b]A[b+ 1]. Since this algorithm
moves the pruned elements to A[e′, . . . , e − 1], the re-
sulting subarray looks as follows.

pmin pmax unpruned pruned
b e′ e

Using O(1) working space (among other things, to keep
track of the location of pmin and pmax to eventually
restore them to A[b] and A[b + 1]), we run a linear-
time, in-place k-selection algorithm [6, 17] to find the
point a with median x-coordinate in A[b, . . . , e′ − 1].
We then run an in-place version of the bridge-finding
algorithm (see Section 4.3) to determine the two hull
vertices pmax,` and pmin,r defining the bridge.

To prepare for the next recursive call, we move pmax,`

to A[b+ 2] and swap the two points in A[b], i.e., pmin =
pmin,`, and A[b + 1], i.e., pmax. We then increment b
by one and run SubsetSelection(A, b, e′, f) where
f(p) = 1 holds iff either p.x < pmax,`.x or p = pmax,` to
prune all points not to the right of pmax,`.

pmax pmin,` pmax,` unpruned pruned
b e′′ e′

Finally, we set e := e′′ (the index returned by Subset-
Selection) and are ready to recurse on A[b, . . . , e−1].
Since, by construction, Invariants (A) and (B) hold for
this call and since all steps take linear time and require
O(1) working space, the lemma follows. �

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

133

24th Canadian Conference on Computational Geometry, 2012

Storing pmax = pmax,r in front of the subarray passed
to the first recursive call allows us to easily recover the
indices b and e needed for invoking MidCode; in a slight
abuse of notation, this method is invoked with the in-
dices b and e passed to Recursive (these indices are
available by Invariant (C)) and does the following:

1. Recover the value of e passed to PreCode.
2. Recover the right endpoint pmin,r of the bridge.
3. Select all points in A[b, . . . , e − 1] that lie between
pmin,r and pmax,r.

4. Establish Invariant (A).

Lemma 3 If Invariants (A) and (C) hold prior to in-
voking MidCode and if Invariant (B) held prior to the
preceding call to Recursive, the MidCode method can
be implemented as a linear-time method with O(1) work-
ing space such that Invariants (A), (B), and (C) hold
prior to invoking Recursive for the “right” recursion.

Proof. To recover the (original) value of e that was
passed to PreCode, we scan forward from A[e], i.e.,
the first item not passed to the preceding recursive call.
By Invariant (C), we know that the index of the first
element in A[e, . . . , n − 1] with an x-coordinate larger
than A[b− 1] = pmax (or n if no such element exists) is
the value of e we are looking for. This scan takes linear
time and uses O(1) working space. We then decrement
b by one to include the element pmax = pmax,r.

To recover the right endpoint pmin,r of the bridge, we
exploit the fact that the bridge lies on the unique line
passing through pmax,` and a point to the right of pmax,`

such that no point in A[b, . . . , e−1] lies above this line.3

A simple proof by contradiction shows that this other
bridge point indeed lies to the right of the point a used
for originally splitting the point set.

Now that pmin,r and pmax,r have been recovered, we
use the same techniques as in PreCode to save the
point pmin, to select the points to be passed to the re-
cursive call, to move pmin,r and pmax,r to the front of the
subarray, and to adjust the index b accordingly. The re-
sulting array then looks as follows:

pmin pmin,r pmax,r unpruned pruned
b e′′ e′

Finally, we set e := e′′ (the index returned by Subset-
Selection) and are ready to recurse on A[b, . . . , e−1].
Since, by construction, Invariants (A) and (B) hold for
this call and since all steps take linear time and require
O(1) working space, the lemma follows. �

After the second call to Recursive, the call to Post-
Code is used to establish Invariants (A) and (C) for the

3This line may not be determined by a unique point, namely
if more than three points are allowed to be collinear. In this case,
the rightmost of these points is the recovered bridge point since
this choice minimizes the number of points passed to the next
recursive call (see also Footnote 2 and Section 4.3).

invoking call to Recursive. In the light of this, Post-
Code needs to perform the following steps:

1. Recover the value of e passed to MidCode.
2. Recover the left endpoint pmax,` of the bridge.
3. Establish Invariant (A).

Lemma 4 If Invariants (A) and (C) hold prior invok-
ing PostCode and if Invariant (B) held prior to the
preceding call to Recursive, the PostCode method
can be implemented as a linear-time method with O(1)
working space such that Invariants (A) and (C) hold.

Proof. We proceed as in the proof of Lemma 3, i.e.,
we first recover the value of e that was passed to Mid-
Code by checking boundary conditions w.r.t. pmax,r =
A[b+2], adjusting b, and recovering the left bridge point.
Since the value of b remained the same over the invoca-
tions of all relevant methods and since the value of e was
recovered after each such invocation, Invariant (C) is es-
tablished. Using a linear scan and two swap operations,
Invariant (A) can be established as well. All algorithms
run in linear time and use O(1) working space. �

4.2 Representing the Output

The description of the algorithm so far only focused on
ensuring that the “boundaries” of the recursive calls can
be recovered efficiently. In this subsection, we discuss
how to represent the output from a call to Recursive.
For this, we establish a fourth invariant:
Invariant (D): After a call to Recursive(A, b, e), the

upper convex hull vertices (if any) between A[b] and
A[b+ 1] (see Invariants (A) and (B)) are stored in
increasing x-order starting at A[b+ 2].

Obviously, this invariant can be established trivially for
constant-sized recursion base cases.

Lemma 5 If Invariants (A) and (D) hold after a call
to Recursive(A, b, e), and if Invariant (B) held prior
to the preceding call to Recursive, the upper convex
hull computed during this recursive call can be recovered
based upon the knowledge of b only.

Proof. This proof exploits the fact that vertices on
the upper convex hull form right turns when traversed
in increasing x-order. The recovery algorithm first
checks whether A[b+ 2]4 lies strictly above the segment
A[b]A[b+ 1]. If this is not the case, the upper convex
hull consists of A[b] and A[b+ 1] only, and we are done.
Otherwise, the algorithm scans forward from i = b + 3
until A[i] lies right of A[b+1] (in this case i = e, and we
are done), A[i] does not lie right of A[i− 1], or A[i− 1],
A[i], and A[b + 1] do not form a right turn (in the last
two cases, A[i− 1] is the last hull vertex). �

4For the sake of simplicity, we assume that the size of the
recursion base case is larger than two.

24th Canadian Conference on Computational Geometry, 2012

134

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Lemma 5 implies that the upper convex hull can be
reconstructed in linear time and O(1) working space af-
ter having returned from Recursive(A, 0, n): Scan
forward from A[0] to recover the index H, i.e., the num-
ber of points on the upper hull, and stably exchange
A[1](= pmax) and A[2, . . . ,H − 1].

We now show how to maintain Invariant (D) through-
out the algorithm. Inductively assume that, after the
“left” call to Recursive, we have computed the hull
points (denoted by “_`”) between pmin,` and pmax,`.
Also, by Invariant (C), we have restored b and e to its
original values. Then, the subarray looks as follows:

pmax pmin,` pmax,` _` . . .
b c e

By Lemma 5, we know that we can identify the in-
dex c such that A[b+3, . . . , c−1] stores the “_`”-points.
Using the (folklore) linear-time, in-place algorithm for
swapping two adjacent blocks, we then move this sub-
array to the end of A[b, . . . , e− 1].

pmax pmin,` pmax,` . . . _`

b e′ e

We then continue as in the proof of Lemma 3. Simi-
larly, after the “right” call to Recursive, the subarray
looks as follows (b and e are available by Invariant (C),
c and e′ are recovered as implied by Lemma 5):

pmin pmin,r pmax,r _r . . . _`

b c e′ e

Using linear-time, in-place swapping, we rearrange
the contents of the subarray such that Invariants (A)
and (D) hold, and proceed as in the proof of Lemma 4.

pmin,` pmax,r _` pmax,` pmin,r _r . . .
b e

Since Invariant (D) can be established for constant-
sized recursion base cases in a straightforward way, the
above discussion implies that we can maintain Invari-
ant (D) during each execution of Recursive with linear
time and O(1) working space as claimed.

4.3 Finding a Bridge

In the proof of Lemma 2, we assumed that there is a
linear-time, in-place algorithm for finding the two end-
points pmax,` and pmin,r of the upper hull edge crossing
the vertical line x = a.x. While we could simply refer to
the in-place implementation proposed by Brönnimann
et al. [8, Theorem 5], we give the details for the sake
of self-containedness and to show that this computation
does not interfere with maintaining the invariants.

By the discussion in the preceding subsections, we
know that in this situation the subarray looks as follows:

pmin pmax unpruned pruned
b e′′ := e′ e

Following Kirkpatrick and Seidel, we form pairs of
points and order them by increasing x-coordinate. If
the number of points is odd, we use O(1) space to store
the remaining point p̃. Using SubsetSelection we
then move all pairs where the two points have the same
x-coordinate (“↑”) to the end of the array.

pmin pmax ↗ . . . ↗ ↑ . . . ↑
b e′′′ e′′

From now on, we use O(1) space to keep track of
the position of the points pmax and pmin such that they
can be restored to A[b, b+ 1] (hence establishing Invari-
ant (A)) after the bridge has been found.

To find the bridge, we run a linear-time, in-place
k-selection algorithm [6, 17] to determine the pair of
points in A[b, . . . , e′′′−1] inducing the line with median
slope K. Based upon this slope, we twice run Subset-
Selection to partition A[b, . . . , e′′′ − 1] into three sets
of pairs: Small (slope less than K), Equal (slope K),
and Large (slope larger than K).

Small Equal Large ↑ . . . ↑
b c c′ e′′′ e′′

Just as in the original algorithm, the two endpoints
of the edge with slope K are found by scanning over
A[b, . . . , e′′′ − 1] to find, among all points p maximizing
p.y −K · p.x, the points with minimum and maximum
x-coordinate. This step is easily seen to both take linear
time and use O(1) working space.

If the edge constructed this way crosses the vertical
line x = a.x, we have found the hull vertices pmax,` and
pmin,r. We record these vertices using O(1) space and
then spend linear time to move pmax and pmin back to
A[b, b+ 1]. Finally, we discard the indices c, c′, e′′, and
e′′′, keep the indices e and e′, and resume the algorithm
described in the proof of Lemma 2.

If, however, both endpoints of the edge lie to the right
of the vertical line x = a.x, we need to recurse on all
points in Large and the left points of all pairs in Small
and Equal plus the upper points of all pairs with the
same x-coordinate (the case that no endpoint lies to the
right of the vertical line is handled symmetrically). To
prepare for this (tail) recursion, we first swap Large to
the beginning of A[b, . . . , e′′ − 1] and then use Subset-
Selection to select the appropriate point from each
remaining pair. If the number of points we started with
was odd, we also add the point p̃ to the points to be pro-
cessed next. To prepare for the next iteration, we again
group pairs of points as described above and update the
indices e′′′ and e′′ accordingly.

↗ . . . ↗ ↑ . . . ↑ . . .
b e′′′ e′′

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

135

24th Canadian Conference on Computational Geometry, 2012

The correctness of this algorithm and its linear run-
time follow from the original proofs presented by Kirk-
patrick and Seidel. With respect to the space require-
ment, we observe that, in addition to the constant num-
ber of indices used in k-selection algorithms and the calls
to SubsetSelection, the iterative algorithm outlined
above requires only to maintain a constant number of
“global” indices: the original indices b and e, two in-
dices to keep track of pmax and pmin, and the index e′

denoting the end of the current working set. The other
indices, i.e., e′′, e′′′, c, c′, and possibly the index to keep
track of the “excess” element p̃ are indices local to each
iteration and can be discarded at the end of this itera-
tion. In summary, the above discussion implies that we
can indeed find a bridge in linear time and using O(1)
working space while maintaining the invariants.

Putting everything together, this establishes a proof
of Theorem 1, i.e., we have shown that we can realize
the deterministic, time-optimal, output-sensitive, and
instance-optimal planar convex hull algorithm by Kirk-
patrick and Seidel using O(1) working space. Thus, we
have established one more optimality criterion to hold
for the “ultimate planar convex hull algorithm”.

Note added in proof An alternative in-place algo-
rithm has been suggested by Raimund Seidel [personal
communication]: Viewed holistically, the “marriage-
before-conquest-algorithm” maintains an ordered se-
quence of upper-hull edges and gaps and proceeds al-
ways by finding a bridge in the leftmost gap until no
gap is left. The suggested alternative approach realizes
this using an iterative, non-recursive algorithm which
requires each points to be labeled either “extreme”,
“dead”, or “alive”. Assuming that the input does not
contain duplicates, these labels can be stored implicitly
by locally rearranging the input points: consider blocks
of consecutive 7 points in the input array; there is a
canonical lexicographic order of those points; storing
the points in any one of the 7! permutations allows to
encode any one of the 37 labellings of those points, since
7! > 37. We leave the details to the reader.

References

[1] P. Afshani, J. Barbay, and T. M.-Y. Chan. Instance-
optimal geometric algorithms. In Proc. IEEE Symp.
Foundations of Computer Science, pp. 129–138. 2009.

[2] T. Asano and B. Doerr. Memory-constrained algo-
rithms for shortest path problems. In Proc. Canadian
Conf. Computational Geometry, pp. 315–318, 2011.

[3] T. Asano, W. Mulzer, G. Rote, and Y. Wang. Constant-
work-space algorithms for geometric problems. Journal
of Computational Geometry, 2(1):46–68, 2011.

[4] H. Blunck and J. Vahrenhold. In-place randomized
slope selection. In Proc. Intl. Conf. on Algorithms and
Complexity, LNCS 3998, pp. 31–40, 2006.

[5] H. Blunck and J. Vahrenhold. In-place algorithms for
computing (layers of) maxima. Algorithmica, 57(1):1–
21, May 2010.

[6] P. Bose, A. Maheshwari, P. Morin, J. Morrison,
M. Smid, and J. Vahrenhold. Space-efficient geometric
divide-and-conquer algorithms. Computational Geome-
try: Theory & Applications, 37(3):209–227, Aug. 2007.

[7] H. Brönnimann, T. M.-Y. Chan, and E. Y. Chen. To-
wards in-place geometric algorithms. In Proc. Symp.
Computational Geometry, pp. 239–246. 2004.

[8] H. Brönnimann, J. Iacono, J. Katajainen, P. Morin,
J. Morrison, and G. T. Toussaint. Space-efficient planar
convex hull algorithms. Theoretical Computer Science,
321(1):25–40, June 2004.

[9] T. M.-Y. Chan. Optimal output-sensitive convex hull
algorithms in two and three dimensions. Computational
Geometry: Theory and Applications, 16(14):361–368,
Apr. 1996.

[10] T. M.-Y. Chan and E. Y. Chen. Optimal in-place and
cache-oblivious algorithms for 3-d convex hulls and 2-d
segment intersection. Computational Geometry: The-
ory and Applications, 43(8):636–646, Oct. 2010.

[11] T. M.-Y. Chan, J. S. Snoeyink, and C.-K. Yap.
Primal dividing and dual pruning: Output-sensitive
construction of four-dimensional polytopes and three-
dimensional Voronoi diagrams. Discrete & Computa-
tional Geometry, 18(4):433–454, Dec. 1997.

[12] J.-C. Chen. Optimizing stable in-place merging. Theo-
retical Computer Science, 302(1–3):191–210, June 2003.

[13] M. De, A. Maheshwari, S. Nandy, and M. Smid. An
in-place priority search tree. In Proc. Canadian Conf.
Computational Geometry, pp. 331–336, 2011.

[14] M. De and S. Nandy. Space-efficient algorithms for
empty space recognition among a point set in 2D and
3D. In Proc. Canadian Conf. Computational Geometry,
pp. 347–353, 2011.

[15] R. L. Graham. An efficient algorithm for determining
the convex hull of a finite planar set. Information Pro-
cessing Letters, 1(4):132–133, June 1972.

[16] D. G. Kirkpatrick and R. Seidel. The ultimate planar
convex hull algorithm? SIAM Journal on Computing,
15(1):287–299, Feb. 1986.

[17] T. W. Lai and D. Wood. Implicit selection. In Proc.
Scand. Workshop on Algorithm Theory, LNCS 318, pp.
14–23, 1988.

[18] R. Seidel. Small-dimensional linear programming and
convex hulls made easy. Discrete & Computational Ge-
ometry, 6(4):423–434, Dec. 1991.

[19] J. Vahrenhold. An in-place algorithm for Klee’s mea-
sure problem in two dimensions. Information Processing
Letters, 102:169–174, May 2007.

[20] J. Vahrenhold. Line-segment intersection made in-
place. Computational Geometry: Theory & Applica-
tions, 38(3):213–230, Oct. 2007.

[21] J. W. J. Williams. Algorithm 232: Heapsort. Commu-
nications of the ACM, 7(6):347–348, June 1964.

24th Canadian Conference on Computational Geometry, 2012

136

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Divide-and-Conquer 3D Convex Hulls on the GPU

Jeffrey M. White ∗ Kevin A. Wortman †

Abstract

We describe a pure divide-and-conquer parallel algo-
rithm for computing 3D convex hulls. We implement
that algorithm on GPU hardware, and find a significant
speedup over comparable CPU implementations.

1 Introduction

The 3D convex hull problem is to identify, for a given
set of n points in R3, the minimal set of input points
such that the convex envelope of those points contains
all input points. The problem is fundamental to com-
putational geometry and has been studied extensively.
Several O(n log n) time algorithms are known, with var-
ious trade-offs in constant factors, simplicity, numerical
robustness, data structure dependencies, and nondegen-
eracy requirements (see e.g. [1] [3] [6] [7] [9] [14] [16]).
Chan’s celebrated output-sensitive algorithm [4] runs in
O(n log h) time, where h denotes the number of faces in
the output hull, which is asymptotically optimal.

A graphics processing unit (GPU) is a parallel co-
processor available in commodity computers. An out-
growth of the computer gaming industry, GPUs utilize a
highly-parallel single instruction multiple data (SIMD)
architecture. At a high-level, GPUs work by applying a
concise constant-space function called a kernel to all el-
ements of an array simultaneously. Kernels are written
in domain specific embedded languages (DSELs) such as
NVIDIA’s CUDA [13] or the OpenCL [10] open stan-
dard. Each kernel instance is passed an integer global
identifier (id) which is customarily used to delineate
the ranges of input that each kernel invocation applies
to. The potential performance, measured in either gi-
gaFLOPS or memory bandwidth, of GPUs is substan-
tially greater than that of multicore CPUs. However, re-
alizing this potential on practical problems, besides the
embarrasingly-parallel graphics applications for which
GPUs were originally designed, has proven challenging.
By and large, existing parallel algorithms depend on
facilities, such as message passing and/or synchroniza-
tion primitives, which are unavailable in the GPU envi-
ronment. Yet, GPUs are purpose-built for high perfor-
mance computation on low-dimensional geometric ob-

∗Department of Computer Science, California State University,
Fullerton, jeffreymarkwhite@gmail.com
†Department of Computer Science, California State University,

Fullerton, kwortman@fullerton.edu

jects, and the opportunity to apply them to computa-
tional geometry problems cannot be ignored.

While the 3D convex hull problem has been studied
extensively in the standard computational model, pre-
cious little past work is applicable to GPU implemen-
tations. As stated above, GPU kernels cannot com-
municate with or synchronize against each other. This
limitation rendered unusable every PRAM-model algo-
rithm we surveyed (e.g. [2]). Further, running kernels
have no provision for dynamic memory; their collective
input and output must be allocated before the kernels
execute en masse and freed afterward. Accordingly dy-
namic data structures are off limits. The absence of
the doubly connected edge list (DCEL) structure is a
particularly formidable obstacle in this context.

There are several results on computing 2D hulls
purely on the GPU [8] [15] [17], but results on the
more general and complex 3D problem have been elu-
sive. While preparing this manuscript, we became aware
of an independent result on the 3D problem [18]. That
algorithm uses heuristics to cull many, but not all, inte-
rior points on the GPU, then feeds the remaining points
to a black-box CPU hull implementation (e.g. Quick-
Hull [3]). Experimental results show that the hybrid
approach achieves a speedup factor of 10–46 times [18]
on a GPU with approximately 1581 peak gigaFLOPS
[11]. The algorithm presented here achieves a speedup
of roughly 8 times on a GPU with 54 peak gigaFLOPS
[12], while using a pure GPU divide-and-conquer ap-
proach. The pure approach is conceptually simple, and
its worst case running time is not impacted by the pres-
ence of outlier points.

2 Algorithm

Our algorithm is an adaptation of Chan’s minimalist
3D convex hull algorithm [5]. Note that this O(n log n)-
time algorithm is distinct from the O(n log h)-time al-
gorithm mentioned earlier, also authored by Chan. The
minimalist algorithm is, by design, a straightforward
top-down divide-and-conquer algorithm for computing
3D convex hulls. It was originally motivated by peda-
gogical needs for an algorithm that achieves a favorable
O(n log n) running time, while being simple to explain
and implement and avoiding dependency on difficult
data structures or algorithms. Serendipitously these
design constraints correspond to those imposed by the
GPU.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

137

24th Canadian Conference on Computational Geometry, 2012

Figure 1: Algorithm Events.

The minimalist algorithm works by recasting the 3D
problem as a 2D kinetic problem. 3D (x, y, z) points
are mapped to (x, y,∆y) points with an initial (x, y)
starting point and ∆y vertical rate of speed. As time t
advances, the points move at distinct velocities, which
triggers structural changes in the convex hull of the
points (see Figure 1). Computing the convex hull of
the original 3D points may be visualized as comput-
ing a kinetic movie of these configurations for all values
−∞ < t <∞. The algorithm represents this movie as a
chronological sequence of events when input points are
added to, or removed from, the hull. Input points are
presorted by x-coordinate; event sequences for roughly
equal-size subsets are generated recursively, then com-
bined by a Graham-scan-like O(n) merging process. In
the base case a single point nominates itself as the only
convex hull point.

While the minimalist algorithm boasts many of the
features necessary for GPU implementation, it cannot
be ported to the GPU directly. GPU kernels cannot be
recursive, so the top-down divide-and-conquer approach
is inappropriate. Instead, the algorithm must be reori-
ented into one or more mapping steps where an array
of input data elements are mapped by a kernel to an
array of output data elements. We achieve this reori-
entation by rewriting the minimalist algorithm to use
bottom-up divide and conquer. We define a movie array
data structure as a table of event logs. Our algorithm
allocates a single movie array, and initializes one triv-
ial event log for each input point. Then, our algorithm

// CPU Algorithm Point

struct Point {

double x, y, z;

Point *prev , *next;

void act() {...}

};

// GPU Algorithm Point

struct Point {

cl_float x;

cl_float y;

cl_float z;

cl_int prev;

cl_int next;

};

Figure 2: Differences in the Point datatype.

repeats a merge step that combines each pair of event
logs with adjacent indices into a single event log. A
merge step maps a movie array with n logs of length at
most l to a new array with at most dn/2e logs of length
at most 2l each. Thus, after dlog2 ne merge steps, the
movie array contains a single event log for the entire
point set. The key property of this algorithm with re-
spect to GPU computation is that each log merge may
be performed entirely independently of the others. Each
kernel has a particular range of input movie array in-
dices to read from, and a corresponding range of output
indices to write to, and may perform its computation
independently of other concurrent kernel instances.

3 Implementation

Our implementation of the GPU algorithm follows
the bottom-up divide-and-conquer design as mentioned
above. As shown in Figure 3, the point structure in
the CPU algorithm uses a doubly linked list connected
by pointers. The idea is to divide the sorted list down
into trivial subsequences and build the list back up to
the desired set of faces on the convex hull. Memory
pointers are difficult (though not impossible) to move
between the CPU and GPU since the two devices have
distinct memory spaces. Also, on the GPU each kernel
instance needs to seek to its assigned sub-input based
on its global id, which could take O(n) time using a list
structure. For these reasons, our GPU implementation
uses arrayed lists with integer indices rather than linked
lists with node addresses (Figure 3).

Modifying the way data is stored impacts the way
data is accessed. Figure 4 shows the differences in
act() function used for inserting and deleting points
from event logs. Figure 5 shows the differences in pass-
ing potential faces into the event-time calculations.

The implementation process began with converting
the original CPU algorithm to use arrays rather then
pointers to represent the data. Point data is imple-

24th Canadian Conference on Computational Geometry, 2012

138

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

// CPU Algorithm list of points

Point *P = new Point[n];

...

// Sorts points into a doubly

// linked list based x- coordinate .

Point *list = sort(P, n);

// event lists

Point **A = new Point *[2*n];

Point **B = new Point *[2*n];

// GPU Algorithm list of points

Point *P = (Point *)

malloc(n*sizeof(Point));

// event lists

cl_int *A = (cl_int *)

malloc (2*n*sizeof(cl_int));

cl_int *B = (cl_int *)

malloc (2*n*sizeof(cl_int));

Figure 3: Differences in list creation.

// CPU Algorithm act () function call

point ->act()

// CPU Algorithm act () function

struct Point {

...

void act() {

if (prev ->next != this) {

// insert point

prev ->next = next ->prev = this;

}

else {

// delete point

prev ->next = next;

next ->prev = prev;

}

}

};

// GPU Algorithm act () function call

act(pointIndex);

// GPU Algorithm act () function

void act(int pointIndex) {

if (P[P[pointIndex].prev].next

!= pointIndex) {

// insert point

P[P[pointIndex].prev].next

= P[P[pointIndex].next].prev

= pointIndex;

}

else {

// delete point

P[P[pointIndex].prev].next

= P[pointIndex].next;

P[P[pointIndex].next].prev

= P[pointIndex].prev;

}

}

Figure 4: Differences in act() functions.

// CPU Algorithm time [0] calculation

t[0] = time(B[i]->prev ,

B[i],

B[i]->next);

// GPU Algorithm time [0] calculation

t[0] = time(P[B[i]].prev ,

B[i],

P[B[i]]. next);

Figure 5: Differences in time calculations.

dataOffsetValue = 2;

totalMergesLeft = numberOfPoints /2;

do {

numberOfThreads = totalMergesLeft;

runGPUkernels ();

swap(A, B);

dataOffsetValue = dataOffsetValue *2;

totalMergesLeft = totalMergesLeft /2;

} while(totalMergesLeft > 1);

Figure 6: Main outer loop ran on the CPU to handle
the execution of threads on the GPU.

mented as its own data type with the x, y, and z values
along with indices to represent the next and previous
pointers to reference other points based on their array
index. Also, instead of having two pointer lists, A and
B, we have two arrays of indices that reference a master
list P of points.

Another significant change we made to the design is
the conversion from a top-down design to a bottom-
up design. Instead of using recursion, the heart of the
algorithm is placed within one while loop as shown in
Figure 6. Before implementing this routine as OpenCL
kernel code, we wrote a simulation to run on the serial
CPU to ensure validity of the algorithm. The ultimate
goal of writing a simulation is to avoid the troublesome
task of debugging GPU kernel code. This simplified the
task of converting the simulation code to GPU kernel
code and required only minimal modifications.

Figure 6 shows pseudocode for the main outer loop
which runs on the CPU. The main loop uses two movie
array structures, both of which exist on the GPU. The
two structures alternate between serving as the input
and output of a merge step. This approach makes it
possible to avoid transferring point data between the
GPU and CPU inside the loop, which is desirable as
that is an expensive operation. The dataOffsetValue

is used to calculate the location of where the head of
the leftGroupIndex and rightGroupIndex exist on
the globally accessed master list of points P as shown
in Figure 7. To handle the way the CPU algorithm
swaps lists A and B in each divide routine, we swap
the kernel arguments of A and B in the swap(A, B)

function after each iteration of merges. Following the

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

139

24th Canadian Conference on Computational Geometry, 2012

// the index of where the head of the

// left group of the list can be found

// on the globally accessed array

leftGroupIndex

= global_ID*dataOffsetValue;

// the index of where the head of the

// right group of the list can be found

// on the globally accessed array

rightGroupIndex

= [leftGroupIndex +((global_ID +1)

*dataOffsetValue)]/2;

// the index of where the globally

// accessed event list begins for the

// group of merges based on the global_ID

eventListOffset = leftGroupIndex *2;

Figure 7: GPU kernel code: how the GPU knows which
hulls should be merged and which parts of the global
data to access.

swap(A, B) function, dataOffsetValue is updated to
tie into the next set of group index calculations. Fi-
nally, totalMergesLeft is cut in half to represent the
number threads to take place in the next iteration of
merges. When totalMergesLeft reaches less than 2,
the algorithm exits the main while loop as there is no
pair of hulls left to be merged together; only one hull is
left which represents the final solution.

The C++ and OpenCL source code for our imple-
mentation is freely available on the web [19].

4 Experimental Results

The GPU algorithm shows significant improvements
over the CPU algorithm. Peak performance of the GPU
algorithm reaches a roughly 8x speedup over the CPU
algorithm (see Figure 10). Figures 8, 9 and 11 summa-
rize the runtime of both algorithms expressed in mil-
liseconds.

The runtime data was collected on a 2009 Apple
MacBook Pro running Mac OS X 10.7.4 and OpenCL
1.2. The CPU is an Intel Core 2 Duo with two cores
each running at a clock rate of 2.26 gigahertz, and
together achieving approximately 13.6 gigaFLOPS ac-
cording to the LINPACK benchmark tool. The CPU
results are for Chan’s own C++ implementation of the
minimalist algorithm, which runs in a single thread.
The test machine’s GPU is an NVIDIA GeForce 9400M
with 16 stream pipelines running at 450 megahertz, for
a manufacturer-claimed throughput of 54 gigaFLOPS
[12]. This CPU and GPU combination is relatively low-
performance by contemporary standards.

The inputs to each algorithm are four families of point
sets with various statistical properties, generated proce-
durally via a pseudorandom number generator. Each
coordinate in the Uniform point set is selected from

n Uniform Normal 3 Clusters Cube Surface
212 3.58 4.12 4.06 5.08
213 4.60 5.30 4.91 5.07
214 5.57 5.68 5.66 5.68
215 6.10 6.00 5.93 5.91
216 6.01 5.94 5.89 5.49
217 6.32 6.25 6.34 6.29
218 6.40 6.47 6.45 6.27
219 6.84 6.89 6.74 6.48
220 6.98 6.83 6.98 6.86
221 7.21 7.23 7.10 7.00
222 7.63 7.71 7.28 7.43
223 7.92 7.97 7.99 8.07

Figure 10: GPU speedup factor.

1	

10	

100	

1000	

10000	

1000	 10000	 100000	 1000000	 10000000	

Ru
n$

m
e	
(m

s)
	

Number	 of	 Points	

GPU	 Algorithm	 vs.	 CPU	 Algorithm	 Run$me	

CPU	 Alg.	 -‐	 Uniform	 CPU	 Alg.	 -‐	 Normal	
CPU	 Alg.	 -‐	 Cube	 Surface	 CPU	 Alg.	 -‐	 3	 Clusters	
GPU	 Alg.	 -‐	 Uniform	 GPU	 Alg.	 -‐	 Normal	
GPU	 Alg.	 -‐	 Cube	 Surface	 GPU	 Alg.	 -‐	 3	 Clusters	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

1000	 10000	 100000	 1000000	 10000000	

Sp
ee
du

p	
Fa
ct
or
	

Number	 of	 Points	

GPU	 Algorithm	 vs.	 CPU	 Algorithm	 Speedup	

Uniform	 Cube	 Normal	 Origin	 Cube	 Surface	 3	 Clusters	

Figure 11: Runtime graph for n data points.

a uniform distribution, yielding a cube-shaped point
cloud. Each coordinate in the Normal point set is an off-
set from 0 drawn from a normal distribution, yielding a
dense cluster around the origin with a small proportion
of outliers. The points in the 3 Clusters set are offset in
the same way from one of three centroids; each point’s
centroid is chosen uniformly at random. The points in
the Cube Surface set are uniform-distributed points on
the surface of a cube, with a small normally-distributed
inward or outward perturbation. Unlike the other dis-
tributions, a high proportion of the points in the Cube
Surface are members of the convex hull.

The runtime results are the mean and standard devi-
ation of 50 repeated trials. Elapsed times are measured
with the gettimeofday system call which is precise to
microseconds.

Originally, a hybrid approach to the GPU algo-
rithm seemed to be a more attractive solution to solv-
ing the problem. The hybrid GPU algorithm would
perform nearly all of the merge steps on the GPU,
then perform the last few steps on the CPU after the

24th Canadian Conference on Computational Geometry, 2012

140

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

n
Uniform Normal 3 Clusters Cube Surface

Mean σ Mean σ Mean σ Mean σ
212 1.16× 10 1.76 1.05× 10 0.885 1.14× 10 0.951 1.18× 10 0.616
213 2.12× 10 0.591 1.95× 10 0.544 2.11× 10 0.580 2.31× 10 0.495
214 4.35× 10 1.01 3.98× 10 0.340 4.33× 10 0.803 4.72× 10 0.800
215 8.74× 10 .978 8.03× 10 1.11 8.72× 10 0.571 9.36× 10 0.787
216 1.77× 102 1.97 1.63× 102 1.43 1.77× 102 1.24 1.91× 102 1.13
217 3.63× 102 1.86 3.32× 102 2.66 3.63× 102 2.32 3.97× 102 3.31
218 7.12× 102 3.94 6.47× 102 2.17 7.13× 102 6.86 7.98× 102 2.70
219 1.35× 103 13.1 1.24× 103 6.33 1.35× 103 4.26 1.54× 103 7.08
220 2.31× 103 12.0 2.12× 103 16.3 2.31× 103 6.14 2.87× 103 8.54
221 3.76× 103 80.6 3.46× 103 13.0 3.75× 103 14.3 4.90× 103 12.9
222 6.17× 103 14.1 5.77× 103 23.1 7.64× 103 55.7 8.12× 103 62.1
223 8.31× 103 69.0 7.95× 103 30.6 8.08× 103 118.7 8.72× 103 33.3

Figure 8: CPU algorithm runtimes.

n
Uniform Normal 3 Clusters Cube Surface

Mean σ Mean σ Mean σ Mean σ
212 3.24 1.60 2.54 0.908 2.82 1.37 2.32 0.551
213 4.12 1.37 3.68 0.683 4.30 0.995 4.56 1.28
214 7.80 1.73 6.88 1.75 7.64 1.95 8.30 1.05
215 1.43× 10 0.768 1.33× 10 3.26 1.47× 10 1.46 1.58× 10 1.46
216 2.94× 10 3.13 2.74× 10 7.51 3.00× 10 4.65 3.48× 10 5.34
217 5.73× 10 3.32 5.32× 10 5.31 5.73× 10 4.44 6.32× 10 1.65
218 1.11× 102 7.59 1.00× 102 6.91 1.11× 102 6.56 1.27× 102 10.1
219 1.97× 102 6.57 1.80× 102 9.78 2.00× 102 10.4 2.38× 102 9.02
220 3.31× 102 12.9 3.11× 102 34.5 3.31× 102 14.5 4.19× 102 17.1
221 5.22× 102 14.3 4.78× 102 11.8 5.27× 102 45.4 7.00× 102 20.4
222 8.08× 102 31.4 7.49× 102 21.3 1.03× 103 24.9 1.11× 103 34.9
223 1.05× 103 24.7 9.97× 102 23.4 1.00× 103 37.7 1.09× 103 31.1

Figure 9: GPU algorithm runtimes.

1	

10	

100	

1000	

10000	

1000	 10000	 100000	 1000000	 10000000	

Ru
n$

m
e	
(m

s)
	

Number	 of	 Points	

GPU	 Algorithm	 vs.	 CPU	 Algorithm	 Run$me	

CPU	 Alg.	 -‐	 Uniform	 CPU	 Alg.	 -‐	 Normal	
CPU	 Alg.	 -‐	 Cube	 Surface	 CPU	 Alg.	 -‐	 3	 Clusters	
GPU	 Alg.	 -‐	 Uniform	 GPU	 Alg.	 -‐	 Normal	
GPU	 Alg.	 -‐	 Cube	 Surface	 GPU	 Alg.	 -‐	 3	 Clusters	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

1000	 10000	 100000	 1000000	 10000000	

Sp
ee
du

p	
Fa
ct
or
	

Number	 of	 Points	

GPU	 Algorithm	 vs.	 CPU	 Algorithm	 Speedup	

Uniform	 Cube	 Normal	 Origin	 Cube	 Surface	 3	 Clusters	

Figure 12: Speedup graph for n data points.

totalMergesLeft variable reached a certain value. The
premise of this approach is that the last few iterations
are poorly parallelizable and could be more quickly per-
formed by a serial CPU. To accomplish this, the par-
tially computed data would need to be copied from GPU
memory to memory that the CPU has access to. On
the CPU side, there would be a similar algorithm which
would finish the rest of the computation using that same
bottom-up style algorithm.

Surprisingly, our experimental results showed that
those last few merge iterations take an insignificant
amount of time – less than one millisecond. So the
hybrid approach is overly-complex, and implementing
it would have been an instance of premature optimiza-
tion. The final design of the GPU algorithm takes place
entirely on the GPU rather then on both GPU and CPU
hardware. The GPU algorithm just requires the use of
the CPU for the required OpenCL setup routines and
ultimately to read in the data and output the data; the
GPU completes all the extensive computations.

Something we found interesting is the ratio of speedup

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

141

24th Canadian Conference on Computational Geometry, 2012

improvements over the CPU algorithm as the data set
increases. For smaller data sets, the speedup is only
about 4x. As the data set increases, the speedup in-
creases to about 8x (see Figure 12).

Our roughly 8x speedup is notable since it approaches
the maximum potential improvement achievable on our
hardware. According to LINPACK and NVIDIA, our
GPU is capable of roughly 8 times more gigaFLOPS
than one of our CPU cores. Our implementation real-
izes practically all of this potential despite the obstacles
inherent in parallelizing the 3D convex hull problem.

5 Conclusion

We have shown that bottom-up adaptation of the mini-
malist divide-and-conquer algorithm for 3D convex hulls
is fast, practical, and reasonably straightforward. The
approach is faster than CPU implementations and com-
petitive with hybrid GPU/CPU implementations.

In performing this exercise, we did make two counter-
intuitive conclusions. First, while OpenCL and CUDA
are intended to be high-level abstractions of GPU hard-
ware, we nonetheless faced many obstacles related to
low-level concerns such as memory management, mem-
ory hierarchies, and thread scheduling. Second, our in-
tuition was that the overhead of starting and scheduling
kernel applications would become a major bottleneck in
the later steps of the algorithm. However, empirical
results demonstrated this to be a non-issue.

The following are potential areas for future work:

• Higher-level libraries or tools for implementing
divide-and-conquer algorithms on the GPU.

• A suite of compatible, parallel GPU implementa-
tions of fundamental computational geometry al-
gorithms.

• In particular, an arrangement data structure, e.g.
doubly connected edge list, is a prerequisite to im-
plementing many well-motivated algorithms.

References

[1] S. G. Akl and G. T. Toussaint. A fast convex hull algo-
rithm. Information Processing Letters, 7(5):219 – 222,
1978.

[2] N. M. Amato and F. P. Preparata. A time-optimal
parallel algorithm for 3D convex hulls. Algorithmica,
14(2):169–182, Aug. 1993.

[3] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The
quickhull algorithm for convex hulls. ACM Trans.
Math. Softw., 22(4):469–483, Dec. 1996.

[4] T. Chan. Optimal output-sensitive convex hull algo-
rithms in two and three dimensions. Discrete & Com-
putational Geometry, 16:361–368, 1996.

[5] T. M. Chan. A minimalist’s implementation of the 3-
d divide-and-conquer convex hull algorithm. Technical
report, University of Waterloo, 2003.

[6] B. Chazelle. An optimal convex hull algorithm in any
fixed dimension. Discrete & Computational Geometry,
10:377–409, 1993.

[7] W. F. Eddy. A new convex hull algorithm for planar
sets. ACM Trans. Math. Softw., 3(4):398–403, Dec.
1977.

[8] T. Jurkiewicz and P. Danilewski. Efficient quicksort and
2D convex hull for CUDA, and MSIMD as a realistic
model of massively parallel computations. Technical
report, Max Planck Institute for Informatics, 2011.

[9] D. G. Kirkpatrick and R. Seidel. The ultimate planar
convex hull algorithm? SIAM Journal on Computing,
15(1):287–299, 1986.

[10] A. Munshi. The OpenCL specification version 1.0.
Technical report, The Khronos Group, 2009.

[11] NVIDIA. GeForce GTX 580 specifications.
http://www.geforce.com/hardware/desktop-gpus/

geforce-gtx-580/specifications.

[12] NVIDIA. NVIDIA introduces industry-changing,
highly integrated GPU. http://www.nvidia.com/

object/io_1224088545955.html. Press Release.

[13] NVIDIA. NVIDIA CUDA Programming Guide 2.0.
2008.

[14] F. P. Preparata and S. J. Hong. Convex hulls of finite
sets of points in two and three dimensions. Commun.
ACM, 20(2):87–93, Feb. 1977.

[15] A. Rueda and L. Ortega. Geometric Algorithms on
CUDA. In Proceedings of the 3rd International Confer-
ence on Computer Graphics Theory and Applications,
2008.

[16] R. Seidel. A convex hull algorithm optimal for point
sets in even dimension. Master’s thesis, Dept. of Com-
puter Science, University of British Columbia, Vancou-
ver, Canada, 1981.

[17] S. Srungarapu, D. Reddy, K. Kothapalli, and
P. Narayanan. Fast two dimensional convex hull on
the GPU. In Advanced Information Networking and
Applications (WAINA), 2011 IEEE Workshops of In-
ternational Conference on, pages 7 –12, march 2011.

[18] M. Tang, J. yi Zhao, R. Tong, and D. Manocha. GPU
accelerated convex hull computation. In Shape Modeling
International (SMI) 2012, 2012.

[19] J. White and K. A. Wortman. Divide-and-conquer 3D
convex hulls on the GPU. Google Code project http:

//code.google.com/p/3d-convex-hulls/.

24th Canadian Conference on Computational Geometry, 2012

142

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Basis Enumeration of Hyperplane Arrangements Up to Symmetries∗

Aaron Moss† David Bremner‡

Abstract

Given a symmetry group acting on the hyperplanes of
an arrangement, our goal is to report a single basis from
each orbit of bases induced by this group. In this paper
we extend previous techniques for finding the (feasible)
bases of polyhedra up to symmetry, and for comput-
ing the symmetry groups of polyhedra, to the setting
of hyperplane arrangements. We present some prelimi-
nary experiments with a C++ implementation of these
techniques called Basil. These results show substantial
speedups compared to a previous polyhedra only sys-
tem using the computer algebra system GAP. We also
measure the speedup due to a Gram matrix invariant,
and show that the overhead of symmetry testing, while
substantial, is dominated by the savings in reduced piv-
oting.

1 Introduction

Because of the large number of vertices and bases of a
hyperplane arrangement, it is natural to consider gen-
erating these objects up to symmetry. One application
for finding (orbits of) bases of hyperplane arrangements
is the computation of the vector partition function of
a matrix, a fundamental operation in parametric in-
teger programming and representation theory. Bases
of hyperplane arrangements are equivalent to bases of
systems of linear equations (minimal subsystems defin-
ing zero dimensional solutions). Basis enumeration of
systems of linear equations is necessary for dual-type
generating function approaches to computing the vec-
tor partition function, which research by Brion, Szenes,
and Vergne [6, 14] suggests may be quicker than current
approaches.

This paper describes the design and implementation
of a program for basis enumeration of hyperplane ar-
rangements up to symmetries. This program, called
Basil (“Basis list”) adapts the pivoting method of
Bremner, Sikirić, and Schürmann [5] for basis enumer-
ation of polyhedra up to symmetries, using a new pivot
selection method to traverse hyperplane arrangements

∗Research partially supported by NSERC. Computational re-
sources provided by ACEnet.
†Faculty of Computer Science, University of New Brunswick,

moss.aaron@unb.ca
‡Faculty of Computer Science, University of New Brunswick,

bremner@unb.ca

instead of polyhedra. The work of Bremner et al. is in
turn related to the reverse-search method for basis enu-
meration of Avis and Fukuda [4] and earlier pivoting
methods e.g. [7].

Sikirić’s Polyhedral [13] and Rehn’s Sympol [12] con-
tain other solutions to the related problem of vertex enu-
meration up to symmetries of polyhedra; the approaches
taken by both Sikirić and Rehn involve recursively de-
composing the polyhedron into smaller polyhedra, and
are quite different from our pivoting approach. For a
survey of approaches for vertex enumeration up to sym-
metries of polyhedra (and the dual problem of facet enu-
meration up to symmetries), see [5], which covers both
the recursive decomposition and pivoting approaches.

2 Background

2.1 Arrangements & Polyhedra

The structures discussed here exist in d-dimensional real
space, Rd. A point x in Rd is the ordered list of coordi-
nates x = [x1 x2 · · · xd], where each of the xi is a real
number (though in this paper all explicitly defined vec-
tors have rational coordinates for reasons of efficiency
and ease of computation). A hyperplane H is the set of
points x ∈ Rd which satisfy a linear equation a>x = b
(a ∈ Rd, b ∈ R), while a hyperplane arrangement A is
the union of the points contained in a set of hyperplanes,
indexed as A1, A2, · · · , An. A polyhedron P is a closely
related structure, the intersection of a set of halfspaces
P1, P2, · · · , Pn; a halfspace is the set of points x ∈ Rd
that satisfy a linear inequality a>x ≥ b (a and b defined
as above). The hyperplane for which this inequality is
satisfied with equality is known as the bounding hyper-
plane of a halfspace, while the set of bounding hyper-
planes of the halfspaces defining a polyhedron is called
its bounding hyperplane arrangement. The size of an ar-
rangement is the number of hyperplanes n, while all ar-
rangments considered will be full rank and thus have di-
mension d, the dimension of the underlying space. Size
and dimension of polyhedra are defined analogously.

A cobasis B of a hyperplane arrangement is a set
of indices of d hyperplanes which intersect at a single
point, a vertex of the arrangement (We use here the
name cobasis from linear programming for what is typ-
ically called a basis in geometry for consistency with
the terminology of our linear programming-based im-
plementation). Hyperplanes which contain a vertex are

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

143

24th Canadian Conference on Computational Geometry, 2012

said to be incident to that vertex. It should be noted
that d hyperplanes meet in a single point if and only if
the equations defining those hyperplanes are linearly in-
dependent. The problem of basis enumeration is thus to
list all the unique cobases of a hyperplane arrangement.
Vertices of polyhedra may be defined as those vertices
of the polyhedron’s bounding hyperplane arrangement
which are contained within the polyhedron, and cobases
of a polyhedron as the cobases of the bounding arrange-
ment which correspond to those vertices. A vertex of
an arrangement or polyhedron may be defined by more
than one cobasis (i.e. if more than d hyperplanes of
the (bounding) arrangement meet at that point); such
a vertex is called degenerate. A polyhedron or arrange-
ment with no degenerate vertices is simple, for such a
polyhedron the vertex enumeration problem (reporting
each unique vertex) is equivalent to the basis enumer-
ation problem. For non-simple (degenerate) polyhedra
and arrangements, the vertex enumeration problem can
be solved by basis enumeration, though some method
must be employed to filter out duplicate vertices.

The cobases of a polyhedron or hyperplane arrange-
ment can be considered as the nodes of an implicit
graph, where two cobases B1 and B2 are adjacent if they
differ only by one element, that is, letting B = B1∩B2,
B1 = B ∪ {p} and B2 = B ∪ {q}; here the d− 1 hyper-
planes defining B intersect in a 1-dimensional line, an
edge of the arrangement.

A certain class of optimization problem involves find-
ing a vertex v of a polyhedron which maximizes a
linear objective function defined by a vector c =
[c1 c2 · · · cd] ∈ Rd as c(x) = c>x. The field of lin-
ear programming has developed to solve this and re-
lated problems, some of these related problems being
defined on hyperplane arrangements. One of the oldest
and most studied approaches to linear programming,
the simplex method pioneered by Dantzig [8], is to find
an initial cobasis and then repeatedly move (or pivot)
to some adjacent cobasis corresponding to a vertex v′

with an objective value c(v′) at least as good as the
objective value of the current vertex. This process is re-
peated, proceeding until either a cobasis of an optimal
vertex is reached or it can be seen that no such optimal
vertex exists.

The fundamental data structure of the simplex
method is the simplex tableau, T(P,B), which re-
expresses the linear inequalities defining a polyhedron
P in terms of a cobasis B. The first step to convert a
polyhedron to tableau form is to add n new slack vari-
ables {xd+1, xd+2, · · · , xd+n} to the existing decision
variables {x1, x2, · · · , xd} which define points in Rd.
The slack variables represent the “distance” between
the bounding hyperplane of each halfspace in the poly-
hedron and the vertex represented by the tableau; the
slack variables are therefore always kept non-negative

by the simplex algorithm when dealing with polyhe-
dra, though when simplex tableaux are used to repre-
sent hyperplane arrangements the slack variables may
be either positive or negative, as points in an arrange-
ment may be on either side of any hyperplane in the
arrangement. To add the slack variables, each of the
inequalities a>i x ≥ bi defining the halfspace Pi in P is
rewritten as an equation xd+i = −bi + a>i x, defining a
matrix An×d = (ai,j) (ai,j being the j-th element of ai)
and a vector b = [b1 b2 · · · bn]>. These components are
combined with the vector c defining the objective func-
tion in a matrix as follows, defining the initial simplex
tableau:

M =

[
0 c>

−b An×d

]

The basic variables of the tableau are the set of vari-
ables xi which are defined by the equations represented
by the rows of the tableau; the set of variables xj which
are the column variables those equations are written in
terms of are the cobasic variables of the tableau1. With
the addition of auxiliary structures to the tableau ma-
trix M to remember the current sets of basic and coba-
sic variables, the data structures needed for the simplex
method are complete. The values of the cobasic vari-
ables of a simplex tableau are assumed to be zero, so
that the value of any basic variable (or the objective
function in the first row) can be read off from the con-
stant term in the first column. After the initial setup of
the tableau is complete, the decision variables are moved
into the basis, with slack variables replacing them in the
cobasis. When this process is completed, the current
vertex represented by the tableau can be read off from
the values of the decision variables in the first column.

In the context of linear programming, a pivot from a
cobasis B1 to another adjacent cobasis B2 (B1 = B2 ∪
{xe}\{xl}) exchanges the entering slack variable, xe for
the leaving slack variable, xl,

2 traversing an edge of the
arrangement or polyhedron.

Pivot rules used in the simplex method are based on
the idea of the minimum ratio test. Geometrically, this
test can be thought of as leaving one basis and slid-
ing along an edge of a polyhedron or hyperplane ar-
rangement until the first new (bounding) hyperplane is
reached, forming a new basis. In a simplex tableau, dis-
tance from each hyperplane is represented by its asso-
ciated slack variable, and moving from one hyperplane
to another (equivalently, moving to an adjacent cobasis)
is accomplished by allowing the one cobasic variable to
become non-zero while forcing some basic variable to
zero. For a given pair xe and xl of cobasic and basic
variables, the ratio between the constant term bl of the

1Note that the cobasic variables of a simplex tableau, not the
basic, correspond to a basis of the represented polyhedron or ar-
rangement in the usual geometric definition.

2The variables are “entering” and “leaving” the linear pro-
gramming basis, the complement of the cobasis.

24th Canadian Conference on Computational Geometry, 2012

144

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

leaving variable xl and the coefficient al,e of the entering
variable xe in the leaving variable’s equation determines
how much the entering variable can be increased or de-
creased. By setting xe to r = bl/al,e, xl is forced to
zero. In polyhedra leaving and entering variables must
be chosen such that r ≥ 0, as slack variables cannot
be negative, but this restriction does not hold for ar-
rangements. Selecting xl such that the magnitude of r
is minimized (the “minimum ratio”) finds the nearest
adjacent cobasis to pivot to; if r = 0 (due to bl = 0),
the pivot is degenerate, moving to another cobasis of the
same vertex.

2.2 Symmetries

Many interesting hyperplane arrangements have a sig-
nificant number of automorphisms: geometric symme-
tries (e.g. reflections and rotations) which leave the
points in the arrangement setwise invariant. These sym-
metries can also be considered as permutations of the
list of hyperplanes included in the arrangement3. Tak-
ing the group G of some set of these symmetries acting
on a hyperplane arrangement, the problem of basis enu-
meration up to symmetries is listing exactly one cobasis
from each orbit under the action of G. The symmetries
we are particularly interested in are isometries, distance
preserving symmetries.

One property of isometric cobases is that, given some
distance metric, the set of angles according to that met-
ric between each pair of hyperplanes which meet in a
single cobasis is setwise invariant under the action of
any symmetry in the automorphism group. To use this
property, the angles between all pairs of hyperplanes
can be precomputed, and then each distinct angle can
be represented by a unique integer. The Gram matrix
A = (ai,j) is constructed such that ai,j is the value
corresponding to the angle between the hyperplanes in-
dexed i and j. Gram matrices for polyhedra can be
similarly constructed with respect to the angles between
the bounding hyperplanes of the polyhedron. A subma-
trix of a Gram matrix uniquely representing the angles
between pairs of hyperplanes in a given cobasis can be
constructed by selecting only the elements in the rows
and columns of the Gram matrix corresponding to the
indices of the cobasis hyperplanes. If each row of this
submatrix is sorted, and then the rows of the subma-
trix are lexicographically sorted, the resulting subma-
trix uniquely represents the angles between each pair of
hyperplanes in the cobasis, and pairs of such matrices
can be compared for equality swiftly. Equality of Gram
submatrices does not guarantee that the corresponding
cobases are symmetric, but inequality of Gram subma-
trices does show that the cobases are not symmetric.

An automorphism α of the Gram matrix G = (gi,j)

3Automorphisms on polyhedra can be considered analogously.

of a polyhedron may be defined by a permutation σ of
the row and column indices of the matrix as α(G) =
(gσ(i),σ(j)) such that G = α(G). Such an automorphism
of the Gram matrix corresponds to an automorphism
of the polyhedron produced by permuting the indices
of the halfspaces defining the polyhedron by σ. A full
proof of this can be found in [5], but intuitively the rows
and columns of the Gram matrix correspond to the half-
spaces defining the polyhedron. As the Gram matrix
encodes the distances between each pair of bounding
hyperplanes as angles, any transformation which leaves
the Gram matrix invariant will also not change the poly-
hedron, because the relative positions of each of the
halfspaces have remained constant. If the Gram ma-
trix is interpreted as the adjacency matrix of a graph,
with the elements of the matrix representing colors of
the edges, these automorphisms can also be expressed
as edge-color preserving graph automorphisms.

One problem we encountered in generating Gram
matrices for hyperplane arrangements that does not
occur in the polyhedral case is that any hyperplane
A = {x | a>x = b} can be replaced by its negation
Ā = {x | −a>x = −b} without changing the arrange-
ment. However, the angle produced by Ā and another
hyperplane B is the supplement of the angle produced
by A and B, in general a distinct angle. When us-
ing the Gram matrix to detect non-symmetric cobases,
this problem can be solved by simply using a unique
up to supplements representation for each angle. This
approach does not work when using the Gram matrix
to determine the automorphisms of the arrangement,
as spurious automorphisms are generated; essentially,
these false automorphisms consider a hyperplane to be
both itself and its negation simultaneously, causing the
arrangement to be warped by some angles between pairs
of hyperplanes being replaced by their supplements. If
the arrangement is doubled such that each hyperplane
is paired with its negation, then matrix automorphisms
may replace a hyperplane by its negation by transpos-
ing the two in the symmetry but this warping is pre-
vented from occurring, and correct automorphisms may
be derived after reversing the doubling process on the
generated permutations. This does, however, quadru-
ple the size of the Gram matrix used for automorphism
generation.

3 Algorithms

The essential idea of our algorithm for basis enu-
meration up to symmetries is to explore the hyper-
plane arrangement outward, moving from an initial
cobasis to its adjacent cobases, pruning this search
tree when a cobasis symmetric to one already found
is reached; a full description is in Algorithm 1.
The subroutine InitialCobasis() returns any coba-

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

145

24th Canadian Conference on Computational Geometry, 2012

sis of the arrangment; Adjacent(B) returns a list
of all cobases Bi which are adjacent to a cobasis B.
InNewOrbit(B) tests whether a cobasis B is in an
orbit already discovered, while Report(B) is used to
output a newly discovered cobasis B. The subroutines
PushCobasis(S,B) and PopCobasis(S), which push
and pop a cobasis to or from a stack S, (updating inter-
nal structures to be consistent with that cobasis) com-
plete the description of the algorithm.

Algorithm 1 Basis orbit enumeration algorithm

function SymmetricBasisSearch(void)
. find a cobasis of the arrangement

B← InitialCobasis()
. explore outward from this cobasis

S ← a stack of cobases, initially empty
Report(B)
PushCobasis(S,B)
repeat

B← PopCobasis(S)
. search for new orbit representatives adjacent to B

for all Bi ∈ Adjacent(B) do
if InNewOrbit(Bi) then

Report(Bi)
PushCobasis(S,Bi)

end if
end for

until Empty(S)
end function

The reader familiar with pivoting algorithms will
remark upon the absence of perturbation from Algo-
rithm 1. Practical pivoting algorithms for vertex enu-
meration use some form of perturbation (or equivalent
pivot rule, e.g. [3]) to reduce the number of bases re-
ported per vertex. Here our goal is to find all orbits of
bases, so standard symbolic perturbation schemes that
ignore the symmetry group are unlikely to work well.
In [5] the authors describe an explicit orbitwise pertur-
bation scheme that preserves the orbits of bases of the
original input (possibly shattered into several orbits).
Since this can be implemented as a preprocessor, we do
not discuss it here; some of our experimental data (the
E7-j examples in Table 1) is of this preprocessed type.

All the required subroutines for Algorithm 1 can
be defined to act on a simplex tableau. Most of
these subroutines have been known since Dantzig’s
original formulation of the simplex algorithm, and
can be derived from most linear programming text-
books, though some simple modifications may be
needed to convert processes intended for use on poly-
hedra to work with arrangements (such as our im-
plementation of Adjacent(B), detailed below). For
PushCobasis(S,B) and PopCobasis(S), our imple-
mentation keeps an internal stack of pivots performed,

reversing those pivots as necessary to return to an ear-
lier cobasis.

Our implementation of Adjacent(B) is based on the
minimum ratio test. Our rule tries all the variables xj
in the cobasis B as entering variables, attempting to
find valid leaving variables for each. Given an entering
variable xe, our method reports all the basic variables
that are already zero as possible leaving variables (these
represent degenerate pivots), as well as all the basic vari-
ables xi which have a minimal magnitude ratio bi/ai,e
in both the positive and negative directions. Taking
both positive and negative ratio ensures that new adja-
cent cobases are found on either side of the hyperplane
corresponding to xe.

4 Implementation & Results

In order to achieve good performance, Algorithm 1
needs an efficient pivot implementation. Previous ex-
periments by Avis [3] suggest a significant advantage for
the integer pivoting method of Edmonds [9]. The im-
plementation described in this paper, Basil4, was built
using David Avis’ lrslib [2], which uses Edmonds’ in-
teger pivoting.

The design of Basil is quite closely based on the
Symbal software of Bremner et al. [5], which per-
forms basis enumeration up to symmetries on polyhe-
dra. However, where Symbal is implemented in the
GAP [15] computer algebra system with calls to C li-
braries wrapping lrslib for simplex operations and
McKay’s Nauty [10] for graph automorphism calcula-
tions, Basil has been re-implemented in C++, us-
ing Rehn’s permlib [11] library to replace the both
the group theoretic capabilities of GAP used by Symbal

(which it should be pointed are relatively simple or-
bit membership tests) and the automorphism code in
Nauty with matrix automorphism routines. Basil also
uses lrslib for its tableau implementation.

As Basil is designed as an extension of Symbal, it is
also capable of performing basis enumeration of polyhe-
dra up to symmetries. Though this functionality is not
the focus of this paper, the experimental results shown
in Table 1 compare the relative performance of Basil

and Symbal for basis enumeration up to symmetries of
a set of polyhedra. The Ey instances discussed are the
Dirchlet-Voronoi-cells (DV-cells) of the root lattices Ey,
as described in section 7.2 of [5]. As can be seen from
these results, Basil is generally about two orders of
magnitude faster, attributable to the lower overhead of
C++ execution than the GAP interpreter and the more
sophisticated and efficient data structures available in
C++ than GAP. These numbers represent only the CPU
time of both programs; this is a fairly accurate represen-
tation of Basil’s runtime, but underestimates Symbal’s

4Software and test input available by request.

24th Canadian Conference on Computational Geometry, 2012

146

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Table 1: Comparison of Basil & Symbal
(bases & vertices count orbits)

Problem n:d bases:verts Bas(s) Sym(s)
E7 126:8 32:2 1.82 282.16
E7-3 126:8 82:58 0.59 12.41
E7-7 126:8 1195:106 19.88 1507.72
E7-65 126:8 356:14 7.88 1308.07
E7-102 126:8 41:7 1.27 223.97
E8 240:8 2:2 0.41 2.13

basis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbits

cp
u

 t
im

e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)

10²10²10²10²10²10²10²10²10² 10⁴10⁴10⁴10⁴10⁴10⁴10⁴10⁴10⁴

111111111

10²10²10²10²10²10²10²10²10²

10⁴10⁴10⁴10⁴10⁴10⁴10⁴10⁴10⁴ 0.001 x^1.330.001 x^1.330.001 x^1.330.001 x^1.330.001 x^1.330.001 x^1.330.001 x^1.330.001 x^1.330.001 x^1.33

basis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbits

cp
u

 t
im

e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)

1×10⁵1×10⁵1×10⁵1×10⁵1×10⁵1×10⁵1×10⁵1×10⁵1×10⁵ 2×10⁵2×10⁵2×10⁵2×10⁵2×10⁵2×10⁵2×10⁵2×10⁵2×10⁵ 3×10⁵3×10⁵3×10⁵3×10⁵3×10⁵3×10⁵3×10⁵3×10⁵3×10⁵

500050005000500050005000500050005000

100001000010000100001000010000100001000010000

150001500015000150001500015000150001500015000

200002000020000200002000020000200002000020000
d = 5d = 5d = 5d = 5d = 5d = 5d = 5d = 5d = 5
d = 6d = 6d = 6d = 6d = 6d = 6d = 6d = 6d = 6
d = 7d = 7d = 7d = 7d = 7d = 7d = 7d = 7d = 7

Figure 1: Time for Cd-6-3 instances by # basis orbits,
on both log-log and linear plots.

by about half due to overhead from the interprocess
communication needed to connect GAP to the external
C libraries used. Timing results reported are from the
Placentia ACEnet cluster [1], which has 2.3–3.0 GHz
AMD Opteron processors.

Table 2 shows some early performance results for
Basil on the arrangements. Problems DxA and EyA
are the bounding hyperplane arrangements for the DV-
cells of the root lattices Dx and Ey, while the Cx-y-z
instances are generated by choosing z vertices of the x-
cube and acting on them with a subgroup of the hype-
roctohedral group with at least y orbits. Figure 1 plots
runtime for 268 Cx-6-3 instances. At least for these ex-
amples, it seems that suggests that Basil’s runtime is
super-linear but sub-quadratic in the number of orbits
output (as opposed to the total number of bases, which
can be exponentially larger). Table 3 shows the ben-
efits of considering symmetries for basis enumeration;
the values in this table are the results of using Basil to
enumerate all the cobases of the given test cases.

The pivoting approach implemented in Basil (and
Symbal) differs from that proposed by Avis and
Fukuda [4] for the non-symmetric vertex enumeration
problem in that their reverse search does not maintain
state describing cobases already found or the path from
the initial cobasis to the cobasis currently under con-
sideration. That approach has the benefit of requiring
a relatively small constant amount of memory, but also
requires more simplex computations, increasing running
time. For the symmetric case, we expect there to be

Table 2: Basil Timing Results
(bases & vertices count orbits)

Problem n:d bases:verts Bas(s)
D4A 24:4 12:7 0.02
D5A 40:5 104:25 0.50
C5-6-3a 25:5 291:36 0.70
C5-6-3b 16:5 51:16 0.05
C6-6-3a 15:6 9:1 0.03
C6-6-3b 36:6 1394:91 13.90
C6-6-3c 50:6 5342:157 63.65
C7-6-3a 48:7 18720:140 456.59
E7A 126:8 12399:227 1570.66

Table 3: Non-Symmetric Timing Results
(all bases & vertices counted)

Problem n:d bases:verts Bas(s)
D4A 24:4 5028:863 23.62
C5-6-3a 25:5 24444:852 120.80
C5-6-3b 16:5 3005:234 4.37
C6-6-3a 15:6 2530:1 16.31

relatively few orbits of cobases, allowing Basil to keep
representatives of each in memory, and thus have not
yet investigated a memory-less reverse search for this
problem. Additionally, the limiting factor on the size
of instances we can currently solve is the computational
expense of the group theoretic calculations required to
check symmetry (encapsulated in InNewOrbit in Al-
gorithm 1), which dominate the running time of Basil
to a significant degree. Our profiling results show that
tests for orbit membership take about 60% of the run-
time of Basil, while the only other individual opera-
tion which significantly contributes to runtime is sim-
plex pivoting, contributing about 20% of the execution
time.

Because the group theoretic computations involved
in checking if two cobases are in the same orbit under
the group action are so expensive, Basil utilizes some
cheaper invariants of symmetric cobases to shrink the
set of cobases that must be tested for symmetries. The
simplest of these invariants is to check that the num-
ber of hyperplanes incident to the vertices defined by
the two cobases is the same, as an automorphism of the
hyperplane arrangement preserves the number of hyper-
planes which meet at any given vertex. Basil also keeps
a cache of recently seen cobases to avoid needing to re-
test previous cobases (for instance, the cobasis that was
pivoted from to reach the current cobasis).

Basil also uses the Gram submatrix to differenti-
ate cobases; representatives of known cobasis orbits are
stored in a hash table indexed by the corresponding
Gram submatrix. Comparing each newly discovered
cobasis only to the cobases having Gram submatrices

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

147

24th Canadian Conference on Computational Geometry, 2012

D4A

D5A

C5-6-3a

C5-6-3b

C6-6-3a

C6-6-3b

0 1 2 3 4 5 6 7 8 9

speedup

0.02 s

0.50 s

0.70 s

0.05 s

0.03 s

13.90 s

Figure 2: Speedup from using Gram matrix
(bar labels are runtime without Gram matrix)

which are equivalent under the sorting procedure de-
scribed earlier greatly reduces the number of expensive
group theoretic tests which must be performed. If the
Gram submatrix invariant is turned off in Basil, execu-
tion time on a given instance increases dramatically, as
seen in Figure 2, while when activated the Gram matrix
computations consume about 5% of the execution time
of Basil.

5 Conclusion & Future Work

Basis enumeration seems to be an easier problem than
the closely related problem of vertex enumeration. A
pivoting algorithm can effectively explore the graph of
adjacent bases. The main practical difficulty is the typ-
ically enormous output size from even moderate sized
input. In certain applications, it suffices to generate
one basis from each orbit under some natural symmetry
group. In this paper we have described the enhance-
ment of the symmetric pivoting software Symbal to pro-
duce a second generation symmetric pivoting software
Basil. Basil is a native C++ application, and the
speedup compared to Symbal can be seen as a valida-
tion of the use of C++ instead of the computer algebra
system GAP, enabled by use of the permlib C++ library
for group theoretic computations. The main motiva-
tion for developing Basil was to be able to generate or-
bit representatives of bases in hyperplane arrangements,
based on a perceived need for this capability in certain
novel approaches to integer programming. The exten-
sion from polyhedra to arrangements required defining
a new ratio-test, and a modified procedure compute the
symmetry group.

As the expense of the group theoretic calculations
is the current limiting factor on the problem size that
is feasible to solve, future directions for this research
include a parallel implementation of Basil to bring
greater computational power to bear on the problem, as
well as research into invariants which may be cheaper
to test than cobasis isomorphism.

Another way to reduce group theoretic calculations is
to construct or approximate a fundamental domain, a

convex cell F such that each orbit of cobases has exactly
one representative in F . Such a cell can be constructed
by techniques closely related to Voronoi diagrams, and
could be used to prune the search for adjacent bases.

References

[1] ACEnet. http://www.ace-net.ca/wiki/ACEnet,
September 2011.

[2] D. Avis. lrs home page. http://cgm.cs.mcgill.ca/

~avis/C/lrs.html. accessed 26 January 2012.

[3] D. Avis. Computational experience with the reverse
search vertex enumeration algorithm. Optimization
Methods and Software, 10(2):107–124, 1998.

[4] D. Avis and K. Fukuda. A pivoting algorithm for convex
hulls and vertex enumeration of arrangments and poly-
hedra. Discrete & Computational Geometry, 8(1):295–
313, 1992.

[5] D. Bremner, M. D. Sikirić, and A. Schürmann. Poly-
hedral representation conversion up to symmetries. In
D. Avis, D. Bremner, and A. Deza, editors, Polyhedral
Computation, pages 45–71. CRM Proceedings & Lec-
ture Notes, American Mathematical Society, 2009.

[6] M. Brion and M. Vergne. Residue formulae, vector
partition functions and lattice points in rational poly-
topes. Journal of the American Mathematical Society,
10(4):797–833, October 1997.

[7] A. Charnes. The simplex method: optimal set and de-
generacy. In An introduction to Linear Programming,
Lecture VI, pages 62–70. Wiley, New York, 1953.

[8] G. B. Dantzig. Maximizing a linear function of vari-
ables subject to linear inequalities. Activity Analysis of
Production and Allocation, pages 339–347, 1951.

[9] J. Edmonds and J.-F. Maurras. Note sur les Q-matrices
d’Edmonds. RAIRO. Recherche opérationnelle,
31(2):203–209, 1997.

[10] B. McKay. The nauty page. http://cs.anu.edu.au/

~bdm/nauty/. accessed 26 January 2012.

[11] T. Rehn. User’s Guide for PermLib. http://www.math.
uni-rostock.de/~rehn/software/permlib.html, Oc-
tober 2011. accessed 26 January 2012.

[12] T. Rehn. User’s Guide for SymPol. http://www.math.
uni-rostock.de/~rehn/software/sympol.html, Oc-
tober 2011. accessed 16 February 2012.

[13] M. D. Sikirić. Polyhedral home page. http://

drobilica.irb.hr/~mathieu/Polyhedral/. accessed
10 May 2012.

[14] A. Szenes and M. Vergne. Residue formulae for vec-
tor partitions and Euler–Maclaurin sums. Advances in
Applied Mathematics, 30:295–342, January 2003.

[15] The GAP Group. GAP System for Computational Dis-
crete Algebra. http://www.gap-system.org, Septem-
ber 2008. accessed 26 January 2012.

24th Canadian Conference on Computational Geometry, 2012

148

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Hardness Results for Computing Optimal Locally Gabriel Graphs

Abhijeet Khopkar∗ Sathish Govindarajan†

Abstract

Delaunay and Gabriel graphs are widely studied geo-
metric proximity structures. Motivated by applications
in wireless routing, relaxed versions of these graphs
known as Locally Delaunay Graphs (LDGs) and Lo-
cally Gabriel Graphs (LGGs) have been proposed. We
propose another generalization of LGGs called Gener-
alized Locally Gabriel Graphs (GLGGs) in the context
when certain edges are forbidden in the graph. Unlike
a Gabriel Graph, there is no unique LGG or GLGG
for a given point set because no edge is necessarily in-
cluded or excluded. This property allows us to choose
an LGG/GLGG that optimizes a parameter of interest
in the graph. We show that computing an edge max-
imum GLGG for a given problem instance is NP-hard
and also APX-hard. We also show that computing an
LGG on a given point set with dilation ≤ k is NP-hard.
Finally, we give an algorithm to verify whether a given
geometric graph G = (V, E) is a valid LGG.

1 Introduction

A geometric graph G = (V, E) is an embedding of
the set V as points in the plane and the set E
as line segments joining two points in V . Delau-
nay graphs, Gabriel graphs and Relative neighborhood
graphs (RNGs) are classic examples of geometric graphs
that have been extensively studied and have applica-
tions in computer graphics, GIS, wireless networks, sen-
sor networks, etc (see survey [7]). Gabriel and Sokal [5]
defined the Gabriel graph as follows:

Definition 1 A geometric graph G = (V, E) is called a
Gabriel graph if the following condition holds: For any
u, v ∈ V , an edge (u, v) ∈ E if and only if the circle
with uv as diameter does not contain any other point of
V .

Gabriel graphs have been used to model the topology
in a wireless network [3]. Motivated by applications in
wireless routing, Kapoor and Li [8] proposed a relaxed
version of Delaunay/Gabriel graphs known as k-locally
Delaunay/Gabriel graphs. The edge complexity of these
structures has been studied in [8, 11]. In this paper, we

∗Dept of Computer Science and Automation, Indian Institute
of Science Bangalore, abhijit@csa.iisc.ernet.in

†Dept of Computer Science and Automation, Indian Institute
of Science Bangalore, gsat@csa.iisc.ernet.in

focus on 1-locally Gabriel graphs and call them Locally
Gabriel Graphs (LGGs).

Definition 2 A geometric graph G = (V, E) is called a
Locally Gabriel Graph if for every (u, v) ∈ E, the circle
with uv as diameter does not contain any neighbor of u
or v in G.

The above definition implies that in an LGG, two edges
(u, v) ∈ E and (u, w) ∈ E conflict with each other and
cannot co-exist if ∠uwv ≥ π

2 or ∠uvw ≥ π
2 . Con-

versely if edges (u, v) and (u, w) co-exist in an LGG,
then ∠uwv < π

2 and ∠uvw < π
2 . We call this condi-

tion an LGG constraint.

Study of these graphs was initially motivated by de-
sign of dynamic routing protocols for ad hoc wireless
networks [10]. Like Gabriel Graphs, LGGs are also
proximity-based structures that capture the interference
patterns in wireless networks. An interesting point to
be noted is that there is no unique LGG on a given
point set since no edge in an LGG is necessarily in-
cluded or excluded. Thus the edge set of the graph
(used for wireless communication) can be customized to
optimize certain network parameters depending on the
application. While a Gabriel graph has a linear number
of edges (planar graph), an LGG can be constructed
with a super-linear number of edges [4]. A dense net-
work can be desirable for applications like broadcast-
ing or multicasting. The dilation or spanning ratio of a
graph is an important parameter in wireless network de-
sign. Graphs with small spanning ratios are important
in many applications and motivate the study of geo-
metric spanners. In this paper, we initiate the study of
dilation on LGGs. We show that there exists a point set
such that the Gabriel Graph on it has dilation Ω(

√
n)

whereas there exists an LGG on the same point set with
dilation O(1).

In many situations, certain links are forbidden in a
network due to physical barriers, visibility constraints
or limited transmission radius. Thus, all pairs of nodes
might not induce edges and this effect can be consid-
ered in LGGs. Thus, it is natural to study LGGs in
the context when the network has to be built only with
a set of predefined links. In this context, we define a
generalized version of LGGs called Generalized locally
Gabriel Graphs (GLGGs). Edges in a GLGG can be
picked only from the edges in a given predefined geo-
metric graph.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

149

24th Canadian Conference on Computational Geometry, 2012

Definition 3 For a given geometric graph G = (V, E)
we define G′ = (V, E′) as GLGG if G′ is a valid LGG
and E′ ⊆ E.

Previous results on LGGs have focused on obtaining
combinatorial bounds on the maximum edge complex-
ity. In [8], it was shown that an LGG has at most O(n

3
2)

edges since K2,3 is a forbidden subgraph. Also, it was
observed in [11] that any unit distance graph is also a
valid LGG. Hence there exist LGGs with Ω(n1+ c

log log n)
edges [4]. It is not known whether an edge maximum
LGG can be computed in polynomial time.

Our Contribution: We present the following results in
this paper.

1. We show that computing a GLGG with at least
m edges on a given geometric graph G = (V, E)
is NP-complete (reduction from 3-SAT) and also
APX-hard (reduction from MAX-(3,4)-SAT).

2. We show that the problem of determining whether
there exists an LGG with dilation ≤ k is NP-hard
by reduction from the partition problem motivated
by [6]. We also show that there exists a point set P
such that any LGG on P has dilation Ω(

√
n) that

matches with the best known upper bound [2].

3. For a given geometric graph G = (V, E), we give an
algorithm with running time O(|E| log |V |+ |V |) to
verify whether G is a valid LGG.

2 Hardness of computing an edge maximum GLGG

In this section we show that deciding whether there ex-
ists a GLGG on a given geometric graph G = (V, E)
with at least m edges for a given value of m is NP-
complete by a reduction from 3-SAT. We further show
that computing edge maximum GLGG is APX-hard by
showing a reduction from MAX-(3,4)-SAT.

A 3-SAT instance is a conjunction of several clauses
and each clause is a disjunction of exactly 3 variables.
Let I be an instance of the 3-SAT problem with k
clauses C1, C2, . . . , Ck and n variables y1, y2, . . . , yn. A
geometric graph G = (V, E) is constructed from I such
that there exists a GLGG on G with at least m edges
if and only if I admits a satisfying assignment. We
construct a vertex set V (points in the plane) of size
(k + 3)n + k that is partitioned into 2n literal vertices
denoted by V1 = {xi, x

′
i | i ∈ {1, . . . , n}}, (k + 1)n vari-

able vertices denoted by V2 = {zij | i ∈ {1, . . . , n}, j ∈
{1, . . . , k + 1}} and k clause vertices denoted by V3 =
{cj | j ∈ {1, . . . , k}}. Thus, V = V1∪V2∪V3. Two literal
vertices xi and x′

i corresponding to the same variable are
called conjugates of each other.

Now let us discuss the placement of these vertices on
the plane as shown in Figure 1. All literal vertices are

placed closely on a vertical line l and the distance be-
tween two consecutive vertices is 10−5. Two conjugate
literal vertices corresponding to the same variable are
kept next to each other. Let l1 and l2 be two horizontal
lines passing through the highest and the lowest literal
vertex respectively. Let b0 be the center point of the
line segment containing all the literal vertices. With b0

as center, a circle is drawn with radius d1 = n4. All
clause vertices c1, c2, . . . , ck are placed along an arc a0

of this circle (with a distance of n
2 between two consec-

utive vertices) with the additional restriction that these
vertices cannot lie between lines l1 and l2. b0c1 and b0ck

make an angle less than α = π
4 with the horizontal axis.

Now k + 1 variable vertices are placed for each variable
in the 3-SAT instance. Consider two horizontal lines
lxi and lx′

i
passing through literal vertices xi and x′

i.
With center at the mid point of xi and x′

i (call it bi)
a circle is drawn with radius d2 = 10n4. Variable ver-
tices are placed on an arc ai of this circle on the same
side of l where clause vertices are placed. These vertices
zi1 , . . . , zi(k+1)

are placed a distance of n
4 apart with the

restriction that no vertex should be placed between lines
lxi and lx′

i
. Any line connecting these vertices with xi

and x′
i makes an angle less than α with the horizontal

axis. For all the variables in I, corresponding variable
vertices are placed similarly. For simplicity variable ver-
tices are shown corresponding to only one variable in
Figure 1. For each clause Cj , there are 3 edges between

l

c2

c1

ck

α

α

a0

x′
ixi

l2

l1

zi(k+1)

ai

zi1

lx′
i

lxi

Figure 1: Placement of vertex set V

clause vertex cj and the corresponding literal vertices.
Let E1 be the set of these edges from all the clause
vertices to three corresponding literal vertices. For ex-
ample, if a clause Cj has literals ya, yb and y′

c, then the
edges (cj , xa), (cj , xb) and (cj , x

′
c) are included in E1.

Another set of edges between literal vertices and vari-
able vertices is defined

E2 = {(xi, zi1), . . . , (xi, zik+1
), (x′

i, zi1), . . . , (x
′
i, zik+1

)

| 1 ≤ i ≤ n}

Now, E = E1 ∪ E2. Let G = (V, E) be the geomet-
ric graph over which an edge maximum GLGG is to be
computed. Let us analyze the conflicts among the edges
in G. It should be noted that since a GLGG is also an

24th Canadian Conference on Computational Geometry, 2012

150

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

LGG, it suffices to look at the LGG constraints to deter-
mine whether two edges conflict. Consider any GLGG
G′ = (V, E′) with E′ ⊆ E on the geometric graph G.
The following constraints are observed on the edge set
E′.

Since the edges (xi, zij) and (x′
i, zij) conflict with each

other (∠zij xix
′
i or ∠zij x

′
ixi is greater than π

2 by con-
struction), a variable vertex zij can have an edge inci-
dent to only xi or x′

i.

Remark 1 A variable vertex zij can have only one edge
((xi, zij) or (x′

i, zij)) incident to it in E′.

Similarly, we can infer Remark 2 due to LGG con-
straints.

Remark 2 Any clause vertex cj can be incident to at
most one literal vertex in E′.

It can be observed that two LGG edges that are the
radii of the same circle do not conflict with each other.
Here, bi (the center of arc ai) is close enough to both the
literal vertices (xi and x′

i) and the radius d2 is chosen
large enough so that no two edges from a literal vertex
to the corresponding variable vertices conflict with each
other.

Remark 3 A literal vertex xi (or x′
i) can have edges

incident to all the corresponding variable vertices zij in
E′ where j ∈ {1, . . . , k + 1}.

Since a literal vertex is placed sufficiently close to b0

(the center of arc a0) and the radius d1 is chosen large
enough, no two edges from a literal vertex to the clause
vertices conflict with each other.

Remark 4 In E′, a literal vertex xi can have edges in-
cident to all the clause vertices that have edges incident
to xi in E1.

Since d2 is chosen large enough compared to d1, if a
literal vertex xi is connected to a variable vertex zij ,
the circle with xizij as diameter would contain all the
clause vertices. Therefore, xi cannot be connected to
any clause vertex due to the LGG constraint.

Remark 5 In E′, if a literal vertex has an edge inci-
dent to a variable vertex, it cannot have an edge incident
to any clause vertex.

Lemma 1 If there exists a GLGG G′ on G with at
least (k + 1)n + k edges, then there exists a satisfying
assignment to the given 3-SAT instance.

Proof. Since each variable vertex can have at most one
edge incident to it (refer to Remark 1), at most (k+1)n
edges of E′ can be selected from E2. Similarly each
clause vertex can have at most one edge incident to it
(refer to Remark 2), so in E′ at most k edges can be

selected from E1. If there are (k + 1)n + k edges in E′,
then one edge is incident to each variable vertex and
clause vertex. If there is an edge between a clause ver-
tex cj and the literal vertex xi (resp. x′

i), assign yi = 1
(resp. yi = 0) as it satisfies the clause Cj . By this rule
assign a truth value to a variable in each clause. If one
clause vertex is incident to xi, no other clause vertex can
be incident to x′

i as x′
i is connected to the corresponding

k + 1 variable vertices (refer to Remark 5). Therefore,
this rule would yield a consistent assignment satisfying
all the clauses. Hence, the given 3-SAT instance is sat-
isfiable. �

Lemma 2 If there is a satisfying assignment to the
given 3-SAT instance, then there exists a GLGG G′ over
G with at least (k + 1)n + k edges.

Proof. A GLGG with (k + 1)n + k edges can be con-
structed based on the satisfying assignment to the given
3-SAT instance. If a variable yi = 1 (resp. yi = 0) then
connect x′

i (resp. xi) to the corresponding k + 1 vari-
able vertices (zi1 , zi2 , . . . , zik+1

). Applying this rule to
each variable we get (k + 1)n edges in E′ from E2 and
these edges do not conflict with each other (refer to Re-
mark 3). Since all the clauses will have at least one lit-
eral satisfied in this assignment, every clause vertex can
have an edge incident to some literal vertex that has no
edges incident to any of the variable vertices. Consider
a clause Cj which is satisfied by the assignment yi = 1
(resp. yi = 0). Add the edge (cj , xi) (resp. (cj , x

′
i))

to E′. Since all the clauses are satisfied, k edges from
E1 can be added to E′. Therefore, G′ has (k + 1)n + k
edges and it is a valid GLGG. �

Theorem 3 Deciding whether there exists a GLGG
with at least m edges for a given value of m is NP-
complete.

Proof. By Lemma 1 and Lemma 2, this problem is NP-
hard. Given a geometric graph G′, it can be verified in
polynomial time whether G′ is a valid GLGG with at
least m edges. Thus, this problem is NP-complete. �

This reduction to argue NP-hardness can be extended
further to show inapproximability for computing an
edge maximum GLGG. Let us consider the optimiza-
tion version of 3-SAT known as MAX-3-SAT. Here the
objective is to find a binary assignment satisfying the
maximum number of clauses. MAX-(3,4)-SAT is a spe-
cial case of MAX-3-SAT with an additional restriction
that a variable is present in exactly four clauses. MAX-
(3,4)-SAT is shown to be APX-hard in [1].

Now we enhance our existing construction such that
for each variable there are 5 variable vertices instead
of k + 1 as described in the previous reduction. Let
G = (V, E) be this new geometric graph on which an
optimal GLGG has to be computed. Again edge sets

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

151

24th Canadian Conference on Computational Geometry, 2012

E1 and E2 are defined as earlier. Now, we present the
following lemma that helps to prove that computing an
edge maximum GLGG is APX-hard.

Lemma 4 If a GLGG G′
1 computed over G has less

than 5n edges from E2 then we can obtain another
GLGG G′

2 over G with 5n edges from E2 and |E′
2| ≥

|E′
1|.

Proof. Initially let G′
2 = G′

1. In G′
2 if a variable vertex

zij , 1 ≤ j ≤ 5 has an edge incident to an associated
literal vertex xi, then xi cannot have an edge incident
to a clause vertex (refer to Remark 5). Now xi can have
edges incident to all the five variable vertices (refer to
Remark 3). Therefore, if a variable vertex zij has an
edge incident to xi and some other variable vertex zij′

corresponding to the same variable has no edge incident
to it, then an edge (xi, zij′) can be added to E′

2 without
conflicting with any existing edge.

If no vertex zij , 1 ≤ j ≤ 5 has an edge incident to
xi, the solution can be improved locally. Add the edges
{(xi, zij)|1 ≤ j ≤ 5} to E′

2 and remove any edges con-
necting xi to the clause vertices from E′

2. Note that a
variable occurs only in four clauses in a MAX-(3,4)-SAT
instance, so a literal vertex cannot have edges incident
to more than four clause vertices. Therefore, this trans-
formation implies |E′

2| ≥ |E′
1|. Applying this argument

to all the variable vertices, it can be ensured that in G′
2

every variable vertex has an edge incident to it. Thus,
E′

2 has 5n edges from E2 and |E′
2| ≥ |E′

1|. �

Theorem 5 Computing an edge maximum GLGG on
a given geometric graph G = (V, E) is APX-hard.

Proof. Let OPTG and OPTS denote the optimum for
the GLGG instance and the MAX-(3,4)-SAT instance
respectively. A clause vertex can have only one edge in-
cident to it (refer to Remark 2) and a GLGG maximiz-
ing the edges will have 5n edges from E2 (edges between
variables vertices and literal vertices, refer to Lemma 4).
Therefore, OPTG = 5n+OPTS . Let an algorithm max-
imizing the number of edges selects m edges from E1

(edges between clause vertices and literal vertices) along
with 5n edges from E2. Each of these m edges implies a
satisfied clause in the original MAX-(3,4)-SAT instance.
Since MAX-(3,4)-SAT cannot be approximated beyond
0.99948 [1], m < 0.99948 ∗ OPTS . Let c be the best
approximation bound for the edge maximum GLGG.
Therefore, c ≤ 5n+0.99948∗OPTS

5n+OPTS
. Since any binary as-

signment or its complement would necessarily satisfy at
least half of the clauses in any given 3-SAT formula,
OPTS ≥ k

2 . Here n = 3
4k implying c ≤ 0.999939. Thus,

it is NP-hard to approximate edge maximum GLGG
within a factor of 0.999939. �

Consider the maximum weight LGG problem where
the edges are assigned weights and we have to compute

an LGG maximizing the sum of the weights of the se-
lected edges. The edge maximum GLGG problem is a
special case of the maximum weight LGG problem (edge
weights are either 0 or 1).

Corollary 1 Computing a maximum weight LGG is
APX-hard.

3 Dilation of LGG

Let us define dilation of a geometric graph G = (V, E).
Let DG(u, v) be the distance between two vertices in
the geometric graph (sum of length of the edges in the
shortest path) and D2(u, v) be the Euclidean distance

between u and v. Let δ(u, v) = DG(u,v)
D2(u,v) . The dilation

of G is defined as δ(G) = maxu,v∈V,u6=v δ(u, v). In this
section, we focus on computational and combinatorial
questions on dilation for LGGs.

3.1 Computation of a minimum dilation LGG

In this section we show that the problem of determin-
ing whether there exists an LGG on a given point set
with dilation ≤ 7 is NP-hard. The reduction from the
partition problem is motivated by a technique in [6],
where it was shown that computing the minimum di-
lation geometric graph with bounded number of edges
is NP-hard. Since our problem requires us to construct
an LGG instead of any geometric graph with bounded
number of edges, the construction needs to be substan-
tially modified.

The partition problem is defined as follows: Given a
set S of positive integers ri, 1 ≤ i ≤ s s.t.

∑
r∈S r = 2R,

can it be partitioned into two disjoint sets S1 and S2

such that
∑

r∈S1
r =

∑
r∈S2

r = R? Given an instance
of the partition problem, we construct a point set V
such that the instance of the partition problem is a yes
instance if and only if there exists an LGG on V with
dilation ≤ 7. Define a parameter λ s.t. 2sr2

max < 10λ

where rmax is the largest element of S. For each ri ∈ S,
there is a gadget Gi. Define a parameter ηi = 10−(λ+1)ri

to be used in gadget Gi. Note that ηi ≤ 1
10 .

3

1 + 2ηi

y2

xi yi

yi3

zixi2

xi1xi3 yi1

Figure 2: Structure of
a basic gadget

25/4

3

>13
4

1 + 2ηi+1

rr

Gi

Gi+1

r = 1/2 + ηi+1

1 + 2ηi

yi+1xi+1

y′
ix′

i

yi2
xi2

Figure 3: Basic frame struc-
ture

24th Canadian Conference on Computational Geometry, 2012

152

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Now we explain the structure of a gadget Gi. Each
gadget comprises of 9 points as shown in Figure 2.
Points xi and yi are placed a distance of 1 + 2ηi apart.
xi1 and yi1 are placed at the same distance such that
xixi1 and yiyi1 are parallel to each other and per-
pendicular to xi1yi1 . Vertex zi is placed at the mid-
point of the line segment xi1yi1 . xi1xi3 is perpen-
dicular to xixi1 and the distance of xi1 from xi3 is

10ηi. For ǫ1 = 10−3

s2102λ , xi2 and xi3 are placed at a
distance of c1ǫ1 along x-axis and c2ǫ1 along y-axis for
suitable constants c1 and c2, s.t. ∠xi1xi2xi3 ≥ π

2 .
Vertices yi2 and yi3 are placed similarly. We call
edges (xi3 , xi2), (xi2 , xi1), (xi1 , zi), (zi, yi1), (yi1 , yi2) and
(yi2 , yi3) basic edges. It can be verified that an LGG
over the vertices of a gadget must contain all the basic
edges to keep dilation bounded by 7. It can be ob-
served that any other edge will conflict with at least
one basic edge with the exception that the point xi can
be connected to yi, xi1 or xi3 and similarly yi can be
connected to xi, yi1 or yi3 . Edges (xi, xi1) and (yi, yi1)
are called vertical edges while (xi, xi3) and (yi, yi3) are
called slanted edges. Note that the vertical edge and
the slanted edge emerging from the same point xi or yi

conflict with each other in an LGG. Additional points
to be described later will ensure that there cannot exist
a direct edge between xi and yi. Though both vertices
xi and yi can have independently either a vertical or
a slanted edge incident to them, if both vertices have
slanted edges then δ(xi, yi) > 7.

Remark 6 In a gadget Gi, there can be only one
slanted edge if δ(xi, yi) ≤ 7.

l

t1

t′
1 t′

2

t2

yi

yj

xj3
yj3

xi

xi3
yi3

xj

Figure 4: Layout of complete structure for s = 2

A frame Fi is used to connect two gadgets Gi and
Gi+1 as shown in Figure 3. It connects Gi at ver-
tices xi2 and yi2 and connects Gi+1 at vertices xi+1

and yi+1. A frame also provides two symmetric paths
((xi+1, x

′
i, xi2) and (yi+1, y

′
i, yi2)) between two consecu-

tive gadgets. Let us denote this path length between
ith and i + 1th gadget as pi,i+1. All edges shown in the
figure are part of the basic skeleton of a frame and these
edges are included in the set of basic edges. Here we use

a technique of placing vertices at very short distance
(0.01 in our construction) from each other along a line.
The purpose of this technique is to ensure that all these
small edges are selected in the LGG. If such an edge
is not selected then any alternate path does not bound
the spanning ratio within limit. We call this technique
vertex closing. It will ensure that in a frame, edges are
taken only according to our layout. Such a sequence of
vertices is called a vertex chain. An additional auxiliary
vertex is placed in each gadget Gi at a distance of ǫ1ηi

10s

from xi2 and yi2 along the lines xi2x′
i, xi2xi1 , yi2y

′
i and

yi2yi1 .
A frame also provides a convex cap on (xi, yi) in a

gadget Gi. This is a convex point set with all the points
above xiyi (it need not be a regular curve). There is
a small edge incident to both xi and yi from this cap
conflicting with the edge (xi, yi) and it ensures that xi

and yi are not directly connected by an edge. It provides
a path between xi and yi with spanning ratio just above
7 and for any other pair of vertices in it spanning ratio
is bounded by 7. On the first gadget G1, such a cap
is placed explicitly as shown in Figure 4. Now the full
structure is constructed as shown in Figure 4. There is
a central vertical line l and all the gadgets are placed
along it keeping vertex z of a gadget on l s.t. xi1yi1 is
perpendicular to l and a frame is placed between two
gadgets. The vertical span for a frame Fi is 25

4 . There
is a total of four extended arms, each of length h with
vertex closing from G1 and Gs, each making an angle
sin−1(220

221) w.r.t. l (refer Figure 4). Here,

h =
221

148
(18s+(s−1)

175

4
)− k

2
+

1

2
10−λR− 1

2
10−2λsr2

max

where k =
∑s−1

i=1 pi.i+1 + 10
∑s

i=1 ηi.
Let V be the set of all points introduced above.

Clearly |V | = O(s). It can be verified that the descrip-
tion complexity of point set V is polynomial in the size
of the partition instance.

Lemma 6 If the partition problem S is solvable then
there exists an LGG on V with dilation not exceeding
7.

Lemma 7 If there exists an LGG on V with dilation
less than or equal to 7 then there exists a solution for
the partition problem over S.

Refer to full version [9] for the proofs of Lemma 6 and
Lemma 7.

Theorem 8 Given a point set P , it is NP-hard to find
whether there exists an LGG with dilation less than or
equal to a given value k.

Proof. The proof can be inferred by Lemma 6 and
Lemma 7. �

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

153

24th Canadian Conference on Computational Geometry, 2012

Let us present some simple combinatorial bounds on
the dilation of LGGs.

Lemma 9 There exists a point set P such that any
LGG on P has dilation Ω(

√
n).

Lemma 10 There exists a point set P such that the
Gabriel Graph on P has dilation Ω(

√
n) whereas there

exists an LGG on P with dilation O(1).

Refer to full version [9] for the proofs of Lemma 9 and
Lemma 10.

4 Verification Algorithm for LGG

Given a geometric graph G = (V, E), let us consider the
problem of deciding whether G is a valid LGG. It has to
be verified that no two edges conflict with each other.

For any u ∈ V , let Lu be a circular list storing all

u

vi

vj
vi+1

Figure 5: Checking for conflicts in an LGG

neighbors of vertex u in counterclockwise order. G is
a valid LGG if edges from a vertex u to any two con-
secutive members in Lu do not conflict with each other
∀u ∈ V . This claim follows directly from the Lemma
stated below.

Lemma 11 Let u be any vertex in G and Lu =
{v1, v2, . . . , vl}. If edges (u, vi) and (u, vj) conflict with
each other such that i ≤ j − 2, then there exist a k such
that i ≤ k ≤ j − 1 and the edge (u, vk) conflicts with the
edge (u, vk+1).

Proof. We give a proof by contradiction. Assume that
the edges (u, vi) and (u, vj) conflict with each other
and (u, vk) does not conflict with (u, vk+1) for any k,
s.t i ≤ k < j. Let us assume w.l.o.g. that (u, vi)
and (u, vj) are the closest pair of conflicting and non-
successive edges s.t. i ≤ j − 2, i.e. if two edges (u, v′

i)
and (u, v′

j) conflict with each other and i ≤ i′ < j′ ≤ j
then j′ = i′ + 1. Since (u, vi) and (u, vj) conflict with
each other, let us assume w.l.o.g. that vj lies within
the circle with diameter uvi as shown in Figure 5. By
assumption (u, vi) and (u, vi+1) do not conflict, so vi+1

must lie outside this circle and similarly vi will lie out-
side the circle with diameter uvi+1. Recall that two
circles can intersect only at two points. Now it can be
trivially observed that the circle with diameter uvi+1

will contain vj . Thus, (u, vi+1) and (u, vj) conflict with
each other. This implies that either (u, vi) and (u, vj)
are not the closest pair of conflicting edges or (u, vi+1)
and (u, vj) are successive edges and they do conflict with
each other. In either case we have a contradiction of the
original assumption. �

The argument above directly implies a verification al-
gorithm for LGG. It involves computing Lu, ∀u ∈ V
that can be done by angular sorting of the neighbors
of each vertex. It can be implemented in O(|E| log |V |)
time. Scanning each vertex u and verifying that edges
to two consecutive members in Lu do not conflict takes
O(|V | + |E|) time. Therefore, this algorithm has time
complexity of O(|E| log |V | + |V |).

References

[1] P. Berman, M. Karpinski, and A. D. Scott. Approxima-
tion hardness and satisfiability of bounded occurrence
instances of SAT. Electronic Colloquium on Computa-
tional Complexity (ECCC), 10(022), 2003.

[2] P. Bose, L. Devroye, W. S. Evans, and D. G. Kirk-
patrick. On the spanning ratio of Gabriel graphs and
beta-skeletons. SIAM J. Discrete Math., 20(2):412–427,
2006.

[3] P. Bose, P. Morin, I. Stojmenović, and J. Urrutia. Rout-
ing with guaranteed delivery in ad hoc wireless net-
works. In Proceedings of the 3rd international workshop
on Discrete algorithms and methods for mobile comput-
ing and communications, pages 48–55, 1999.

[4] P. Erdős. On sets of distances of n points. The American
Mathematical Monthly, 53(5):pp. 248–250, 1946.

[5] R. K. Gabriel and R. R. Sokal. A new statistical ap-
proach to geographic variation analysis. Systematic Zo-
ology, 18(3):259–278, September 1969.

[6] P. Giannopoulos, R. Klein, C. Knauer, M. Kutz, and
D. Marx. Computing geometric minimum-dilation
graphs is NP-hard. Int. J. Comput. Geometry Appl.,
20(2):147–173, 2010.

[7] J. Jaromczyk and G. Toussaint. Relative neighborhood
graphs and their relatives. P-IEEE, 80:1502–1517, 1992.

[8] S. Kapoor and X.-Y. Li. Proximity structures for ge-
ometric graphs. In International Journal of Compu-
tational Geometry and Applications, volume 20, pages
415–429, 2010.

[9] A. Khopkar and S. Govindarajan. On computing op-
timal locally Gabriel graphs. CoRR, abs/1110.1180,
2011.

[10] X.-Y. Li, G. Calinescu, and P.-J. Wan. Distributed
construction of a planar spanner and routing for ad hoc
wireless networks. In IEEE INFOCOM, pages 1268–
1277, 2002.

[11] R. Pinchasi and S. Smorodinsky. On locally Delau-
nay geometric graphs. In Proceedings of the twentieth
annual symposium on Computational geometry, pages
378–382, New York, NY, USA, 2004. ACM.

24th Canadian Conference on Computational Geometry, 2012

154

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Edge Guards for Polyhedra in Three-Space

Javier Cano∗ Csaba D. Tóth† Jorge Urrutia‡

Abstract

It is shown that every polyhedron in R3 with m edges
can be guarded with at most 27

32m edge guards. The
bound improves to 5

6m + 1
12 if the 1-skeleton of the

polyhedron is connected. These are the first non-trivial
upper bounds for the edge guard problem for general
polyhedra in R3.

1 Introduction

A polyhedron P in R3 is a compact set bounded by a
piecewise linear manifold. Two points, a and b, are
visible in a polyhedron P if the closed line segment ab
is contained in P . For the edges of a polyhedron P , we
adapt the notion of weak visibility : an edge e of P is
visible from a point p if there is a point q ∈ e such that
p and q are visible in P . A set S of edges jointly guard
P if every point a ∈ P is visible from some edge in S.
It is possible that a point a ∈ P does not see any vertex
of P [11], however, it is not difficult to show that every
point a ∈ P sees at least six edges of P . It follows that
every polyhedron with m edges can be guarded by at
most m− 5 edges.

It was conjectured [14] that any polyhedron of genus
zero with m edges can be guarded with at most m

6 edge
guards. This bound would be optimal apart from an
additive constant: for every k ∈ N, there are polyhedra
Pk in R3 with 6(k+1) edges that require at least k edge
guards [14], see Figure 1. The polyhedron Pk is the
union of a flat tetrahedron T and k pairwise disjoint
small tetrahedra attached to one facet of T such that
their interiors cannot be seen from any of the edges of
T . Since each small tetrahedron has to be guarded by
one of its edges, P requires k edge guards.

In this paper, we prove that every polyhedron with
m edges (and arbitrary genus) in R3 can be guarded by
at most cm edges, where c > 0 is a constant strictly
smaller than 1. This is the first nontrivial upper bound
for the edge guard problem for general polyhedra. For
every polyhedron P in R3, we choose a set of edges that

∗Posgrado en Ciencia e Ingenieŕıa de la Computación,
Universidad Nacional Autónoma de México, D.F. México,
j cano@uxmcc2.iimas.unam.mx
†Department of Mathematics and Statistics, University of Cal-

gary, Calgary, AB, cdtoth@ucalgary.ca
‡Instituto de Matemáticas, Universidad Nacional Autónoma

de México, D.F. México, urrutia@matem.unam.mx

Figure 1: A polyhedron with m edges that requires
m/6− 1 edge guards.

jointly guard P as the union of two sets: (1) a set of
edges that cover all vertices of P , and (2) at most 3/4
of the remaining edges.

The 1-skeleton of a polyhedron P is the graph defined
by the vertices and edges of P . An edge cover of a
graph G = (V,E) is a set of edges E1 ⊆ E such that
every vertex v ∈ V is incident to an edge in E1. By
placing guards at every edge in an edge cover of the
1-skeleton of P , we ensure that every point in P that
sees a vertex is guarded. Note that the 1-skeleton of
P is not necessarily connected (see Figure 1), even if P
has genus zero. However, every connected component
of the 1-skeleton is 3-connected. In Section 2, using
classical matching theory, we give upper bounds for the
size of a minimal edge cover in a 3-connected graph, and
in a graph formed by the disjoint union of 3-connected
components.

In Section 3, we 4-color the edges of P , and show
that if a point a ∈ P does not see any vertex of P , then
it sees two edges of different colors. It follows that an
edge cover E1 ⊂ E and the three smallest color classes
of E \ E1 jointly guard the entire polyhedron P .

Related work. Most of the previous research on art
gallery problems focused on polygons in the plane. For
example, it is well known that every simple polygon
with n vertices can be guarded by at most bn3 c point
guards [3], and that every orthogonal polygon with n
vertices can be guarded by bn4 c point guards [7]. It is
widely believed that every simple polygon with n ver-
tices can be guarded by at most bn+1

4 c of its edges [10].
Everett and Rivera-Campo [6] showed that every tri-

angulated polyhedral terrain in R3 with n vertices can
be guarded by bn3 c edges, as bn3 c edges can cover all
faces of a plane triangulation with n vertices. They also
proved that the faces of every plane graph with n ver-
tices can be guarded by b 2n5 c edges. See also [2] for

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

155

24th Canadian Conference on Computational Geometry, 2012

other variants of guarding polyhedral terrains in R3

For orthogonal polyhedra with m edges in R3, it was
conjectured that m

12 edge guards are always sufficient
[14]. For every k ∈ N, there are orthogonal polyhedra
Pk in R3 with 12(k + 1) edges that require at least k
edge guards [14]. Recently, Benbernou et al. [1] showed
that 11m

72 edges are always sufficient.
Benbernou et al. [1] also introduced a variant of the

problem with open edge guards. An open edge e of
P is visible from a point p if there is a point q in the
relative interior of e such that p and q are visible in P .
They showed that every orthogonal polyhedron of genus
g with m edges can be guarded with 11m

72 −
g
6 − 1 open

edge guards.

2 Edge covers in 3-connected graphs

An edge cover of a graph G = (V,E) is a set of edges
E1 ⊆ E such that every vertex v ∈ V is incident to
an edge in E1. A minimum edge cover is the union of a
maximum matching M ⊂ E and one extra edge for each
vertex not covered by M . Hence the size of a minimum
edge cover is |V | − |M |.

Nishizeki and Baybars [2, 9] proved that the maxi-
mum matching in a 3-connected planar graph with n
vertices has at least (n+ 4)/3 edges; and so every such
graph has an edge cover of size at most (2n − 4)/3.
An edge cover of this size can be computed in O(n)
time [12]. If G is a maximal planar graph (a triangula-
tion) with n ≥ 3 vertices and m = 3n− 6 edges, then G
has an edge cover of size at most 2

9m. However, we are
interested in the minimum edge cover of an arbitrary 3-
connected graph in terms of the number of edges, rather
than the number of vertices of the graph.

We recall a few technical terms and the Edmonds-
Gallai Structure Theorem for maximal matchings [8,
15]. Let G = (V,E) be a simple graph. A matching
M ⊂ E is perfect if it covers all vertices of G; it is near
perfect if it covers all but one vertex of G. According
to the Edmonds-Gallai Structure Theorem, if M ⊂ E
is a maximum matching of G, then there is a vertex set
U ⊆ V (a Berge-Tutte witness set) with the following
properties:

• M contains a perfect matching on every even com-
ponent of G[V \ U];

• M contains a near perfect matching on every odd
component of G[V \ U];

• M matches all vertices of U to vertices in distinct
odd components of G[V \ U].

A minimum edge cover of G can be obtained by aug-
menting the maximum matching M with one extra edge
for each odd component of G[V \ U] that is not fully
covered by M . We are now in the position to prove the
following lemma.

Lemma 1 Every 3-connected graph with n ≥ 4 ver-
tices and m edges contains an edge cover of size at most
b(m+ 1)/3c. This bound is the best possible.

Proof. Let G = (V,E) be a 3-connected planar graph
|V | ≥ 4 vertices and m = |E| edges. Let M ⊆ E be a
maximum matching of G. The Edmonds-Gallai Struc-
ture Theorem yields a Berge-Tutte witness set U ⊂ V .

If U = ∅, then G[V \ U] = G has a unique connected
component, in which M is a perfect or near perfect
matching with at least b|V |/2c edges. In this case, G has
an edge cover of size d|V |/2e. Since G is 3-connected,
the minimum vertex degree is 3, and m ≥ d 32 |V |e. Then
G has an edge cover of size at most b(m+ 1)/3c.

Assume now that U 6= ∅. Denote the components
of G[V \ U] by Gi = (Vi, Ei), for i = 1, 2, . . . , `. Let
Ei ⊂ E denote the set of all edges incident to vertices
in Vi, that is, all edges in Ei and edges between U and
Vi. The edge sets Ei, i = 1, . . . , `, are pairwise disjoint.
Since G is 3-connected, the minimum vertex degree is
3, and so the sum of degrees of the vertices in Vi is at
least 3|Vi|. Also, at least 3 edges in Ei are incident to
some vertices in U . Hence |Ei| ≥ 3

2 (|Vi|+ 1).
If |Vi| is even, then M contains a perfect matching on

Gi, with 1
2 |Vi| edges. Hence, the maximum matching

M contains less than one third of the edges of Ei.
If |Vi| is odd, thenM contains a near perfect matching

on Gi, with 1
2 (|Vi| − 1) edges. A minimum edge cover

of G contains one more edge of Ei between U and Vi.
Altogether, a minimum edge cover of G contains at most
1
2 (|Vi| + 1) edges of Ei. On the other hand, |Ei| ≥
3
2 (|Vi| + 1). Hence, a minimum edge cover contains at

most a third of the edges of Ei. Altogether, an upper
bound m/3 follows in this case.

The bound b(m+ 1)/3c is the best possible. If m ≡ 0
or m ≡ 1 mod 3, then the lower bound construction is
a bipartite graph with vertex classes U and V \U , where
every vertex in V \ U has degree 3. If m ≡ 2 mod 3,
then the lower bound construction is the 1-skeleton of a
pyramid with a square base with 5 vertices and 8 edges
(Figure 2). The base of the pyramid can be extended
to a ladder for larger values of m. �

Figure 2: Lower bound constructions for m ≡ 2 mod 3.

The 1-skeleton of a polyhedron in R3 is not necessarily
connected (see Figure 1). However, each component of

24th Canadian Conference on Computational Geometry, 2012

156

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

the 1-skeleton is 3-connected and has at least 4 vertices.
For the edge cover of the 1-skeleton of a polyhedron, we
derive the following corollary.

Corollary 2 Let G be a graph such that every con-
nected component of G is 3-connected and has at least 4
vertices. Then G has an edge cover with at most b 3m8 c
edges. This bound is the best possible.

Proof. Let G1, . . . , Gk be the connected components
of G, with m1, . . . ,mk edges each. By Lemma 1, for
each Gi we find an edge cover of size at most bmi+1

3 c ≤
bmi

3 c+ 1. Note that bmi+1
3 c = mi+1

3 if mi ≡ 2 mod 3,

and bmi+1
3 c ≤ mi

3 otherwise. Since
∑k

i=1mi = m, then

k∑

i=1

⌊
mi + 1

3

⌋
≤ m+ k′

3
,

where k′ is the number of components with mi ≡ 2
mod 3. Any such component has at least 8 edges, and
so k′ ≤ bm8 c. It follows that

m+ k′

3
≤ m+ bm/8c

3
≤ m+m/8

3
=

3m

8
,

as required. This bound is tight if each component of
G is a square pyramid as in Figure 2(left). �

3 Four-coloring of edges in a polyhedron

Let P be a polyhedron with m edges (and arbitrary
genus). Let G = (V,E) denote the 1-skeleton of P . We
may assume, by rotating P if necessary, that no edge in
E is parallel to any coordinate plane. This ensures that
the two endpoints of each edge e ∈ E have distinct x-
(resp., y- and z-) coordinates. We interpret above-below
relation with respect to the z-axis (that is, a point a is
above point b if a has a larger z-coordinate than b); and
the left-right relation with respect to the y-axis. Recall
that the boundary of P is a piecewise linear manifold,
and so every edge e ∈ E is incident to exactly two facets
of P .

We distinguish between four types of edges in E as
follows. For every edge e ∈ E, let He denote the plane
spanned by e and a vertical line intersecting e. The
plane He decomposes R3 into two halfspaces, lying on
the left and the right of He. We say that e is a left
edge if both facets incident to e lie in the left halfspace
of He; edge e is a right edge if both facets incident
to e lie in the right halfspace of He. The edge e is an
upper edge if the two facets incident to e are in opposite
halfspaces of He, and the interior of P lies below both
facets. Edge e is a lower edge if the two facets incident
to e are in opposite halfspaces of He, and the interior of
P lies above both facets. See Figure 3 for examples.

We can now 4-color the edges of P such that the color
classes correspond to the left, right, upper, and lower

x y

z

P

e4
e2

e3e1

e4e2
e3

e1

y

z

Figure 3: Top: An left edge e1, a right edge e2, a
lower edge e3, and an upper edge e4 in a polyhedron P .
Bottom: The cross-section of the polyhedron P with
a plane parallel to the yz-plane, which is stabbed by
edges e1, . . . , e4. Dotted lines indicate the vertical lines
passing through the the stabbing points of e1, . . . , e4.

edges, respectively. We prove the following property of
the 4-coloring.

Lemma 3 If a point a ∈ P does not see any vertex of
P , then a sees edges in at least two color classes.

Proof. Let a ∈ P be a point in the polyhedron P that
does not see any vertex of P . Suppose that a sees edges
of at most one color class. We distinguish four cases
based on the color of the edges visible from a. By sym-
metry, it is enough to consider two out of four cases: left
edges (the case of right edges is analogous), and upper
edges (the case of lower edges is analogous).

Left edges. Suppose that every edge visible from a is
a left edge. Consider the cross section of the polyhedron
P with a plane Ha containing a and parallel to the yz-
plane. Refer to Figure 4. The intersection Ha ∩ P may
have several components, let Pa denote the component
that contains a. Note that Pa is a 2-dimensional poly-
gon, with possible holes. The vertices of Pa correspond
to edges of P : each vertex of Pa is the intersection point
of an edge of P with the plane Ha. Let V ∗a denote the
set of reflex vertices of Pa that correspond to left edges
of P . If v ∈ V ∗a , then the two edges of Pa incident to v
lie on the left of v, and so the angle bisector of v is on
the right side of a.

Decompose the polygon Pa as follows. Consider the
vertices in V ∗a in an arbitrary order. From each vertex
v ∈ V ∗a successively shoot a ray along its angle bisector,
and draw a segment along the ray from v to the first
point where the ray hits the boundary of Pa or a pre-
viously drawn segment. If a ray hits a vertex, perturb
the ray slightly so that it does not end at any vertex.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

157

24th Canadian Conference on Computational Geometry, 2012

a

Pa

v0
Qa

Figure 4: The polygon Pa is the cross-section of the
polyhedron P with the plane Ha containing a and par-
allel to the xz-plane. The vertices in V ∗a are marked
with large dots. Pa is decomposed into subpolygons by
rays emitted by the vertices in V ∗a . The subpolygon
Qa contains a. Since Qa is convex, a sees the leftmost
vertex v0 of Qa.

The segments decompose Pa into subpolygons. Denote
by Qa ⊆ Pa a subpolygon containing the point a, and
let v0 be the leftmost vertex of Qa. Note that Qa is a
convex polygon, otherwise a sees a reflex vertex of Qa

which does not correspond to a left edge, since it would
have no segment drawn along its bisector, contradicting
the assumption that a only sees left edges. Since Qa is
convex, we have av0 ⊂ Qa ⊂ Pa, that is, v0 is visible
from a. Since all bisector rays are directed from left to
right, v0 has to be a vertex of the polygon Pa. Both
edges of Qa incident to v0 are on the right side of v0, as
it is the leftmost vertex; and at least one of them has to
be an edge of Pa, since every vertex of Pa emits at most
one ray along its bisector. Therefore, v0 does not corre-
spond to a left edge of P . We have shown that a sees a
non-left edge of P , contradicting our initial assumption.

Upper edges. Suppose that every edge visible from
a is an upper edge. We decompose the polyhedron P
into polyhedral cells such that each cell has exactly two
nonvertical facets, which bound the cell from above and
from below, respectively. We use (the first phase of) the
standard vertical decomposition method [4, 13]. For ev-
ery point p in every edge e ∈ E, erect a maximal vertical
segment sp such that p ∈ sp ⊂ P . For an edge e ∈ E,
the segments sp, p ∈ e, form a vertical simple poly-
gon Ae (which we call a vertical wall) whose upper and
lower boundaries are contained in the boundary of P .
The polygons Ae, e ∈ E, jointly decompose P into cells.
Each cell has exactly two nonvertical facets, bounding
the cell from above and below, respectively, and are con-
tained in some facets of P ; all other facets are contained
in vertical walls corresponding to some edges of E. Due
to the vertical walls Ae, e ∈ E, every cells has convex
dihedral angles along the edges of the polyhedron P . A

cell may still have a reflex dihedral angle at a vertical
edge (e.g., consider the vertical decomposition of the
polyhedron in Figure 1).

Denote by Ta a cell containing a. If point a sees some
point p in a vertical wall Ae on the boundary of Ta, for
some e ∈ E, then a sees the point q ∈ e vertically above
or below p. Recall that only upper edges of P are visible
from a, hence every vertical wall Ae on the boundary of
Ta visible from a corresponds to an upper edge e ∈ E.

We show that a sees some vertex of P . Assume first
that Ta is nonconvex and so a sees some reflex edge
er of Ta. Then er is a point p in a vertical edge of
Ta, which lies on the boundary of two vertical walls, as
noted above. Necessarily, a also sees a point vertically
above p on the boundary of P , which is a vertex of
P . Next assume that Ta is convex. Then every edge
corresponding to a vertical wall on the boundary of Ta is
incident to the top facet of Ta. Therefore, the top facet
of Ta is bounded by edges of E, and hence it is a facet
of P . Any vertex of the top facet of Ta is a vertex of P ,
and visible from a by convexity. We have shown in both
cases that a sees some vertex of P . This contradicts our
assumption that a does not see any vertex of P , and
completes the proof. �

4 Obtaining the set of guards

The combination of the results in Sections 2 and 3 leads
to the following bound on the minimum number of edge
guards in a polyhedron.

Lemma 4 Let P be a polyhedron with m edges in R3

(with arbitrary genus), and let E1 be an edge cover of
the 1-skeleton of P . Then P can be guarded by at most
(3m+ |E1|)/4 edge guards.

Proof. Four-color the edges of the 1-skeleton of P as
described in Section 3. Place guards at all edges of E1,
and at the three smallest color classes of the remaining
edges. Altogether, we use at most

|E1|+
3

4
(m− |E1|) =

3m+ |E1|
4

edge guards. If a point a ∈ P sees a vertex v, then it
is guarded by an edge in E1 that covers v. If a point
a ∈ P does not see any vertex of P , then it sees edges
in at least two color classes by Lemma 3, and so it is
guarded by an edge in one of the three smallest color
classes. �

Finally, we prove our main results.

Theorem 5 Every polyhedron in R3 with m edges (and
arbitrary genus) can be guarded with at most 27

32m edge
guards.

24th Canadian Conference on Computational Geometry, 2012

158

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Proof. Let P be a polyhedron with m edges in R3 with
arbitrary genus. Let G be the 1-skeleton of P , and note
that every connected component of G is 3-connected
with at least 4 vertices. By Corollary 2, G has an edge
cover E1 of size |E1| ≤ 3m

8 . By Lemma 4, P can be
guarded by at most

3m+ |E1|
4

≤ 3m+ 3m
8

4
=

27m

32

edges, as claimed. �

If the 1-skeleton of P is connected, we can establish
a better upper bound.

Theorem 6 Every polyhedron in R3 with m edges (and
arbitrary genus) and a connected 1-skeleton can be
guarded with at most 5

6m+ 1
12 edge guards.

Proof. Let P be a polyhedron with m edges in R3 with
arbitrary genus. Let G be the 1-skeleton of P . By
Lemma 1, G has an edge cover E1 of size |E1| ≤ m+1

3 .
By Lemma 4, P can be guarded by at most

3m+ |E1|
4

≤ 3m+ m+1
3

4
=

10m+ 1

12

edges, as claimed. �

Using the same technique, one can also show that if
the 1-skeleton of P is a triangulation with m edges, then
it has an edge cover of size at most 2

9m, and it can be
guarded by at most 29m

36 edge guards.

References

[1] N. M. Benbernou, E. D. Demaine, M. L. Demaine,
A. Kurdia, J. O’Rourke, G. Toussaint, J. Urrutia, and
G. Viglietta, Edge-guarding orthogonal polyhedra, in
23rd Canadian Conf. Comput. Geom., Toronto, 2011.

[2] P. Bose, D. Kirkpatrick, and Z. Li. Worst-case-optimal
algorithms for guarding planar graphs and polyhedral
surfaces, Comput. Geom. 26 (2003), 209–219.

[3] V. Chvátal, A combinatorial theorem in plane geome-
try, J. Combin. Theory Se. B 18 (1976), 39–41.

[4] K. L. Clarkson, H. Edelsbrunner, L. J. Guibas,
M. Sharir, and E. Welzl, Combinatorial complexity
bounds for arrangements of curves and spheres, Dis-
crete Comput. Geom. 5 (1) (1990), 99–160.

[5] S. Devadoss and J. O’Rourke, Discrete and Comptua-
tional Geometry, Princeton University Press, 2011.

[6] H. Everett and E. Rivera-Campo, Edge guarding poly-
hedral terrains, Comput. Geom. 7 (3) (1997), 201–203.

[7] J. Kahn, M. Klawe, and D. Kleitman, Traditional gal-
leries require fewer watchmen, SIAM J. Algebraic and
Discrete Methods 4 (1983), 194–206.

[8] L. Lovász and M. D. Plummer, Matching Theory,
vol. 29 of Ann. Discrete Math., North-Holland, Ams-
terdam, 1986.

[9] T. Nishizeki and I. Baybars, Lower bounds on the car-
dinalitiy of the maximum matchings of planar graphs,
Discrete Math. 28 (1979), 255–267.

[10] J. O’Rourke, Galleries need fewer mobile guards: a vari-
ation on Chvátal’s theorem, Geometriae Dedicata 14
(1983), 273–283.

[11] J. O’Rourke, Art Gallery Theorems and Algorithms,
Oxford University Press, 1987.

[12] I. Rutter and A. Wolff, Computing large matchings fast,
ACM Trans. Algorithms 7 (2010), article # 1.

[13] M. Sharir and P. K. Agarwal, Davenport-Schinzel Se-
quences and Their Geometric Applications, Cambridge
University Press, 1995.

[14] J. Urrutia, Art gallery and illumination problems, in
Handbook of Computational Geometry, pp. 973–1027,
North-Holland, Amsterdam, 2000.

[15] D. B. West, A short proof of the Berge-Tutte Formula
and the Gallai-Edmonds Structure Theorem, European
J. Combin. 32 (2011), 674–676.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

159

24th Canadian Conference on Computational Geometry, 2012

160

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Hidden Mobile Guards in Simple Polygons∗

Sarah Cannon† Diane L. Souvaine‡ Andrew Winslow§

Abstract

We consider guarding classes of simple polygons using
mobile guards (polygon edges and diagonals) under the
constraint that no two guards may see each other. In
contrast to most other art gallery problems, existence
is the primary question: does a specific type of polygon
admit some guard set? Types include simple polygons
and the subclasses of orthogonal, monotone, and star-
shaped polygons. Additionally, guards may either ex-
clude or include the endpoints (so-called open and closed
guards). We provide a nearly complete set of answers to
existence questions of open and closed edge, diagonal,
and mobile guards in simple, orthogonal, monotone, and
starshaped polygons, with some surprising results. For
instance, every monotone or starshaped polygon can be
guarded using hidden open mobile (edge or diagonal)
guards, but not necessarily with hidden open edge or
hidden open diagonal guards.

1 Definitions

We define the boundary of a polygon P (denoted ∂P)
as a simple polygonal chain consisting of a sequence
of vertices specified in counterclockwise order, and the
open set enclosed by ∂P to be the interior of P (denoted
int(P)). An edge e = pq of the polygon is an interval
of ∂P between consecutive vertices p, q, and a diagonal
d = rs of P is a straight line segment between non-
consecutive vertices r, s of ∂P such d− {r, s} ∈ int(P),
i.e. the portion of d excluding its endpoints lies in the
interior of P .

We consider guarding int(P) using a subset of the
edges and diagonals of P . A guard g sees or guards a
location l in the polygon if l is weakly visible [1] from the
guard: there exists a point p ∈ g such that the interior
of the segment lp lies in the interior of the polygon.
Edges and diagonals selected as guards are called edge

∗An abstract version of this paper was presented at the 21st
Fall Workshop on Computational Geometry, 2011. A full version
of this paper containing all proofs is available at http://arxiv.

org/pdf/1206.1803v1. Research supported in part by NSF grants
CCF-0830734 and CBET-0941538.
†Department of Computer Science, Tufts University, Medford,

MA, USA scanno01@cs.tufts.edu
‡Department of Computer Science, Tufts University, Medford,

MA, USA dls@cs.tufts.edu
§Department of Computer Science, Tufts University, Medford,

MA, USA awinslow@cs.tufts.edu

guards and diagonal guards, respectively, and a mobile
guard [9] is either an edge or a diagonal guard. If a set
S of edges and diagonals of P is such that every location
in the interior of P is seen by at least one guard in S,
then S is a guard set of P and P is said to admit a
guard set. A closed guard set includes the vertices at
both ends of each edge or diagonal. If all endpoints are
excluded, the guard set is called an open guard set.

In addition to simple polygons or simply polygons, we
consider a number of special classes of polygons. An or-
thogonal polygon is a polygon that can be rotated such
that all edges are parallel to the x- or y-axis. A mono-
tone polygon is a polygon that can be rotated such that
the portion of the polygon intersecting any vertical line
consists of a connected interval. A starshaped polygon
is a polygon that can be translated such that an interior
point coincides with the origin and sees all locations in
the interior of the polygon, and the kernel of the poly-
gon is the set of all points in the polygon with this prop-
erty. These three classes (along with convex and spiral
polygons) are described by O’Rourke [10] in the context
of guarding problems as being “usefully distinguished in
the literature.”

Finally, we add the constraint that a guard set is hid-
den: no pair of guards in the set see each other. Here a
pair of guards g1, g2 in a polygon P can see each other
if there exists a pair of points p ∈ g1, q ∈ g2 such that
pq − {p, q} ∈ int(P).

2 Introduction

Edge, diagonal, and mobile guards in polygons have
been studied extensively in the past. Avis and Tous-
saint [1] considered the case where a single closed edge
is sufficient to guard the entire polygon. Shortly after,
Toussaint gave an example of a polygon whose smallest
closed edge guard set is bn/4c [9] and conjectured that
an edge guard set of this size is sufficient for any poly-
gon. O’Rourke [9] showed that closed mobile guard sets
of size bn/4c are sometimes necessary and always suf-
ficient for polygons. For closed diagonal guards, Sher-
mer [12] has shown that guard sets of size b(2n+ 2)/7c
are necessary for some polygons, and no polygon re-
quires a guard set of size greater than b(n− 1)/3c.

More recently, open edge guards were suggested by
Viglietta [14] and studied by Benbernou et al. [2] and
Tóth et al. [13], who showed that open edge guard sets

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

161

24th Canadian Conference on Computational Geometry, 2012

of size bn/3c and bn/2c are sometimes necessary and
always sufficient for simple polygons.

The study of hidden guards began with Shermer [11]
who gave several results, including examples of poly-
gons that are not guardable using hidden vertex guards.
The study of hidden edges has only been initiated re-
cently by Kranakis et al. [6] who showed that computing
the largest hidden open edge set in a polygon (ignoring
guarding) cannot be approximated within an arbitrar-
ily small constant factor unless P = NP. In the same
theme, Kosowoski et al. [7] have studied cooperative
mobile guards, where each guard is required to be seen
by another guard. Such a constraint is the opposite of
hiddenness, which forbids any guard from seeing any
other guard.

Here we evaluate the existence of hidden edge, diag-
onal, and mobile guard sets for simple polygon classes.
A summary of results is seen in Table 1.

Guard class Polygon class
Inclusion Type Simple Ortho Mono Star

Edge No Yes No No
Open Diagonal No No No No

Mobile No Yes Yes Yes
Edge No No No No

Closed Diagonal No No No No
Mobile No No No ?

Table 1: New results in this paper. Entries indicate
whether a hidden guard set exists for every polygon in
the class.

3 Open edge guards

Recall open edge guards are edges of the polygon ex-
cluding the endpoints.

Lemma 1 There exists a monotone polygon that does
not admit a hidden open edge guard set.

Proof. See Figure 1. We refer to the convex regions
bounded by three edges in the upper left and right por-
tions of the polygon as ears. Consider guarding the
pair of ear regions without using any of the three edges
that form each ear. The cases resulting from these at-
tempts are seen in Figure 2. In each case, any maximal
combination of non-ear edges fails to guard either ear
completely. Moreover, a portion of the remaining un-
guarded region in each ear is not visible from any edge
of the other ear. Thus any guard set contains one of the
three edges in each ear. Also, every pair of ear edges in
the same ear see each other, so any guard set contains
exactly one edge in each ear.

Next, consider possible ear-edge pairs containing one
edge from each ear. In Figure 3 it is shown that for

Figure 1: A monotone polygon that does not admit a
hidden open edge guard set.

Figure 2: All maximal combinations of open edge guards
that exclude the six ear edges.

each such ear-edge pair, the pair cannot be augmented
to form a hidden open edge guard set for the polygon.
Thus the polygon cannot be guarded with hidden open
edge guards. �

Figure 3: All combinations of ear edge pairs and the
maximal hidden sets containing each ear edge pair.

Lemma 2 There exists a starshaped polygon that does
not admit a hidden open edge guard set.

Proof. See Figure 4. The polygon consists of a central
convex region with numerous spikes emanating from it.
Figure 6 provides a labeled version of the polygon, with
two sets of four large spikes each ({ai} and {bi}) and

24th Canadian Conference on Computational Geometry, 2012

162

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Figure 4: A starshaped polygon that does not admit a
hidden open edge guard set.

four sets of two small spikes each ({c1, c2} forms one
such set). Call edges on the central convex region cen-
tral edges and the spike pairs {a1, a3}, {a2, a4}, {b1, b3},
{b2, b4} opposing spike pairs. Consider guarding the four
spikes {ai} without using central edges (see Figure 5).

a1
a3

a4

a2

a1
a3

a4

a2

Figure 5: The two possible guardings of the four spike
{ai} without using central edges (dotted).

Only one edge per opposing spike pair may be in any
hidden edge guard set, as all four edges of an opposing
spike pair see each other. Each spike has two asymmet-
ric edges; one is able to guard the entire opposing spike
pair, while the other is not. Each spike also contains a
location not seem by any spike edge not in the spike’s
opposing spike pair. Finally, a pair of edges from a1
and a4 see each other, as do a pair in a2 and a3. So
any hidden edge guard set for the opposing spike pairs
{a1, a3} and {a2, a4} that does not include central edges
consists of one of two pairs seen in Figure 5.

Now consider guarding the entire polygon. Any cen-
tral edge guards the interior of at most one spike from
{ai} or {bi}. So one of the two spike sets {ai} and {bi}
must be guarded without using central edges. Without
loss of generality, assume the {ai} set is guarded in this
way. Then one of the pairs of edges seen in Figure 5
must be in the guard set. Again without loss of gen-
erality, assume the edge pair of a1 and a2 are selected,
as in Figure 6. Then there exist two spikes c1 and c2
whose edges are both seen by the guard edges in spikes
a1 and a2, but portions of the interiors of c1 and c2
remain unguarded. The only edges sufficient to guard
the interiors of c1 and c2 are the central edges e1 and
e2. However, e1 and e2 each guard the interior of only
one spike. Thus a portion of the interior of either c1 or
c2 must remain unguarded, and the polygon cannot be
guarded using hidden open edge guards. �

a1

a2

a3

a4

b1

b2

b3

b4

c1
c2

e2

e1

Figure 6: A incomplete but necessary set of guard edges
and the region they guard. The interiors of c1 and c2
remain partially unguarded and cannot be guarded with
a hidden open edge set.

Lemma 3 Every orthogonal polygon admits a hidden
open edge guard set.

Omitted proofs can be found in the full version1 of
this paper.

4 Open diagonal guards

Lemma 4 There exists a monotone and starshaped
polygon that does not admit a hidden open diagonal
guard set.

1http://arxiv.org/pdf/1206.1803v1

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

163

24th Canadian Conference on Computational Geometry, 2012

Figure 7: A monotone and starshaped polygon that does
not admit a hidden open diagonal guard set.

Lemma 5 There exists an orthogonal polygon that does
not admit a hidden open diagonal guard set.

Figure 8: An orthogonal polygon that does not admit a
hidden open diagonal guard set.

5 Open mobile guards

Lemma 6 There exists a simple polygon that does not
admit a hidden open mobile guard set.

Figure 9: A simple polygon that does not admit a hid-
den open mobile guard set.

Observation 1 Let g be a geodesic path between a pair
of vertices p, q in a polygon P . Then the interiors of the
edges g form a set of hidden open mobile guards in P .

We refer to such a guard set for a path g as the open
mobile guard set induced by g.

Lemma 7 Every monotone polygon admits a hidden
open mobile guard set.

A natural approach to finding an open mobile guard
set for a starshaped polygon is to look for a mobile guard
that intersects the kernel of the polygon. Unfortunately
such a guard may not exist as noted in [10] (see Fig-
ure 10).

Figure 10: A starshaped polygon with no edge or diag-
onal intersecting its kernel (gray).

The following lemma is used in the proof of Lemma 9.

Lemma 8 Let P be a starshaped polygon translated so
that the origin lies in the kernel of P , and let v, v′ be
consecutive reflex vertices such that angle between the
rays from v and v′ through the origin (sweeping from v
to v′) is at most π. If a geodesic path g ∈ P intersects
both rays either before or after they intersect the origin,
then g guards the subpolygon R bounded by the portions
of the two rays before they intersect the origin, and the
portion of ∂P from v to v′.

Lemma 9 Every starshaped polygon admits a hidden
open mobile guard set.

Proof. Let P be a given starshaped polygon translated
so that the origin lies in the kernel of P . Consider shoot-
ing rays from each reflex vertex through the origin as
seen in the left portion of Figure 11. Find a double
wedge W formed by a consecutive pair of these rays
such that each wedge is coincident to exactly one reflex
vertex (which we call u and u′) as seen in right portion
of Figure 11 as a dark gray region. Such a double wedge
is formed by every pair of consecutive intersections of
rays along ∂P such that one intersection is the start
of a ray (at a reflex vertex of P), and the other is the
termination of a ray.

For every consecutive pair of reflex vertices v, v′ on
∂P , the rays from v and v′ through the origin lie entirely
in P −W . Two pairs are an exception: the two pairs
containing u and u′ that form a pair of wedges, each
containing half of the double wedge W (seen as the dark
gray double wedge extended with two light gray wedges
in the right portion of Figure 11). For all remaining
pairs, the geodesic path from u to u′ intersects both
rays either before or after they have passed through the
origin. Therefore, by Lemma 8, the hidden open mobile
guard set induced by g sees the entire polygon except
(possibly) the pair of wedges bounded by two pairs of
consecutive reflex vertices adjacent to u and u′.

24th Canadian Conference on Computational Geometry, 2012

164

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

u

u′W

Figure 11: Left: a starshaped polygon with rays from
each reflex vertex through the origin. Right: the poly-
gon and a double wedge W (dark gray) with one reflex
vertex (u or u′) incident to each wedge. The light and
dark gray regions together form the subpolygons possi-
bly left unguarded by the hidden open mobile guard set
induced by a geodesic path from u to u′.

It may be the case that the two remaining wedges
are actually a single non-convex subpolygon with reflex
vertex at the origin (see Figure 12).

u u′

W

Figure 12: A polygon and double wedge W (dark gray
region) where the region not necessarily guarded by the
hidden open mobile guard set induced by the geodesic
path from u to u′ is actually a single non-convex polygon
(light and dark gray regions combined) bounded by u
and u′.

In this situation the subpolygon can be bisected into
two convex subpolygons by a ray bisecting the reflex
angle at the origin.

Recall that each convex subpolygon has a vertex u or
u′ in common with the geodesic’s final edge (see Fig-
ure 13). If the interior angle formed by these two edges
is at most π, then the subpolygon is seen by the interior
of the final edge of the geodesic. If not, the geodesic can
be extended to include an edge of ∂P in the subpolygon
that guards the subpolygon completely.

Thus the hidden mobile guard set induced by the
geodesic described guards P . �

Computing such a guard set for a polygon with n
edges can be done in O(n) time, as each step takes at
most O(n) time: 1. compute a point in the kernel of the

⇒

u

u u

Figure 13: The two cases of guarding the remaining
subpolygons. In the case shown in the upper part of
the figure, the existing geodesic is sufficient to guard
the wedge. In the second case, the geodesic leaves a
portion of the wedge unguarded and must be extended.

u

u′

Figure 14: A polygon with a geodesic path inducing a
hidden open mobile guard set for the polygon. The ini-
tial geodesic from u to u′ leaves the gray region incident
to u partially unguarded, so the geodesic is extended by
one edge.

polygon (O(n) time by Lee and Preparata [8]). 2. find a
separating angle θ (O(n) time). 3. triangulate the poly-
gon and find a geodesic between the reflex vertices u and
u′ (O(n) time by Fournier and Montuno [3] and Guibas
et al. [5]). 4. check whether the two remaining subpoly-
gons are already covered by the geodesic, and extend the
geodesic by an additional edge if necessary (O(1) time).

6 Closed edge and diagonal guards

In the next section we present orthogonal and monotone
polygons that do not admit hidden closed mobile guard
sets. Note that these polygons also serve as examples
of polygons that do not admit hidden closed edge or
hidden closed diagonal guards. For starshaped polygons
no such example is known.

Lemma 10 There exists a starshaped polygon that does
not admit a hidden closed edge guard set.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

165

24th Canadian Conference on Computational Geometry, 2012

Figure 15: A starshaped polygon that does not admit a
hidden closed edge guard set.

Lemma 11 There exists a starshaped polygon polygon
that does not admit a hidden closed diagonal guard set.

7 Closed mobile guards

Lemma 12 There exists an orthgonal polygon that does
not admit a hidden closed mobile guard set.

Figure 16: An orthogonal polygon that cannot be
guarded using hidden closed mobile guards.

Lemma 13 There exists a monotone polygon that does
not admit a hidden closed mobile guard set.

Conjecture 1 Every starshaped polygon admits a hid-
den closed mobile guard set.

Acknowledgements

We thank Csaba Tóth for helpful discussions and
Richard Pollack, Joseph Malkevitch, John Iacono, and
Bill Hall for suggesting interesting problems in this area.

References

[1] D. Avis and G. T. Toussaint, An optimal algorithm for
determining the visibility of a polygon from an edge,
IEEE Trans. on Computers, 30 (1981), 910–914.

[2] N. Benbernou, E. D. Demaine, M. L. Demaine, A. Kur-
dia, J. O’Rourke, G. Toussaint, J. Urrutia, G. Vigli-
etta, Edge-guarding orthogonal polyhedra, Proc. 23rd
Canadian Conf. on Computational Geometry, Toronto,
Canada, 2011, 461–466.

[3] A. Fournier, D. Y. Montuno, Triangulating simple poly-
gons and equivalent problems, ACM Trans. on Graphics,
3 (1984), 153–174.

[4] M. R. Garey, D. S. Johnson, F. P. Preparata, R. E. Tar-
jan, Triangulating a simple polygon, Inform. Process.
Lett., 7 (1978), 175–179.

[5] L. Guibas, J. Hershberger, D. Leven, M. Sharir, R. E.
Tarjan, Linear-time algorithms for visibility and short-
est path problems inside triangulated simple polygons,
Algorithmica, 2 (1987), 209–233.

[6] E. Kranakis, D. Krizanc, L. Narayanan, K. Xu, Inap-
proximability of the perimeter defense problem, Proc.
21st Canadian Conf. on Computational Geometry, Van-
couver, Canada, 2009, 153–156.

[7] A. Kosowski, M. Ma lafiejski, P. Żyliński, Coopera-
tive mobile guards in grids, Computational Geometry,
37 (2006), 59–71.

[8] D. T. Lee, F. Preparata, An optimal algorithm for find-
ing the kernel of a polygon, J. of the ACM, 26 (1979),
415–421.

[9] J. O’Rourke, Galleries need fewer mobile guards: a
variation on Chvátal’s theorem, Geometriae Dedicata
14 (1983), 273–283.

[10] J. O’Rourke, Art Gallery Theorems and Algorithms,
The Intl. Series of Monographs in Comp. Sci., Oxford
University Press, New York, 1987.

[11] T. Shermer, Hiding people in polygons, Computing
42 (1989), 109–131.

[12] T. C. Shermer, Recent results in art galleries, Proc. of
the IEEE, 80 (1992), 1384-1399.

[13] C. D. Tóth, G. T. Toussaint, A. Winslow, Open guard
edges and edge guards in simple polygons, Proc. 23rd
Canadian Conf. on Computational Geometry, Toronto,
Canada, 2011, 449–454.

[14] G. Viglietta, Searching polyhedra by rotating planes,
Intl. J. of Computational Geometry and Applications, to
appear.

24th Canadian Conference on Computational Geometry, 2012

166

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

The Complexity of Guarding Monotone Polygons

Erik Krohn∗ Bengt J. Nilsson†

Abstract

A polygon P is x-monotone if any line orthogonal to
the x-axis has a simply connected intersection with P .
A set G of points inside P or on the boundary of P is
said to guard the polygon if every point inside P or on
the boundary of P is seen by a point in G.

An interior guard can lie anywhere inside or on the
boundary of the polygon. Using a reduction from Mono-
tone 3SAT, we prove that interior guarding a monotone
polygon is NP-hard. Because interior guards can be
placed anywhere inside the polygon, a clever gadget is
introduced that forces interior guards to be placed at
very specific locations.

1 Introduction

The art gallery problem is perhaps one of the best
known problems in computational geometry. It asks
for the minimum number of guards to guard a space.
An instance of the art gallery problem takes as input
a polygon P . The polygon P is defined by a set of
points V = {v1, v2, ..., vn}. There are edges connect-
ing (vi, vi+1) where i = 1, 2, ..., n − 1. There is an edge
connecting (vn, v1). These edges give us two disjoint re-
gions: inside the polygon and outside the polygon. For
any two points p, q ∈ P , we say that p sees q if the line
segment pq does not go outside of P . We wish to find
a set of points G ⊆ P such that every point p ∈ P is
seen by a guard in G. We call this set G a guarding set.
The optimization problem is thus defined as finding the
smallest such G.

Art gallery problems are motivated by applications
such as line-of-sight transmission networks in terrains,
signal communications and broadcasting, cellular tele-
phony systems and other telecommunication technolo-
gies as well as placement of motion detectors and secu-
rity cameras.

1.1 Previous Work

The question of whether guarding simple polygons is
NP-hard was settled by Aggarwal [1] and Lee and Lin
[14] independently. They showed that the problem is

∗Department of Computer Science, University of Wisconsin -
Oshkosh, Oshkosh, WI, USA. email: krohne@uwosh.edu

†Computer Science, Malmö University College, SE-205 06
Malmö, Sweden. email: Bengt.Nilsson.TS@mah.se

NP-hard for both vertex guards and interior guards.
Along with being NP-complete, Brodén et al. and Ei-
denbenz [2, 7] independently prove that interior guard-
ing simple polygons is APX-hard. This means that
there exists a constant ǫ > 0 such that no polynomial
time algorithm can guarantee an approximation ratio of
(1 + ǫ) unless P=NP. Further results have shown that
guarding a restricted subclass of polygons is still NP-
hard [2, 15]. O’Rourke and Supowit show that several
polygon decomposition problems are NP-hard [17].

Ghosh provides a O(log n)-approximation for the
problem of vertex guarding an n-vertex simple polygon
in [11]. This result can be improved for simple polygons
using randomization, giving an algorithm with expected
running time O(nOPT 2

v log4 n) that produces a ver-
tex guard cover with approximation factor O(log OPTv)
with high probability, where OPTv is the smallest vertex
guard cover for the polygon [6]. Whether a constant fac-
tor approximation can be obtained for vertex guarding a
simple polygon is a longstanding and well-known open
problem. Deshpande et al. [5] present a pseudopoly-
nomial randomized algorithm for finding a point guard
cover with approximation factor O(log OPT). King and
Kirkpatrick provide an O(log log OPT)-approximation
algorithm for the problem of guarding a simple poly-
gon with guards on the perimeter in [12]. The point
guarding problem seems to be much more difficult and
precious little is known about it [5]. A constant fac-
tor approximation is given by Nilsson for the special
case of the problem when the polygon is x-monotone
[16]. Based on his result, Nilsson gives an O(OPT 2)-
approximation algorithm for rectilinear polygons.

The approximation complexity of guarding polygons
has been studied by Eidenbenz and others. Eidenbenz
[8] shows that polygons with holes cannot be efficiently
guarded by fewer than Ω(log n) times the optimal num-
ber of interior or vertex guards, unless P=NP, where n
is the number of vertices of the polygon.

Tight bounds for the number of guards necessary and
sufficient were found by Chvátal [4]. It is sometimes

necessary to place
n

3
guards to guard the entire polygon.

Fisk provided a simpler proof of [4] in [9] that broke up
any polygon into a set of triangles and showed that this

set of triangles can be 3-colored which implies that
n

3
guards are sufficient for guarding a simple polygon.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

167

24th Canadian Conference on Computational Geometry, 2012

1.2 Our Contribution

Chen et al. [3] claim that vertex guarding a monotone
polygon is NP-hard, however the details of their proof
were omitted and still to be verified. Krohn and Nilsson
[13] show that vertex guarding a monotone polygon is
NP-hard. However, a proof showing NP-hardness for
interior guards does not immediately follow from that
claim. Since guards can be placed anywhere inside the
polygon for interior guarding, moving a guard too far
away from a vertex causes the reduction to fail. This is
because too much of the polygon is seen by this guard.

Guarding a monotone polygon is very similar to the
terrain guarding problem. The question of whether or
not terrain guarding was NP-hard was an open problem
for many years. Recently, the terrain guarding problem
was shown to be NP-hard by King and Krohn [12]. De-
spite the similarities of guarding terrains and monotone
polygons, the NP-hardness result for terrain guarding
does not imply interior guarding a monotone polygon is
NP-hard. In order to obtain a hardness result for inte-
rior guarding a monotone polygon, additional observa-
tions had to be made about the properties of monotone
polygons. In doing so, we have developed a different re-
duction from Monotone 3SAT. Despite the very simple
structure of a monotone polygon, we were able to create
a new, intricate gadget that allows us to force guards to
be placed at very specific locations.

The remainder of this paper is organized as follows.
Section 2 contains the relevant section from [13] which
shows vertex guarding a monotone polygon is NP-hard.
Section 3 describes how to modify the reduction from
Section 2 to show NP-hardness for interior guarding a
monotone polygon. Section 4 provides a conclusion and
future work.

2 Vertex Guarding is NP-hard

In this section, we will show that vertex guarding
a monotone polygon is NP-hard. The reduction is
from Monotone 3SAT (M3SAT) [10, page 259 (prob-
lem L02)]. An M3SAT instance (X , C) contains a set
of Boolean variables, X = {x1, x2, . . . , xn} and a set
of clauses, C = {c1, c2, ..., cm}. Each clause contains
three literals, ci = xj ∨ xk ∨ xl, a positive clause, or
ci = x̄j ∨ x̄k ∨ x̄l, a negative clause, for 1 ≤ j, k, l ≤ n.
An M3SAT instance is satisfiable if a satisfying truth
assignment for C exists such that all clauses ci are true.

We show that any M3SAT instance is polynomially
transformable to an instance of vertex guarding a mono-
tone polygon. We construct a monotone polygon P from
the M3SAT instance such that P is guardable by K or
fewer guards if and only if the M3SAT instance is sat-
isfiable. We first present some basic gadgets to show
how the polygon is constructed. We then connect these
gadgets together to create a polygon.

Starting Pattern: The lower boundary of the polygon is
divided into two parts, the left and the right sides.
The first gadgets on the left side are the starting
patterns. The starting patterns are shown to the
left in Figure 1. In each pattern, the bottom of
the downward spike b(x) is the distinguished ver-
tex of the pattern. This area is only seen by x and
x̄ and must be guarded by one of these two ver-
tices. This pattern appears along the left side of
the lower boundary of the monotone polygon a to-
tal of n times, one corresponding to each variable.

x̄
x

Starting pattern

x
x̄

Negative

x
x̄

d(x)

Positiveb(x)

d(x̄)

b(x) d(x) d(x̄) b(x)

Variable patterns

Figure 1: The different types of variable patterns.

Variable Pattern: On the left and the right side of the
lower boundary we have variable patterns that ver-
ify the assigned truth value of each variable. This
pattern is shown to the right in Figure 1. Once
again, the bottom of the spike at b(x) must be
guarded by either x or x̄. The pattern has ad-
ditional distinguished vertices that we call ledges
d(x) and d(x̄) that must both be seen and this is
what forces the choice of guard placement at either
x or x̄.

Figure 2 shows how the starting patterns are con-
nected to variable patterns. If we choose xj in
the starting pattern, we are forced to continuing to
choose xj in each of subsequent variable patterns.
If we at some variable pattern would choose x̄j in-
stead of xj , the ledge d(x̄j) is not seen. Similarly,
if we in the starting pattern choose x̄j , we are, by
the same argument, forced to continuing to choose
x̄j in each of subsequent variable patterns.

Clauses: For each clause c in the boolean formula,
there is a sequence of variable patterns x1, . . . , xn

along either the left or the right side of the lower
boundary and a clause pattern along the upper
boundary of the polygon. On the left side of the
lower boundary the variable pattern sequence cor-
responds to negative clauses, on the right side to
positive clauses.

The clause pattern on the upper boundary consists
of three vertices in an upward spike such that the
top vertex of the spike is only seen by the variable
patterns corresponding to the literals in the clause;
see Figure 3. We denote the top vertex of the spike
by c to correspond to the clause.

24th Canadian Conference on Computational Geometry, 2012

168

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

x̄j

x̄k

...

xj

xk
x̄k

xk
x̄j

xj

Starting patterns

Negative variable patterns

Positive variable patterns

xj

xk

x̄j

x̄k

Figure 2: Variable patterns transferring logical values.

x4

x5

x1

x3
x2

x̄1

x̄3

x̄5

clause c

Figure 3: A variable pattern sequence with its clause spike.

We choose our truth value for each variable in the
starting variable patterns. The truth values are then
mirrored in turn between variable patterns on the right
side, corresponding to positive clauses, and variable pat-
terns on the left side, corresponding to negative clauses,
of the lower boundary. Truth values do not change in
the mirroring process since a variable xj in clause ci

only sees the ledge d(xj) in the next variable pattern
and none of the other ledges. Similarly x̄j only sees
ledge d(x̄j) in the next variable pattern; see Figure 2.

In the example of Figure 3 the M3SAT clause cor-
responds to c = x̄1 ∨ x̄3 ∨ x̄5. Hence, a vertex guard
placement that corresponds to a truth assignment that
makes c true, will have at least one guard on x̄1, x̄3

or x̄5 and can therefore see vertex c without additional
guards.

We still have variables x2 and x4 in the clause, how-
ever none of them or their negations see the vertex c.
They are simply there to transfer their truth values in
case these variables are needed in later clauses.

The monotone polygon we construct consists of 4n +
(6n + 4)m + 2 vertices. Each starting variable pat-
tern having four vertices, each variable pattern six ver-
tices, the clause spike consists of three vertices plus one
blocking vertex at the start of each clause sequence on

the lower boundary and the two leftmost and rightmost
points of the polygon.

Consider an M3SAT instance (x1∨x2∨x3)∧(x̄1∨x̄3∨
x̄5)∧ (x3 ∨x4 ∨x5). Figure 4 shows how this instance is
transformed into a monotone polygon and a placement
of guards corresponding to the satisfying truth assign-
ment x1 = x2 = x4 = x5 = false , x3 = true.

Figure 4: Example reduction of (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄3 ∨
x̄5) ∧ (x3 ∨ x4 ∨ x5). Points with white centers mark the
guards.

Exactly K = n(m + 1) guards are required to guard
the polygon since there are K bottom vertices b(xj) at
downward spikes and no vertex in the polygon can see
more than one such b(xj) vertex.

If the M3SAT instance is satisfiable, then we place
guards at vertices in accordance to whether the variable
is true or false in each of the sequences of variable pat-
terns. Each clause vertex is seen since one of the literals
in the associated clause is true and the corresponding
vertex has a guard.

Suppose we have a vertex guard cover of size exactly
K. Since each bottom spike b(xj) is guarded there is
a guard at one of xj , x̄j , or b(xj) itself. They together
make up K guards so there can be no other guards.
Since each clause vertex ci is also seen, we can establish
which of the guards see this vertex and deduce a satis-
fying truth assignment from this guard placement. We
have proved the following theorem.

Theorem 1 Finding the smallest vertex guard cover
for a monotone polygon is NP-hard.

3 Interior Guarding is NP-hard

The hardness result for vertex guarding a monotone
polygon does not immediately generalize to interior
guards. For example, a guard placed slightly above a
variable pattern can ruin the mirroring of truth assign-
ments because this guard would see too many ledges.
The next section introduces a modified variable pattern
which forces the potential guard locations to be very
close to the guard locations from Section 2.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

169

24th Canadian Conference on Computational Geometry, 2012

3.1 Modified Variable Pattern

The following definition is used in this section: let
VP(p) denote the visibility polygon of P from the point
p, i.e., the set of points in P that can be connected with
a line segment to p without intersecting the outside of
P .

Modified Variable Pattern: Similar to the variable pat-
tern introduced in Section 2, this pattern is used
to verify the assigned truth value of each variable.
It is important to note that this modified pattern
does not move the x or x̄ vertices. This pattern re-
places the distinguished vertex b(x) at the bottom
of the spike with two distinguished vertices, namely
b(x) and b(x̄); see Figure 5. This pattern also in-
troduces six new distinguished vertices which are
placed directly above the original variable pattern
on the top of the polygon. We will call these eight
new vertices variable distinguished vertices. We will
call the six new vertices on the top of the polygon
upper distinguished vertices. Figure 5 shows the
complete modified variable pattern. Each of the
upper distinguished vertices can see at most two
guards from the following set: {x, x̄, b(x), b(x̄)}.

Lemma 2 Two guards are necessary and sufficient to
see all of the variable distinguished vertices in a modified
variable pattern.

Proof. At least two guards are needed to see all of the
distinguished vertices of this modified variable pattern.
VP(1) ∩ VP(6) = ∅; see Figure 5. Therefore, to see all
upper distinguished vertices, two guards are necessary.

Let us assume that the ledge d(x) is seen from a previ-
ous variable pattern. Two guards are sufficient for see-
ing all of the following variable distinguished vertices:
{1, 2, 3, 4, 5, 6, b(x), b(x̄)} and the unseen ledge d(x̄). A
possible solution would be to place a guard at x and also
at b(x). x would see {1, 2, b(x̄), d(x̄)} and b(x) would see
{3, 4, 5, 6}. If we assume that d(x̄) was seen from a pre-
vious variable pattern, then a possible solution would
be to place a guard at x̄ and b(x̄). �

Corollary 3 We need at least K = 2n(m + 1) guards
to see all of the variable distinguished vertices in P .

All potential guard locations for the upper distin-
guished vertices are located inside this vertical “strip”
as shown in Figure 5. In other words, no guard placed
to the left of VP(1) and no guard placed to the right of
VP(6) can see any of the upper distinguished vertices.
Said another way, no guard can see upper distinguished
vertices in more than one modified variable pattern.

We will now show that if all of the variable distin-
guished vertices are seen, 2 guards must be placed at
either (x, b(x)) or at (x̄, b(x̄)). Consider the horizon-
tal line L drawn in Figure 6. L is split up into several

b(x̄) b(x)

x

x̄

d(x)d(x̄)

1 2 63 4 5

Figure 5: A complete modified variable pattern. Point 1 sees
{x, b(x̄)}. Point 2 sees {x, b(x̄)}. Point 3 sees {b(x̄), b(x)}.
Point 4 sees {b(x̄), b(x)}. Point 5 sees {b(x), x̄}. Point 6 sees
{b(x), x̄}. The visibility polygons for points 1, 2, 5 and 6 are
displayed.

b d

eca L

Figure 6: A horizontal line L such that no guard placed on
or above L sees more than two upper variable distinguished
points.

segments. The endpoints of these segments are where
the edges of the visibility polygons of 1, 2, . . . , 6 hit L.
Any guard placed on or above L will see at most 2 up-
per distinguished vertices. A guard placed on segment
a will see vertices {1, 2}. A guard placed on segment
b will see only the vertex {2}. A guard placed on seg-
ment c will see vertices {2, 3}. A guard placed on seg-
ment d will see only the vertex {3}. A guard placed
on segment e will see vertices {3, 4}. The remaining
segments are not named but these are the upper dis-
tinguished vertices they see in order from left to right:
{{4}, {4, 5}, {5}, {5, 6}}. No guards placed above L will
be able to see more upper distinguished vertices than a
guard placed on L because of the monotonicity of the
polygon. Since there are no obstacles, such a guard

24th Canadian Conference on Computational Geometry, 2012

170

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

could be moved down to L without losing visibility of
any of the upper distinguished vertices. It is important
to note that no guard placed on L sees any of the ledges
d(x) or d(x̄). A guard must be placed above L in order
for the unseen ledge to be seen.

Lemma 4 No one guard can see more than 4 upper
distinguished vertices.

Proof. We compare the visibility polygons of 1 and 2
with the visibility polygons of 5 and 6; see Figure 5.
(VP(1) ∪ VP(2)) ∩ (VP(5) ∪ VP(6)) = ∅. Any guard
that sees 1 or 2 cannot see 5 or 6. For a guard to see
more than 4 upper distinguished vertices, such a guard
must see all but 1 of the upper distinguished vertices.
This is not possible. �

Lemma 5 For all variable distinguished vertices and
one ledge from {d(x), d(x̄)} of a modified variable pat-
tern to be seen, guards must be placed at (x, b(x)) or
(x̄, b(x̄)).

Proof. Referring to Figure 5, let us assume that d(x̄)
is seen by a guard placed in a previous variable pattern.
A guard must be placed somewhere in P to see d(x).
However, any guard that sees d(x) must be placed above
L and therefore can see at most 2 upper distinguished
vertices. Because of Lemma 2, if we want to see all of
the upper distinguished vertices by using only 2 guards,
we are forced to place a second guard below L. To
determine where such a guard must be placed, consider
the VP(d(x)). No point in the visibility polygon of d(x)
sees upper variable distinguished points 1 or 2. From
Lemma 4, a guard that sees 1 or 2 cannot see 5 or 6.
Therefore, if we are only allowed to place 2 guards, a
guard that sees d(x) must see 5 and 6. This guard
location must be placed at x̄. Consider a vertical line
through x̄. A guard placed just slightly to the left of
this vertical line will not see 6. A guard placed slightly
to the right of this vertical line will not see 5. Draw a
horizontal line through x̄. If the guard is moved slightly
above this line, neither 5 nor 6 will be seen. Therefore
a guard must be placed at x̄. Placing a guard at x̄
leaves the following upper distinguished vertices unseen:
{1, 2, 3, 4}. For these vertices to be seen, a guard must
be placed below the line L. Such a guard placement
will not affect the mirroring of variable truth values.
The only region that sees the remaining upper variable
distinguished points is b(x̄). Similar arguments can be
made when d(x) has already been seen and the only
solution is to place guards at x and b(x). �

The introduction of this modified pattern allows us to
force guards to be in certain positions. The forced po-
sitions are the same guard locations from the construc-
tion in Section 2. The original construction remains
unchanged with 2 exceptions. The variable pattern is

replaced with a modified variable pattern. A modified
starting pattern replaces the original starting pattern.
A modified starting pattern is identical to a modified
variable pattern without the d(x) and d(x̄) ledges. Be-
cause there are no ledges, either (x, b(x)) or (x̄, b(x̄)) can
be chosen. This starting choice will then affect guard
locations for all future modified variable patterns.

3.2 Entire Polygon is Seen

The previous subsection showed that all distinguished
vertices are seen but it does not immediately follow that
the entire polygon is seen. We will make a few obser-
vations to show that the entire polygon is seen. We
will break the polygon into smaller pieces and show that
each of those pieces is seen by some subset of the guards
already placed. It can easily be seen that every point in
the interior of the polygon must fit into at least one of
these categories and therefore must be seen. The num-
bered boxes in Figure 7 correspond to the area we are
discussing in the list below.

4 32 5 71 6

clause pattern C2

clause pattern C1

Figure 7: A simplified diagram showing different areas of the
polygon.

1. All of the polygon in the vertical strip between a
modified starting pattern for xi and xi+1 is seen by
a guard placed at one of {xi, x̄i} ∈ C1.

2. All of the polygon in a vertical strip containing a
modified starting pattern for xi is seen by either
guards placed at (xi ∈ C0, b(xi) ∈ C0, xi ∈ C1) or
(x̄i, b(x̄i)).

3. A clause pattern is a grouping of modified variable
patterns that determine whether a clause is satis-
fiable or not. A clause pattern always contains n
modified variable patterns. Let us number clause
patterns from top to bottom in the order shown in
Figure 7. Consider any variable xi in any clause
Cj where j > 0 and j is even. The vertical strip
containing the modified variable pattern is seen by
either guards placed at (xi ∈ Cj , b(xi) ∈ Cj , xi ∈
Cj−1) or (x̄i ∈ Cj , b(x̄i) ∈ Cj , x̄i ∈ Cj−1). Similar
arguments can be made in the cases where j is odd.
One should consider the initial grouping of modi-
fied starting patterns as C0 when thinking about
clause pattern C1.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

171

24th Canadian Conference on Computational Geometry, 2012

4. Consider 3 consecutive clause patterns
Ci−1, Ci, Ci+1. The area of the polygon located in
a vertical strip between Ci−1 and Ci+1 can be seen
by a guard placed at either (x1, x̄1) ∈ Ci.

5. Consider 2 consecutive modified variable patterns
xi, xi+1 in some clause Ci where i is odd. The ver-
tical strip between them is seen by a guard placed
at either of (xi+1 ∈ Ci−1, x̄i+1 ∈ Ci). Similar argu-
ments can be made if i is even.

6. Consider the vertical strip between the modified
variable pattern for xn ∈ Cm−1 and the modified
variable pattern for xn ∈ Cm. In other words, this
is the vertical strip in the “middle” of the polygon.
This strip is seen by either x̄n ∈ Cm−1 or xn ∈ Cm.
Similar arguments can be made if Cm is to the left
of Cm−1.

7. Lastly, consider the upper corners of the polygon.
A guard placed at either (x1, x̄1) ∈ C0 will see both
of these areas.

Using the observations in this section that show the
entire polygon is seen and the modified patterns which
force guards to be in specific locations along with the
hardness result for vertex guarding from [13] with the
new K = 2n(m+1) given in Corollary 3, we have proved
the following theorem.

Theorem 6 Finding the smallest interior guard cover
for a monotone polygon is NP-hard.

4 Conclusions and Future Work

We have proved that interior guarding a monotone poly-
gon is NP-hard. Open problems include improving the
approximation bounds for monotone polygons. Since
a PTAS has not yet been found for guarding a mono-
tone polygon, an interesting open question is whether
or not one exists. If a PTAS cannot be found, can
guarding a monotone polygon be shown to be APX-
hard? Other open problems include finding approxi-
mation algorithms for other classes of polygons and ul-
timately finding better approximations for guarding a
simple polygon in general.

Acknowledgments

The authors would like to thank Kasturi Varadarajan
and Matt Gibson for their valuable comments, discus-
sions and suggestions.

References

[1] A. Aggarwal. The art gallery theorem: its variations,
applications and algorithmic aspects. PhD thesis, 1984.

[2] B. Brodén, M. Hammar, and B. J. Nilsson. Guarding
lines and 2-link polygons is APX-hard. In In 13th Cana-
dian Conf. on Computational Geometry, pages 45–48,
2001.

[3] D. Z. Chen, V. Estivill-Castro, and J. Urrutia. Optimal
guarding of polygons and monotone chains. In Proceed-
ings of the 7th Canadian Conference on Computational
Geometry, pages 133–138, 1995.

[4] V. Chvátal. A combinatorial theorem in plane geome-
try. Journal of Combinatorial Theory Series B, 18:39–
41, 1975.

[5] A. Deshpande, T. Kim, E. D. Demaine, and
S. E. Sarma. A pseudopolynomial time O(log n)-
approximation algorithm for art gallery problems. In
F. K. H. A. Dehne, J.-R. Sack, and N. Zeh, editors,
WADS, volume 4619 of Lecture Notes in Computer Sci-
ence, pages 163–174. Springer, 2007.

[6] A. Efrat and S. Har-Peled. Guarding galleries and ter-
rains. Inf. Process. Lett., 100(6):238–245, 2006.

[7] S. Eidenbenz. Inapproximability results for guarding
polygons without holes. In Lecture Notes in Computer
Science, pages 427–436. Springer, 1998.

[8] S. Eidenbenz. Inapproximability of Visibility Problems
on Polygons and Terrains. PhD thesis, 2000.

[9] S. Fisk. A short proof of Chvátal’s watchman theorem.
Journal of Combinatorial Theory Series B, 24:374+,
1978.

[10] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979.

[11] S. Ghosh. Approximation algorithms for art gallery
problems. In Proc. Canadian Information Processing
Society Congress, 1987.

[12] J. King and D. Kirkpatrick. Improved approximation
for guarding simple galleries from the perimeter. Dis-
crete Comput. Geom., 46(2):252–269, Sept. 2011.

[13] E. Krohn and B. J. Nilsson. Approximate guarding of
monotone and rectilinear polygons, 2012. To Appear in
Algorithmica.

[14] D. T. Lee and A. K. Lin. Computational complex-
ity of art gallery problems. IEEE Trans. Inf. Theor.,
32(2):276–282, March 1986.

[15] B. Nilsson. Guarding Art Galleries — Methods for Mo-
bile Guards. PhD thesis, 1995.

[16] B. J. Nilsson. Approximate guarding of monotone
and rectilinear polygons. In L. Caires, G. F. Italiano,
L. Monteiro, C. Palamidessi, and M. Yung, editors,
ICALP, volume 3580 of Lecture Notes in Computer Sci-
ence, pages 1362–1373. Springer, 2005.

[17] J. O’Rourke and K. J. Supowit. Some NP-hard polygon
decomposition problems. IEEE Transactions on Infor-
mation Theory, 29(2):181–190, 1983.

24th Canadian Conference on Computational Geometry, 2012

172

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Kinematic Joint Recognition in CAD Constraint Systems∗

Audrey Lee-St.John†

Abstract

We study the joint recognition problem, which asks
for the identification and classification of kinematic
joints from a geometric constraint system. By laying
the foundation for a rigidity-theoretic study of flexible
body-and-cad frameworks, we obtain an O(n3) algo-
rithm for identifying prismatic and revolute joints rela-
tive to a specific body and an O(n4) algorithm for find-
ing all pair-wise joints. For a specific subset of body-
and-cad frameworks, we present a combinatorial algo-
rithm for identifying all pairs of bodies with prismatic
joints in O(n2) time.

1 Introduction

Computer-aided design (CAD) software allows engi-
neers to design sophisticated mechanical systems by
placing intuitive geometric constraints in rigid body as-
semblies. In many cases, motion of the resulting system
comprises a large part of the user’s design intent. We
present a novel approach based on rigidity theory for an-
alyzing a flexible structure constructed with CAD con-
straints. This comprehensive approach considers a CAD
system at the global level and can recognize kinematic
joints that may be implied by constraints not directly
involving the two participating bodies.

Motivation. To provide engineers with meaningful
feedback for verifying design intent, many CAD appli-
cations offer motion study tools to simulate kinematic
and dynamic motion. Kinematics simulation allows for
quick prototyping, as dynamics is a more computation-
ally expensive task. Once the engineer is satisfied with
the kinematics, more robust dynamic simulation can be
performed before the product is physically produced.

A common approach to kinematic motion simulation
of CAD systems is to perturb the system, then resolve
the constraints. This can be computationally expen-
sive as it generally reduces to solving an algebraic sys-
tem of equations. An alternative approach is to directly
model the kinematics, which relies on identifying well-
understood mechanical joints, such as the prismatic and
revolute studied here.

∗A preliminary version of this work was presented at the
FWCG ’10 with Rittika Shamsuddin.
†Department of Computer Science, Mount Holyoke College,

astjohn@mtholyoke.edu

(a) A plane-plane coincidence
constraint used in the design.

(b) Design intent includes ro-
tation.

Figure 1: A pair of pliers, designed in SolidWorks, has
a single rotational motion (i.e., a revolute joint). “Slip
Joint Pliers” part from www.3dcontentcentral.com.

Contributions. In this paper, we establish a rigid-
ity theoretic foundation for understanding flexible body-
and-cad frameworks. The joint recognition problem
asks for the recognition of kinematic joints described
by a geometric constraint system. We consider 3D
body-and-cad frameworks, which are composed of rigid
bodies joined by pairwise coincidence, angular and dis-
tance constraints, first introduced in [3]. A constraint
is placed between two bodies by identifying a geometric
element (a point, line or plane) on each body and spec-
ifying the relationship between them. We address the
identification of two types of kinematic joints, both al-
lowing exactly one degree of freedom: prismatic (trans-
lational motion) and revolute (rotational motion)∗.

We present a set of examples highlighting underlying
subtleties, lay the mathematical foundation for study-
ing infinitesimal relative motions (or twists) of bodies
and introduce key concepts for building a theory to an-
alyze them. For motion relative to a particular body,
we obtain an O(n3) algorithm for identifying kinematic
joints. A näıve extension provides an O(n4) algorithm
for all pairs of bodies. In the case of prismatic joints,
a combinatorial approach for a subset of body-and-cad
systems leads to an O(n2) algorithm.

Related work. Recognition of kinematic joints has a
rich history in the CAD community [8], as engineers
rely on tools for verifying the kinematic joints dictated
by their designed geometric constraint system. Com-
mercial software, such as SolidWorks, Pro/Engineer and
the SimMechanics package for MatLab, include a vari-
ety of tools for recognizing joints. These proprietary
techniques appear to be based on heuristics or map-
pings from basic constraints to joints. Such mapping

∗In the rigidity theory literature, a revolute joint is called a
hinge.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

173

24th Canadian Conference on Computational Geometry, 2012

techniques require explicit constraints between the two
bodies where such a joint is recognized; see, e.g., [9].
However, joints may be implied by constraints present in
the global system. Recent work [1] presents a dynamic
geometric system that uses a filter to check potential
motions with a limited set of predicates (currently, this
set includes “CircularMotion” and “Rocker”).

The methodology in this paper relies on the foun-
dation of body-and-cad rigidity that was presented in
[3]. Our approach is similar in flavor to the witness
method of Thierry et al. [12]. The witness method relies
on analysis and manipulation, e.g., Gauss-Jordan elim-
ination, of the Jacobian matrix to detect dependencies;
maximal rigid components are discovered by using ref-
erences. We refer to the Jacobian matrix as the rigidity
matrix and pin a body in a way that is similar to choos-
ing a reference. However, the references used by the
witness method to detect maximal G-well-constrained
components must explicitly block the “motions” of a
transformation group G. An attempt to extend this ap-
proach would require a priori knowledge of the axis of
motion for a proposed revolute or prismatic joint. How-
ever, our approach not only detects the presence such
a kinematic joint, but additionally identifies the axis of
motion. Also in contrast to the work of Thierry et al.,
which uses a generic witness for analysis, we work with
the rigidity matrix of an embedded framework. It is only
for prismatic joints in body-and-cad frameworks with
certain properties that the behavior appears generic and
amenable to combinatorial analysis.

Structure. Section 2 provides motivating examples,
then presents preliminaries for the relevant rigidity the-
ory. Section 3 develops the methodology for identifi-
cation of prismatic and revolute joints. For a special
subset of body-and-cad frameworks, Section 4 gives a
purely combinatorial approach for detecting prismatic
joints. Finally, Section 5 concludes with open questions.

2 Background

In this section, we begin with simple examples to pro-
vide intuitions and highlight the subtleties of the joint
recognition problem. We then provide the prelimi-
naries necessary for describing our contributions.

2.1 Motivating examples

We present several small examples of body-and-cad
frameworks that expose some of the difficulties encoun-
tered when analyzing motion and identifying kinematic
joints.

Simple revolute joint. Figure 1 depicts a simple ex-
ample of a 2-body system with a single revolute joint.
This pair of pliers is composed of two rigid handles with
(1) a plane-plane coincidence so they lie adjacent to each

other, and (2) a point-point coincidence to force a center
of rotation at the desired axis. Since the resulting rota-
tional motion is clearly necessary for the design, identi-
fication of this revolute joint would allow verification of
user intent. This example contains no dependencies and
the rotational degrees of freedom are constrained by ex-
actly two (primitive) angular constraints resulting from
the plane-plane coincidence, so analysis seems straight-
forward: intuitively, we can conclude that there is one
rotational degree of freedom.

A

B

(a) A revolute joint deter-
mined by 5 point-point dis-
tance constraints.

A

B

(b) A prismatic joint allows a
single translational motion.

Figure 2: Two-body frameworks with revolute and pris-
matic joints.

Revolute joint with only blind constraints. Body-
and-cad constraints can be separated into “angular”
constraints (affecting only rotational degrees of free-
dom) and “blind” constraints (affecting either rotational
or translational degrees of freedom); refer to Section
2.2. This presents a challenge as a revolute joint may
be specified without the use of any angular constraints:
it is known from classical rigidity theory that a “hinge”
(i.e., a revolute joint) may be described by 5 bars (i.e.,
point-point distances) [11, 14]. Figure 2a depicts this set
of bar constraints between two bodies (the three black
points lie on body A); there is exactly one rotational
motion about the purple (bold) line. Since point-point
distance constraints are blind, there does not appear
to be straightforward reasoning that would lead us to
identify this revolute joint.

Simple prismatic joint. We return to a simple de-
sign for a prismatic joint between a pair of rigid bodies
(see Figure 2b). This system is composed of (1) a line-
line coincidence along the solid line, and (2) a line-plane
perpendicular between the dashed line on body B and
the striped plane on body A. These constraints define
a prismatic joint: body B may only translate relative
to body A along the solid axis. As with the first ex-
ample, this system seems amenable to analysis as it has
no dependencies and the rotational degrees are explic-
itly eliminated by exactly three angular constraints (two
from the coincidence and one from the perpendicular).

24th Canadian Conference on Computational Geometry, 2012

174

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Prismatic joint with only blind constraints. This
next example again highlights the subtlety of blind con-
straints. We create an equivalent system to the previ-
ous one by using (1) a point-line coincidence between
the gray point on body B and the solid line on body A,
(2) a point-line coincidence between the white point on
body B and the solid line on body A, and (3) a point-
plane distance between the black point on body B and
the yellow (striped) plane on body A. While the only
motion left is a translation along the solid axis, there
are no angular constraints present. Intuitively, it seems
that three of the bars are somehow modeling angular
constraints to eliminate the rotational degrees of free-
dom.

Pegboard example: implied revolute joints. In
the previous examples, the constraints determining a
kinematic joint explicitly involved the two bodies. The
pegboard shown in Figure 3a provides an example where
a revolute joint is implied by constraints not directly
involving the two bodies. This system contains 4 rigid
bodies: a wooden board along with three “pegs” A, B,
and C. The constraints are described by the cad graph
(formally defined in Section 2.2) in Figure 3b. The peg-
board has three non-trivial degrees of freedom associ-
ated to three revolute joints: each peg can rotate rela-
tive to the board (about the vertical axis through the
peg’s center point). Notice the lack of constraints be-
tween peg C and the board; this revolute joint is implied
by the rest of the constraints. In fact, such a design is a
realistic result of the difficulties often caused by user in-
terfaces of 3D CAD software (rotating the view to select
logical surfaces can be cumbersome).

2.2 Preliminaries

We now present background for body-and-cad rigidity,
which provides a foundation for defining relative motion
and classifying prismatic and revolute joints.

Body-and-cad infinitesimal rigidity theory. We
work with body-and-cad frameworks, composed of rigid
bodies with pairwise constraints from a set of 21 coin-
cidence, angular and distance constraints. A constraint
between two bodies involves a geometric element (a
point, line or plane) rigidly affixed to each body. Since
we rely on the body-and-cad rigidity theory presented
by Haller et al. [3], we give a brief overview of the nec-
essary foundations for the infinitesimal rigidity theory.

Formally, a body-and-cad framework is defined by a
cad graph (G, c) that describes the combinatorics along
with a family of 21 “length” functions describing the
geometry of the structure. The cad graph (G, c) is a
pair, where G = (V,E) is a multigraph with V = [1..n]
and c an edge coloring function specifying the cad con-
straints. See Figure 3b for an example cad graph; we
use labels to indicate the edge “colors.” In this paper,

z

x

y

A

B

C

Board

(a) A 4-body system has a single wooden board with three pegs.

Board

Peg A

Peg B

Peg C

Point-line distance
(center to y-axis)

Point-line distance
(center to x-axis)

Plane-plane coincidence
(xy-plane)

Plane-plane coincidence
(xy-plane)

Point-line distance
(center to x-axis)

Point-point distance
(centers)

Plane-plane coincidence
(xy-plane)

Point-point distance
(centers)

Point-point distance
(centers)

(b) Associated cad graph denotes constraints.

Figure 3: A pegboard example with three revolute joints
(one completely implied by indirect constraints).

we will abuse notation slightly and assume that a body-
and-cad framework is given by an embedding from which
the “length” functions can be computed.

Since we work in the infinitesimal rigidity theory, we
first consider instantaneous rigid body motion in 3D.
As a consequence of Chasles’ Theorem (see, e.g., [10]),
any instantaneous rigid body motion may be described
by a twist (translation and rotation about a twist axis),
which itself is represented by a 6-vector s = (ω,v). The
3-vector ω describes the angular velocity: the direction
of the twist axis and rotational speed about it. The 3-
vector v can be used to decode the rest of the twist axis
and translational speed along it.

Body-and-cad infinitesimal rigidity theory relies on
expressing constraints in the Grassmann-Cayley alge-
bra, resulting in the construction of a rigidity matrix.
This matrix has 6 columns for each body i, correspond-
ing to 2-tensors represented with Plücker coordinates.
Since there is a mapping between the 2-tensors in the
Grassmann-Cayley algebra and twists, we may interpret
these 6 columns representing the degrees of freedom of
body i: s∗i = (vi,−ωi)

†. The kernel of the rigidity

†The re-ordering and negation are technicalities arising from
the development of the rigidity matrix. When referring to ele-
ments of the kernel, we will use s∗; when referring to the corre-
sponding twist, we will use s.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

175

24th Canadian Conference on Computational Geometry, 2012

matrix describes the infinitesimal‡ motion space for a
body-and-cad system.

Each body-and-cad constraint is associated to a num-
ber of primitive constraints (which affect at most one de-
gree of freedom). A primitive constraint between bodies
i and j is encoded by a single row in the rigidity matrix
that has a vector x ∈ R6 in the columns for body i and
−x in the columns for body j; every other entry in the
row is 0. A distinction is made between primitive angu-
lar and blind constraints: a primitive angular constraint
may affect only a rotational degree of freedom and cor-
responds to a row in the rigidity matrix with zeros in
the v columns.

Combinatorics. For a cad graph (G, c), we associate
a primitive cad graph H = (V,R t B), which assigns a
vertex to each body and red (R) and black (B) edges
to primitive angular and blind constraints determined
by each cad constraint. Recent work [6] characterizes
generic rigidity of body-and-cad frameworks without
point-point coincidence constraints.

Theorem 1 [6] Let F be a body-and-cad framework
with no point-point coincidence constraints. Let H =
(V,R t B) be the primitive cad graph associated to F .
Then F is generically minimally rigid if and only if there
exists a set B′ ⊆ B such that (V,R∪B′) and (V,B \B′)
are each the edge-disjoint union of 3 spanning trees.

For angular constraints in isolation, angular rigidity
for body-and-angle frameworks was characterized in [7],
based on sparsity counts.

Theorem 2 [7] A body-and-angle framework is gener-
ically minimally rigid if and only if its associated graph
is (3, 3)-tight.

The pebble games of [4] provide O(n2) algorithms for
determining if a graph is (k, `)-sparse (or tight) and for
detecting (k, `)-components ((k, `)-tight subgraphs that
are maximal with respect to vertices).

Relative motions. We consider relative motions be-
tween a pair of bodies. Let F be a body-and-cad frame-
work, M(F) its rigidity matrix and ker(M(F)) the as-
sociated motion space. It must be the case that the
6-dimensional space of trivial rigid body motions is a
subspace of ker(M(F)). For a pair of bodies i and j, we
restrict the motion space to describe relative motions
between the bodies. Formally, we project ker(M(F))
into R12 by a linear transformation described by the
following 12× 6n matrix: the first (respectively, last) 6
rows contain the identity matrix of size 6 in the columns
for body i (respectively, j) and zeros everywhere else.
Then the relative motion space W is the resulting sub-
space of R12. Again, the 6-dimensional space of trivial

‡For brevity, we will omit “infinitesimal” for the remainder of
the paper.

motions must be a subspace of W . Define the num-
ber of relative degrees of freedom to be dim(W) − 6. If
this is zero, the two bodies are relatively rigid. A rigid
component is a maximal set of bodies that are pairwise
relatively rigid. We observe that the number of relative
degrees of freedom is equal to the minimum number of
rows (i.e., primitive constraints or edges in the primitive
cad graph) whose addition cause i and j to fall into the
same rigid component.

Intuitively, to study the non-trivial relative motions,
we consider when one body is fixed and seek a descrip-
tion of the allowed motions of the second. To formalize
this notion, we may fix body i by appending 6 rows to
the rigidity matrix: the identity matrix of size 6 appears
in the columns for i and zeros appear in all other en-
tries. We denote the newly obtained pinned matrix by
M(F, i). The non-trivial relative motion space for body
i is simply ker(M(F, i)). The non-trivial relative motion
space between bodies i and j is a projection of the kernel
into R6. The linear transformation used is defined by
a 6 × 6n matrix with the identity matrix of size 6 ap-
pearing in the columns for body j and zeros everywhere
else. The number of relative degrees of freedom is the
dimension of this subspace of R6.

3 Identification of Kinematic Joints

In this paper, we are interested in non-trivial relative
motion spaces of dimension 1, spanned by a single twist
s ∈ R6. As a consequence of the mapping between twists
and 2-tensors in the Grassmann-Cayley algebra, there
is a further mapping between twists that are either pure
rotations or pure translations and 2-tensors that are
decomposable. Decomposable 2-tensors are those that
satisfy the Plücker relation, i.e., those that lie on the
Grassmannian. We choose the same convention as [3]
for the Plücker coordinates, so that the Plücker rela-
tion is satisfied for a vector s = (ω,v) if 〈−ω,v〉 = 0,
where the angle brackets denote the dot product. These
6-vectors lie on the Klein quadric and describe lines in
3-dimensional projective space. Furthermore, if ω = 0,
the twist has only a translation v (encoding a prismatic
joint). Otherwise, the twist corresponds to pure rota-
tion about the axis (encoding a revolute joint), and the
axis of rotation is described by s, the Plücker coordi-
nates of the line. See, e.g., [10, 13], for reference.

We can now describe the algorithm for identifying
infinitesimal prismatic and revolute joints. To
find joints relative to body i in a body-and-cad frame-
work F :

1. Construct the pinned rigidity matrix M(F, i).

2. Compute its kernel ker(M(F, i)).

3. For each body j 6= i:

24th Canadian Conference on Computational Geometry, 2012

176

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

(a) Restrict to body j by finding a basis for the
non-trivial relative motion space between i
and j.

(b) Compute the number of relative degrees of
freedom (the dimension of the space).

(c) If there is > 1 degree of freedom, continue to
the next body.

(d) Otherwise, consider the single basis vector
s∗ ∈ R6.

(e) Check if s = (ω,v) satisfies the Plücker rela-
tion. If not, continue to the next body.

(f) If ω = 0, output prismatic joint between i and
j with translation v; otherwise, output revo-
lute joint between i and j with axis of rotation
described via Plücker coordinates s.

Let m be the number of rows (primitive constraints)
and n the number of bodies. The dominating fac-
tor is step 2 (computing the kernel), which requires
O(min(n,m)nm) time; if we assume a linear number of
constraints (e.g., if there are no dependencies), the al-
gorithm has time complexity O(n3). By executing the
algorithm for all i ∈ [1..n], we obtain an algorithm for
identifying all pairs of infinitesimal prismatic and revo-
lute joints that runs in O(n4) time.

Since the analysis is done at the infinitesimal level,
this is not a characterization (i.e., the method may in-
correctly identify a relative kinematic joint), but can be
used as a filter to identify potential pairs of bodies with
prismatic or revolute joints.

4 Combinatorial Identification of Prismatic Joints

We now give a combinatorial algorithm for identify-
ing prismatic joints in a subset of body-and-cad frame-
works. We consider frameworks that have no point-
point coincidence constraints, dependencies or non-
trivial (involving more than one body) rigid compo-
nents. This allows us to find a combinatorial condition
for characterizing when two bodies have a single relative
degree of freedom, leading to an algorithm for finding
candidate pairs that may have a kinematic joint.

Lemma 3 For a body-and-cad framework with no
point-point coincidence constraints, dependent con-
straints or non-trivial rigid components, a pair of bodies
i and j generically have one relative degree of freedom
if and only if they lie in a common (6, 7)-component of
H = (V,R tB), the associated primitive cad graph.

Proof. By [2], a graph is (6, 7)-tight if and only if the
addition of any edge results in the edge-disjoint union of
6 spanning trees. As a consequence of Theorem 1, (6, 7)-
components of H are equivalent to subgraphs such that
the addition of any edge results in a rigid component.

Since the number of relative degrees of freedom between
two bodies is the minimum number of edges whose addi-
tion results in their being in the same rigid component,
i and j have one relative degree of freedom if and only
if they lie in a common (6, 7)-component. �

To find prismatic joints, we begin by defining angular-
rigid components. As with Section 2.2, we restrict the
motion space to consider only rotational degrees of free-
dom. For a framework F with rigidity matrix M(F)
and motion space ker(M(F)), the angular motion space
is the space obtained by projecting the kernel into R3n

(intuitively retaining only the rotational coordinates).
Formally, we use the linear transformation described by
the 3n× 6n matrix with a set of 3 rows for each body i
containing the identity matrix of size 3 in the columns
for −ωi and zeros elsewhere. Instead of rigid body mo-
tions, the 3-dimensional space of (trivial) rotations is
contained in the angular motion space. The concepts
of relative angular motion space, relative angular de-
grees of freedom, relatively angular-rigid and non-trivial
relative angular motion space follow analogously. An
angular-rigid component is a maximal set of bodies that
are pairwise relatively angular-rigid.

Lemma 4 In a body-and-cad framework, a pair of bod-
ies i and j with one relative degree of freedom share
a prismatic joint if and only if they lie in a common
angular-rigid component.

Proof. Let F be a body-and-cad framework; let bodies
i and j have one relative degree of freedom and denote
by W their relative motion space (i.e., dim(W) = 7).

Bodies i and j lie in a common angular-rigid compo-
nent if and only if WR, their relative angular motion
space, has dimension 3. Now consider fixing body i;
let W ′ be the non-trivial relative motion space for j
and W ′R the non-trivial relative angular motion space.
Then W ′ must have dimension 1, defined by a single
basis vector s∗ = (v,−ω). WR has dimension 3 if and
only if W ′R has dimension 0 if and only if ω = 0. Thus,
bodies i and j share a prismatic joint if and only if they
lie in a common angular-rigid component. �

For a subset of body-and-cad frameworks, the de-
tection of (generic) angular-rigid components becomes
a combinatorial problem. If F is a framework with
rigidity matrix M(F) and primitive cad graph H =
(V,R tB), let MR(F) be the submatrix determined by
the 3n columns corresponding to the rotational degrees
of freedom ωi and the rows associated to the red edges
R. We define a body-and-cad framework to be angular-
distinct if the kernel ofMR(F) is the same as the angular
motion space of F . Then, as a consequence of Theo-
rem 2, angular-rigid components in an angular-distinct
body-and-cad framework are equivalent to (3, 3)-tight
components in HR = (V,R).

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

177

24th Canadian Conference on Computational Geometry, 2012

We now present a combinatorial algorithm for de-
tecting prismatic joints for a body-and-cad frame-
work F satisfying the conditions: (A) F contains no
point-point coincidence constraints, (B) F contains no
dependent constraints or non-trivial rigid components,
and (C) F is angular-distinct.

1. Play the (6, 7)-pebble game on H to detect (6, 7)-
components.

2. Play the (3, 3)-pebble game on HR = (V,R) to de-
tect (3, 3)-components.

3. Find all pairs of bodies i and j that share a (6, 7)-
component and a (3, 3)-component; output pris-
matic joint between bodies i and j.

Condition (A) allows the application of Theorem 1.
Since dependencies or rigid components result in sub-
graphs that are not (6, 7)-sparse, Condition (B) ensures
that we find all pairs of bodies with one relative de-
gree of freedom. Without Condition (C), we will still
correctly output prismatic joints, but may not find all.

The pebble game algorithms run in O(n2) time, so
Steps 1 and 2 each take quadratic time. In Step 3,
the union pair-find data structure developed for rigid
components [5] allows us to query if two bodies share a
component in constant time and quadratic space. Thus,
the entire algorithm has O(n2) time complexity.

5 Conclusions and Future Work

We initiated the study of understanding flexible body-
and-cad frameworks and relative motions from a
rigidity-theoretic perspective. This led to the develop-
ment of an O(n3) algorithm for detecting infinitesimal
prismatic and revolute joints relative to a fixed body and
an O(n4) algorithm for finding all pair-wise kinematic
joints. Based on standard linear algebra techniques, this
method outputs the type of kinematic joint (revolute or
prismatic) as well as the axis of motion.

For the special case of prismatic joints in a restricted
set of body-and-cad structures, we gave a purely com-
binatorial algorithm with O(n2) complexity, indicating
that prismatic joints are more amenable to detection al-
gorithms. This may be due to their correspondence to a
2-dimensional plane in the Klein quadric, whereas revo-
lute joints correspond to all other points on the quadric.

Future work. The combinatorial algorithm for pris-
matic joints motivates the need for an efficient algo-
rithm for body-and-cad rigidity (including detecting de-
pendencies and rigid components). Further investiga-
tion of angular-distinct systems or the transformation
(or identification) of blind constraints to angular con-
straints may elucidate the special treatment of angular
constraints with respect to rotational degrees of free-
dom. More generally, we anticipate that the foundations

presented here will allow us to understand motions be-
yond infinitesimal prismatic and revolute joints.

Acknowledgements. We are grateful to reviewers for
insightful suggestions and observations and to Rittika
Shamsuddin for participating in the initial work.

References

[1] M. Freixas, R. Joan-Arinyo, and A. Soto-Riera. A
constraint-based dynamic geometry system. Comput.
Aided Des., 42(2):151–161, 2010.

[2] R. Haas. Characterizations of arboricity of graphs. Ars
Combinatorica, 63:2002.

[3] K. Haller, A. Lee-St.John, M. Sitharam,
I. Streinu, and N. White. Body-and-cad geo-
metric constraint systems. Computational Geom-
etry: Theory and Applications, 2010. In press.
http://dx.doi.org/10.1016/j.comgeo.2010.06.003.

[4] A. Lee and I. Streinu. Pebble game algorithms and
sparse graphs. Discrete Mathematics, 308(8):1425–
1437, 2008.

[5] A. Lee, I. Streinu, and L. Theran. Finding and
maintaining rigid components. In Proceedings of the
17th Canadian Conference of Computational Geometry,
Windsor, Ontario, 2005.

[6] A. Lee-St.John and J. Sidman. Combinatorics and the
rigidity of cad systems. Accepted to SPM ’12: Sympo-
sium of Solid and Physical Modeling, 2012.

[7] A. Lee-St.John and I. Streinu. Angular rigidity in 3d:
combinatorial characterizations and algorithms. In Pro-
ceedings of the 21st Canadian Conference on Computa-
tional Geometry, pages 67–70, 2009.

[8] K. Lyons, V. Rajan, and R. Sreerangam. Rep-
resentations and methodologies for assembly model-
ing. National Institute of Standards and Technol-
ogy,Gaithersburg, MD, 6059, 1997.

[9] O. E. Ruiz. Geometric constraint subsets and subgraphs
in the analysis of assemblies and mechanisms. Inge-
nieria y Ciencia (Engineering and Science), 2(3):103–
137.

[10] J. M. Selig. Geometric Fundamentals of Robotics.
Monographs in Computer Science series. Springer, New
York, 2nd edition, 2005.

[11] T.-S. Tay. Rigidity of multi-graphs. I. Linking rigid bod-
ies in n-space. Combinatorial Theory Series, B(26):95–
112, 1984.

[12] S. E. B. Thierry, P. Schreck, D. Michelucci, C. Fünfzig,
and J.-D. Génevaux. Extensions of the witness method
to characterize under-, over- and well-constrained ge-
ometric constraint systems. Computer-Aided Design,
43(10):1234–1249, 2011.

[13] N. White. Grassmann-Cayley algebra and robotics.
Journal of Intelligent and Robotics Systems, 11:91–107,
1994.

[14] W. Whiteley. The union of matroids and the rigidity
of frameworks. SIAM Journal Discrete Mathematics,
1(2):237–255, May 1988.

24th Canadian Conference on Computational Geometry, 2012

178

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Computing Motorcycle Graphs Based on Kinetic Triangulations∗

Willi Mann† Martin Held† Stefan Huber‡

Abstract

We present an efficient algorithm for computing general-
ized motorcycle graphs, in which motorcycles are allowed
to emerge after time zero. Our algorithm applies kinetic
triangulations inside of the convex hull of the input, while
a plane sweep is used outside of it. Its worst-case com-
plexity is O((n+ f) log n), where f ∈ O(n3) denotes the
number of flip events that occur in the kinetic triangu-
lation. Outside of the convex hull it runs in O(n log n)
time. In order to reduce the number of flip events we
investigate the use of Steiner triangulations. We prove
the existence of Steiner triangulations that eliminate all
flip events and discuss heuristics for approximating such
a Steiner triangulation.

Extensive experiments with our C++ implementation
run on thousands of datasets of various characteristics
demonstrate a runtime of c · 10−6 · n log n seconds, with
c ≤ 4 for virtually all of our datasets. This constitutes
a significant practical improvement over the motorcycle
code Moca [Huber&Held 2011], which runs in O(n log n)
time only if the motorcycles are distributed uniformly
enough. In particular, our experiments yielded f ≤ 5n
flip events for all but very few datasets.

1 Introduction

1.1 Motivation and Definitions

A motorcycle is a point that moves with constant ve-
locity along a straight-line ray. Consider n motorcycles
m1, . . . ,mn, each of them having a start point pi ∈ R2

and a velocity vi ∈ R2, with 1 ≤ i ≤ n. (We assume that
at most a constant number of motorcycles share one start
point.) The track of motorcycle mi is defined by the ray
{pi + t · vi : t ≥ 0}. While a motorcycle moves it leaves
a trace behind. A motorcycle crashes when it reaches
the trace of another motorcycle: It stops driving but its
trace remains. A motorcycle escapes if it never crashes.
The motorcycle graph M(m1, . . . ,mn) is defined as the
arrangement of all motorcycle traces.

Motorcycle graphs were introduced by Eppstein and
Erickson [4] when investigating straight skeletons [1].

∗Work supported by Austrian FWF Grant L367-N15.
†FB Computerwissenschaften, Universität Salzburg, A–5020

Salzburg, Austria, {wmann,held}@cosy.sbg.ac.at
‡FB Mathematik, Universität Salzburg, A–5020 Salzburg, Aus-

tria, shuber@cosy.sbg.ac.at

The basic motivation behind the definition of the motor-
cycle graph was to extract the essential sub-problem of
computing straight skeletons and to cast it into a separate
problem. In fact, it turns out that motorcycle graphs and
straight skeletons share a strong relationship: (i) motor-
cycle graphs can be used to give a non-procedural char-
acterization of straight skeletons [9, 2], (ii) the straight-
skeleton algorithm by Huber and Held [9] and the algo-
rithm by Cheng and Vigneron [2] are based on motorcycle
graphs, and (iii) the P-completeness of straight skeletons
of polygons with holes follows from the P-completeness
of motorcycle graphs [7, 4]. In particular, the currently
fastest straight-skeleton code Bone [9] employs the mo-
torcycle graph in a preprocessing step.

In this paper, we present an algorithm for computing
the motorcycle graph M(G) that is induced by a planar
straight-line graph (PSLG) G. This requires a general-
ization of the original motorcycle graph, see Fig. 1.

First, we consider rigid walls formed by straight-line
segments. If a motorcycle meets a wall then it crashes,
too. Secondly, if two or more motorcycles m1, . . . ,mk

crash simultaneously into each other at the point p such
that the traces of m1, . . . ,mk lie in a half-plane whose
boundary contains p then a new motorcyclem is launched
from p in the complementary half-plane. In other words,
a local disc at p is tessellated into convex slices by the
traces of m,m1, . . . ,mk. To sum up, in generalized mo-
torcycle graphs a motorcycle is specified by a start point,
a velocity and a start time. A formal definition ofM(G)
involves concepts of straight skeletons, see [9] for further

(i)

(ii)

(iii)

Figure 1: A generalized motorcycle graph. The motor-
cycles’ velocities are depicted by (red) arrows. A motor-
cycle may crash against (i) another trace or (ii) a wall.
(iii) A Motorcycle may be launched after two or more
motorcycles crashed into each other.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

179

24th Canadian Conference on Computational Geometry, 2012

details. For the reader to be able to follow this paper
it suffices to note that not all motorcycles are known a
priori, and that the motorcycles may crash into a total
of O(n) walls.

1.2 Prior Work

For the original setting of the motorcycle graph prob-
lem, the algorithm by Cheng and Vigneron [2] achieves
the best worst-case complexity: it runs in O(n

√
n log n)

time. In a preprocessing, they compute a 1/
√
n-cutting

on the supporting lines of the motorcycle tracks. How-
ever, this requires to know all motorcycles in advance and
hence their algorithm is not applicable to generalized mo-
torcycle graphs.

The algorithm by Eppstein and Erickson [4] is appli-
cable to generalized motorcycle graphs. It employs vari-
ous efficient closest-pair data structures in a hierarchical
fashion. By a clever trade-off between time and space
they achieve an O(n17/11+ε) time and space complexity.
However, their algorithm is far too complex for an actual
implementation.

A fairly simple recent algorithm by Huber and Held [8]
uses a

√
n×√n-grid to speed up computation. If the mo-

torcycles are distributed uniformly enough then a mo-
torcycle crosses only O(1) grid cells on average, which
leads to an O(n log n) runtime. The resulting motorcycle-
graph code Moca has become to be known as the fastest
implementation. While Moca works nicely for most
datasets, it requires up to O(n2

√
n log n) time for some

contrived inputs, and O(n2 log n) time for densely sam-
pled convex bodies.

1.3 Our Contribution

In Sec. 2 we present a novel motorcycle-graph algorithm
for the computation ofM(G) that consists of two phases.
The first phase computes M(G) within the convex hull
CH(G) of the walls and the start points of all motorcy-
cles. It is based on a kinetic triangulation, akin to [1].
Its worst-case time complexity is O((n+ f) log n), where
f ∈ O(n3) denotes the number of flip events that occur in
the kinetic triangulation. The second phase uses a plane-
sweep algorithm to computeM(G) outside of CH(G) in
time O(n log n). Thus, in the worst case the total com-
plexity is O(n3 log n). However, no input is known that
causes a runtime of more than O(n2 log n).

As the time complexity strongly depends on the num-
ber f of flip events, we investigate the use of Steiner tri-
angulations for reducing f . In fact, we prove that Steiner
triangulations exist for which no flip event occurs and for
which our algorithm would take O(n log n) time. This
motivates the search for practical heuristics to approxi-
mate such a Steiner triangulation.

We implemented our algorithm in C++ and report
on implementational and numerical aspects. Extensive

benchmarks on several thousand datasets clearly demon-
strate an O(n log n) runtime. In particular, our experi-
ments yielded f ≤ 5n flip events for virtually all datasets.
Additional experiments showed that our heuristics reduce
the number of flip events by 20% on average. As our al-
gorithm does not rely on a roughly uniform distribution
of the motorcycles this constitutes a major practical im-
provement compared to the algorithm that drives Moca.

2 Computing the Generalized Motorcycle Graph

2.1 Computation Inside of Convex Hull CH(G)

To compute M(G) within CH(G) we need to determine
which motorcycle crashes into which trace or wall. (Mo-
torcycles which start on the boundary of CH(G) and do
not move inwards are considered in the second phase of
our algorithm, see Sec. 2.2.) The basic idea is to use a
kinetic triangulation such that every crash event is indi-
cated by the collapse of a triangle in the triangulation.
This approach is motivated by the straight-skeleton al-
gorithm by Aichholzer and Aurenhammer [1]. Thus, we
start by computing the constrained Delaunay triangula-
tion T within CH(G), where the start points of the initial
motorcycles and the endpoints of the walls form the ver-
tices and the walls form the constrained diagonals of T .

In the next step, we insert at each start point pi of an
initially present motorcycle a duplicate vertex qi, which
represents the moving motorcycle. Thus, qi will move
away from pi according to the speed vector vi. (We get
a function linear in t for the movement of qi.) Initially,
qi := pi. We call qi a moving triangulation vertex. We
also regard it as one of k moving triangle vertices if k tri-
angles are incident at qi. (This distinction will be useful
in the complexity analysis, see Sec. 2.3.)

pi
qi

a

b

c

Figure 2: Illustra-
tion of initial split

In general, qi will move into
the interior of precisely one tri-
angle ∆(pi, b, a), and we re-
place ∆(pi, b, a) by the two de-
generate triangles ∆(pi, qi, a) and
∆(pi, b, qi), and by ∆(qi, b, a). (All
triangle vertices are always kept
in counter-clockwise (CCW) or-
der.) If qi moves along the edge
(pi, b) of the non-degenerate trian-
gles ∆(pi, b, a) and ∆(pi, c, b), see
Fig. 2, then we replace these two

triangles by the two degenerate triangles ∆(pi, qi, a) and
∆(pi, c, qi), and by ∆(qi, b, a) and ∆(qi, c, b). Similarly
if both vertices of an edge correspond to start points of
motorcycles and, thus, degenerate triangles are already
present. In any case, this initial split of all moving tri-
angle vertices from their start points results in the gen-
eration of only a constant number of new triangles per
vertex.

We note that we may deviate from these strict rules as

24th Canadian Conference on Computational Geometry, 2012

180

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

long as the topology is not violated and no wall is altered.
For instance, if qi of Fig. 2 would move into the interior
of ∆(pi, b, a) but rather close to the edge (pi, b) then we
could still use the split depicted if (pi, b) is no wall, thus
avoiding to split off the sliver triangle ∆(pi, b, qi).

We start the event processing after all moving triangu-
lation vertices have been split from their start vertices.
A priority queue maintains a list of collapsing triangles
as events, sorted by their collapse time. The three main
types of events are flip event, crash event, and stop event.
We discuss these events below. After all motorcycles have
stopped moving, no further triangulation vertex moves
and no triangle collapses. Thus, at that point in time
the priority queue is empty and we can continue with the
second part of the algorithm, see Sec. 2.2.

A flip event occurs when the vertex a of the trian-
gle ∆(a, b, c) ends up on the edge (b, c) which is not a
wall, motorcycle trace or edge of CH(G). Within the
quadrilateral formed with its neighbor ∆(b, d, c) on the
other side of the edge (b, c), the diagonal is flipped such
that the triangles ∆(a, d, c) and ∆(b, d, a) are generated,
cf. Fig. 3. As no triangulation vertex changes its speed,
all that remains to do is to update the priority queue by
rescheduling the collapse events of the two triangles.

a

b

c

d

b

c

d

b

c

da a

Figure 3: Handling of flip event.

A crash event occurs when a motorcycle, i.e., a moving
triangulation vertex, reaches the trace of another motor-
cycle or a wall. A crash events manifests itself as a tri-
angle collapse, which is handled similar to a flip event,
except that the moving vertex needs to be halted. Of
course, halting a moving vertex requires to re-schedule
all triangles attached to this vertex. As a special case we
get a vertex collapse if two vertices of a triangle become
coincident. Vertex collapses lead to the removal of the
edge between two vertices and their incident triangles,
and the two vertices are fused to one. This can be seen
as the reverse of the initial split, recall Fig. 2.

A stop event occurs when a motorcycle reaches
CH(G). The handling of this event is very similar in con-
cept to crash events. The only difference is that stopped
motorcycles are awakened again in the second part of the
algorithm.

2.2 Computation Outside of Convex Hull CH(G)

We apply a generalized plane sweep, whose front is given
by increasingly larger copies of CH(G). This can be seen
as a generalization of the approach sketched by Erick-

son [5] for motorcycles whose speed vectors do not span
more than 180◦. As the front advances the common ver-
tex of two neighboring edges of CH(G) moves along their
outwards angular bisector. Hence, the exterior of CH(G)
is partitioned into individual sweep regions by the bisec-
tors, with one region per edge of CH(G).

All motorcycles that start on CH(G) and move away
from it or that were stopped during the first phase, when
reaching CH(G), are stored in cyclic order in a doubly-
linked circular list. This list represents the front of the
sweep. We do not need to maintain the front as a search
tree since the only case where a new motorcycle needs to
be inserted into the front after the initial set-up happens
at a joint crash position of two or more motorcycles; in
this case we have handles to the position, and do not need
to search for the correct insert position.

During the sweep only one type of event needs to be
handled: A crash event occurs when a motorcycle track
intersects the motorcycle track of a neighboring motorcy-
cle, where “neighboring” is defined relative to the sorted
cyclic order of motorcycles in the front of the sweep.
The motorcycle that is second at the intersection posi-
tion is stopped. If two or more motorcycles meet in the
same intersection position p at the same time, they are all
stopped and a new motorcycle that moves further away
from CH(G) is inserted at p. (Recall that a local disc
at p is tessellated into convex slices by the traces of the
motorcycles according to our definition of M(G).)

The priority queue is sorted in increasing order of the
distances of the event positions to CH(G). Hence, all
events are handled in the order as they occur relative
to the front of the sweep, which is not necessarily the
chronological order. In order to compute the distance to
CH(G) we use bisection on CH(G) for determining the
sweep region that contains the event position.

2.3 Complexity Analysis

Complexity of computation inside of CH(G). The ini-
tial constrained Delaunay triangulation within CH(G)
contains O(n) triangles and can be computed in
O(n log n) time [3]. For each of the n initial motorcy-
cles we create two new degenerate triangles in the initial
split. Afterwards, one new motorcycle is only created if
at least two motorcycles have crashed. Hence, the overall
number of motorcycles (resp. moving triangulation ver-
tices) and the number of triangles created at the start
times of all motorcycles are in O(n).

For each initial motorcycle we have to determine the
triangle(s) that the motorcycle runs into. Since at most
a constant number of motorcycles is allowed to share a
starting point, we can determine all those triangles in
O(n) time by means of brute-force searches around each
start vertex. And since the events for only a constant
number of triangles need to be stored in the priority
queue, the priority queue after all initial splits can be

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

181

24th Canadian Conference on Computational Geometry, 2012

set up in O(n log n) time.
While flip events do not affect the number of moving

triangulation vertices, every flip may increase the number
of moving triangle vertices by two: Assume that a and d
of Fig. 3 are moving triangle vertices, while b and c do
not move. Since after the flip a, d are counted as moving
triangle vertices for each triangle on either side of (a, d),
the number of moving triangle vertices has increased by
two. Hence, f edge flips increase the number of moving
triangle vertices by at most 2f .

If a crash or stop event occurs for a moving triangu-
lation vertex q then we have to re-schedule all triangles
incident at q. Since we crash or stop a moving triangula-
tion vertex at most once, the overall number of triangles
that need to be re-scheduled equals the overall number of
moving triangle vertices, which is in O(n+ f). Thus, the
complexity of updating the priority queue for handling
all crash and stop events is O((n + f) log n), which also
models the worst-case complexity of the entire first phase
of our algorithm.

Complexity of computation outside of CH(G). The
distance of one event position from CH(G) can be deter-
mined in O(log n) time. The priority queue that stores
the events defined by neighboring motorcycles is initial-
ized in O(n log n) time. The handling of a crash event
takes O(k log n) time, where k denotes the number of
motorcycles stopped. Since each crash reduces the num-
ber of active motorcycles by at least one, the complexity
of handling all crash events is O(n log n). Summarizing,
the total complexity of the second phase of the algorithm
is O(n log n).

One may wonder whether this complexity bound is
tight. Consider n motorcycles which have their start
points on the x-axis and whose speed vectors have pos-
itive y-coordinates. That is, all motorcycles move up-
wards in the direction of the positive y-axis. If the
start points are given in sorted order relative to their
x-coordinates then our plane-sweep algorithm requires
O(n log n) time to compute the motorcycle graph. But
can one do better? Note that if their sorted order is un-
known then a Ω(n log n) bound can be shown by a reduc-
tion to sorting: Assume that n distinct natural numbers
c1, . . . , cn are given. Then we define for each ci a motor-
cycle mi starting at (ci, 0), with velocity (−1, 2−ci). This
guarantees that each motorcycle crashes into the motor-
cycle starting left to it, except for the left-most motorcy-
cle, which escapes. Hence, we can determine the sorted
order of c1, . . . , cn in O(n) time from M(m1, . . . ,mn).

Overall Runtime Complexity. The worst-case complex-
ity is O((n + f) log n), where f denotes the number of
flip events. A flip event requires the area of a trian-
gle to become zero. As all moving triangulation ver-
tices move with constant speeds along rays (until they

stop), the signed area of a triangle can be expressed as
a quadratic polynomial in time and, hence, a single tri-
angle with three moving vertices can collapse at most at
two single points in time. Similarly if one or two vertices
have been stopped. Hence, by an argument similar to
[1, Lem. 5], we get a trivial O(n3) bound on the number
of flip events. This gives O(n3 log n) as total worst-case
complexity. However, note that we are not aware of any
input that leads to ω(n2) flip events. (But one can design
inputs that exhibit Θ(n2) flip events.)

3 Heuristics for Reducing the Number of Flip Events

It is known that a PSLG G and its motorcycle graph
M(G) partition the plane into a set of convex polygons.
Suppose that we overlay M(G) and G, and triangulate
the resulting convex polygons arbitrarily. The edges of
M(G) are called Steiner tracks, and their final points
are called Steiner points. Then each motorcycle would
move along a triangulation edge, and because no other
triangulation edge crosses its track, its movement does
not require any edge to be flipped to let it pass through
the triangulation. Triangulation edges never leave the
convex polygon they were created in because they are
always stopped when their incident vertices hit a Steiner
point. Thus, for this triangulation our algorithm would
be free of flip events.

Of course, the crash positions of the motorcycles are
not known to us. But we can try to approximate a por-
tion of the unknown Steiner tracks, in an attempt to re-
duce the number of flip events by enabling motorcycles
to move along triangulation edges.

If Steiner points are present in the triangulation then
we handle a point collapse between a moving triangula-
tion vertex (motorcycle) and a Steiner point as follows:
We stop the motorcycle at the Steiner point, which is
handled like any other vertex collapse, and restart it with
the same method as used for the initial split.

In our first heuristic we exploit the average track length
of n motorcycles that start from within the unit square,
as established in [8]: for each motorcycle we insert a line
segment (in the direction of its movement) of length c/

√
n

as Steiner track, for some constant c > 0. The second
heuristic inserts Steiner tracks of unlimited length for
c · √n randomly chosen motorcycles. In both heuristics
a Steiner track is terminated at the first intersection if
it crosses a wall or intersects CH(G). A intersection be-
tween Steiner tracks is resolved by adding an additional
Steiner point at the intersection. Due to our choice of the
Steiner tracks one may assume for both heuristics that
at most O(n) points of intersection need to be added to
the input as Steiner points.

Stopping Steiner tracks at walls and CH(G) is done
by running a plane sweep twice, once top-down, once
bottom-up. Walls and the convex hull segments are in-

24th Canadian Conference on Computational Geometry, 2012

182

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

serted as normal line segments, but each motorcycle is
only inserted in the phase that fits its direction. When a
motorcycle first intersects a wall or convex hull segment,
it is removed and a Steiner point is placed at the intersec-
tion. A third plane sweep is done to resolve intersections
between Steiner tracks, also adding Steiner points at the
intersections.

4 Implementational Issues

4.1 Simultaneous and Out-of-Order Events

A standard problem of any algorithm that uses a kinetic
data structure is the reliable computation of the times
when the structure changes. This problem is known as
“root sorting”, i.e., determining which root of which poly-
nomial occurs first. If root sorting is not guaranteed to
be exact, e.g., due to the use of floating-point arithmetic,
then some form of out-of-order processing of events is
required in order to achieve reliability.

a

b c

d

T1
T2

Figure 4: Simultaneous col-
lapse of two triangles.

We note that our algo-
rithm has to cope with
a second problem in ad-
dition to the handling of
out-of-order events: So
far we have ignored the
fact that events can occur
simultaneously for real-
world data. Consider
Fig. 4, and suppose that the two vertices a and d are
non-moving vertices, while the vertices b and c represent
moving motorcycles that meet the edge (a, d) at the same
time. Further assume that (a, d) is a normal triangulation
edge, rather than a wall or motorcycle trace that would
stop the motorcycles b and c. As the collapse times of
T1 and T2 are identical, it is a matter of chance which
flip event is processed first. If the event associated with
T2 is handled first then we flip the diagonal (b, d) to the
diagonal (a, c), resulting in the triangles ∆(a, b, c) and
∆(a, c, d). If we now happen to choose triangle ∆(a, b, c)
as next triangle to process then that diagonal will just
flip back, and we have ended up in a loop. We empha-
size that this problem occurs both on floating-point and
exact arithmetic.

In order to handle simultaneous and out-of-order
events we employ a strategy described in [10]. Roughly,
a history of all events processed so far allows to detect
a loop. If a loop is encountered then all events of the
loop are considered to occur exactly at the same time
and replaced by a set of events that guarantee progress.

4.2 Numerical Aspects

As noted, the computation of the collapse times is a chal-
lenging problem when using a floating point arithmetic.
While the movement of each motorcycle is described by

a linear function in time t, the signed area of a triangle
with two moving vertices becomes a quadratic function
in t.

Since we keep the vertices of all triangles in CCW or-
der, the signed area of a triangles always is positive until
the triangle collapses. Note, however, that in the case of
a vertex collapse the area of a triangle may be positive
again after the collapse time plus some positive epsilon.
Fortunately, the degree of the polynomial which describes
a vertex collapse can be reduced: We note that the time
of a vertex collapse can also be calculated by a linear
function, as it corresponds to the minimum of a function
modeling the distance of two points moving with constant
speeds along two lines. Similarly, all other events where
a motorcycle is stopped involve triangles where only one
vertex, namely the motorcycle being stopped, is moving.
So the collapse times of events that stop motorcycles can
be obtained by solving linear equations.

5 Experimental Results

We implemented our algorithm and both heuristics for
reducing the number of flip events in C++. Shewchuk’s
Triangle [11] is employed for computing the initial con-
strained Delaunay triangulation.

The following tests were conducted on a Intel Core
i7 X980 CPU clocked at 3.33 GHz, with Ubuntu 10.04.4
LTS and GCC version 4.4.3. The memory usage was lim-
ited to 4.5 GB, and the runtime on each file was limited
to 15 minutes by means of the ulimit command. We
computed generalized motorcycle graphs for both real-
world and contrived data of different characteristics. In
order to avoid unreliable timings and other idiosyncrasies
of small datasets, we only analyze test runs that involved
at least 1 000 motorcycles, resulting in a few thousand
tests covered by our experiments.

The left plot of Fig. 5 shows the runtimes of our code
divided by n log n, where n denotes the number of ver-
tices. The plot shows clearly that the runtime (in sec-
onds) can be modeled by the function c · 10−6 · n log n,
with c ≤ 4 for virtually all of our inputs.

This runtime behavior suggests a linear number of flip
events, which is confirmed by our tests. The right plot
of Fig. 5 shows the number f of flip events divided by n.
As can be seen, we get 2n flip events on average and 0.8n
to 5n flip events for virtually all inputs. The maximum
number of flip events recorded was 39n for an input with
roughly n = 60 000 motorcycles.

A closer inspection of the test results reveals that an
increased runtime of our code is caused by either an ab-
normal runtime of Triangle [11], which is used to compute
the initial constrained Delaunay triangulation, or by an
increased number of flip events, or by a combination of
both. For instance, for most inputs Triangle consumes
about 5–20% of the total runtime, but we witnessed in-

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

183

24th Canadian Conference on Computational Geometry, 2012

10−6

10−5

103 104 105

1.5 to 4 · n log n µs

10−1

100

103 104 105
10−1

100

101

102

103 104 105

0.8 to 5 · n

Figure 5: Experimental results for our code without Steiner tracks: In all three plots the x-axis corresponds to the
number n of vertices. The left plot shows the runtimes divided by n log n. The middle plot shows the ratio of the
runtimes of our code divided by the runtimes of Moca, and the right plot shows the number of flip events divided
by n.

puts for which it consumed 85% of the total runtime.
The fact that our code truly runs in O(n log n) time for

most data is also confirmed by a comparison with Moca
[8]. The middle plot of Fig. 5 shows the runtimes of
our code divided by the runtimes of Moca. On average,
our code needs about 32% less runtime than Moca. It
is rarely slower than Moca, being at most twice as slow.
However, our code is substantially faster for those inputs
which cause Moca to consume O(n2 log n) time.

Our heuristics for reducing the number of flip events
turned out to be a mixed blessing. While a combination
of both heuristics did indeed manage to reduce the num-
ber of flip events by about 20%, the preprocessing nec-
essary for computing the intersections among the Steiner
tracks and with the walls caused the runtime to increase.
Apparently, performing plane sweeps is significantly more
costly than what our heuristics manage to save by reduc-
ing the number of flips.

We also tested our code with the MPFR library [6] for
multiple-precision computations, and witnessed an aver-
age slow-down by a factor of 25 for an MPFR precision
of 212. (Plots are omitted due to lack of space.)

6 Conclusion

We developed and implemented a triangulation-based al-
gorithm for the computation of generalized motorcycle
graphs. While its theoretical worst-case time complexity
is worse than prior art, our experiments demonstrate that
it runs in O(n log n) time for virtually all inputs. Our
new algorithm is an improvement over Moca as it clearly
outperforms Moca in our runtime tests and its runtime
does not depend on a sufficiently uniform distribution of
motorcycles. Our experiments also show that our algo-
rithm requires only O(n) flip events in practice, and that
this number can be reduced by the use of Steiner tracks.
It remains an interesting problem to come up with more
sophisticated methods to place Steiner tracks. After all,
if the number of flip events could deterministically be re-
duced to O(n) then our algorithm would run in optimal

O(n log n) worst-case time.

References

[1] O. Aichholzer and F. Aurenhammer. Straight skele-
tons for general polygonal figures in the plane. In
A. Samoilenko, editor, Voronoi’s Impact on Modern Sci-
ence, Book 2, pages 7–21. Institute of Mathematics of the
National Academy of Sciences of Ukraine, Kiev, Ukraine,
1998.

[2] S.-W. Cheng and A. Vigneron. Motorcycle graphs and
straight skeletons. Algorithmica, 47:159–182, Feb 2007.

[3] L. Chew. Constrained Delaunay triangulations. Algo-
rithmica, 4(1):97–108, 1989.

[4] D. Eppstein and J. Erickson. Raising roofs, crashing
cycles, and playing pool: applications of a data struc-
ture for finding pairwise interactions. Discrete Comput.
Geom., 22(4):569–592, 1999.

[5] J. Erickson. Crashing motorcycles efficiently. http://

compgeom.cs.uiuc.edu/~jeffe/open/cycles.html.

[6] GNU. The GNU MPFR library. http://www.mpfr.org/.

[7] S. Huber and M. Held. Approximating a motorcycle
graph by a straight skeleton. In Proc. 23rd Canad. Conf.
Comput. Geom. (CCCG 2011), pages 261–266, Toronto,
Canada, Aug 2011.

[8] S. Huber and M. Held. Motorcycle graphs: stochas-
tic properties motivate an efficient yet simple implemen-
tation. ACM J. Experimental Algorithmics, 16:1.3:1.1–
1.3:1.17, May 2011.

[9] S. Huber and M. Held. Theoretical and practical results
on straight skeletons of planar straight-line graphs. In
Proc. 27th Annu. ACM Sympos. Comput. Geom., pages
171–178, Paris, France, June 2011.

[10] P. Palfrader, M. Held, and S. Huber. On computing
straight skeletons by means of kinetic triangulations. In
Proc. ESA’12, to appear Sep 2012.

[11] J. Shewchuk. Triangle: engineering a 2D quality mesh
generator and Delaunay triangulator. In 1st ACM Work-
shop Appl. Comput. Geom., pages 124–133, Philadelphia,
PA, USA, May 1996.

24th Canadian Conference on Computational Geometry, 2012

184

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Variable Radii Poisson-Disk Sampling

Scott A. Mitchell⇤ Alexander Rand† Mohamed S. Ebeida‡ Chandrajit Bajaj§

Abstract

We introduce three natural and well-defined generaliza-
tions of maximal Poisson-disk sampling. The first is to
decouple the disk-free (inhibition) radius from the max-
imality (coverage) radius. Selecting a smaller inhibition
radius than the coverage radius yields samples which
mix advantages of Poisson-disk and uniform-random
samplings. The second generalization yields hierarchical
samplings, by scaling inhibition and coverage radii by
an abstract parameter, e.g. time. The third generaliza-
tion is to allow the radii to vary spatially, according to a
formally characterized sizing function. We state bounds
on edge lengths and angles in a Delaunay triangulation
of the points, dependent on the ratio of inhibition to
coverage radii, or the sizing function’s Lipschitz con-
stant. Hierarchical samplings have distributions similar
to those created directly.

1 Maximal Poisson-disk Sampling

A sampling is a set of ordered points taken from a do-
main at random. Each point is the center of a disk that
precludes additional points inside it, but points are oth-
erwise chosen uniformly. The sampling is maximal if
the entire domain is covered by disks. Together these
define maximal Poisson-disk sampling (MPS).

More formally, a sampling X = (xi)
n
i=1, xi 2 ⌦ satis-

fies the inhibition or empty disk property if

8i < j n, |xi � xj | � r. (1)

The set of uncovered points is defined to be

S(X) = {y 2 ⌦ : |y� xi| � r, i = 1..n}. (2)

A sampling X is maximal if S(X) is empty:

S(X) = ;. (3)

Given a non-maximal sampling, the next sample is bias-
free if the probability of selecting it from any uncovered
subregion is proportional to the subregion’s area, i.e.,

8A ⇢ S(X) : P (xn+1 2 A | X) =
|A|

|S(X)| . (4)

⇤Sandia National Laboratories, samitch@sandia.gov
†Institute for Computational Engineering and Sciences, The

University of Texas at Austin
‡Sandia National Laboratories
§Dept. of Computer Science and Institute for Computational

Engineering and Sciences, The University of Texas at Austin

We generalize these equations: decoupling the radii
in the empty disk and uncovered equations; scaling the
radii for a hierarchy of denser samplings; and varying
the radii spatially by a sizing function.

The purpose of this short paper is to introduce these
generalizations in a mathematically consistent way. Ex-
amples illustrate the properties of the resulting out-
put distributions. For simplicity our language is two-
dimensional, e.g. “disks” instead of “spheres,” but the
definitions are general dimensional. Also for simplicity,
we consider only periodic (or free-boundary) domains.
These domains are used in some applications: computer
graphics texture synthesis and mesh generation of ma-
terial grains.

2 Motivation and Previous Work

An MPS sampling is a separated-yet-dense point set:
points are not too close together and lie throughout the
entire domain. This is an e�cient way to distribute a
fixed budget of points.

In mesh generation, separated-yet-dense points yield
Delaunay triangulations (DT) with provable quality
bounds [4, 9, 19]. Delaunay Refinement (DR) [20] in-
troduces points to improve DT triangle quality and a
separated-yet-dense point set follows. Variations of DR
provide adaptivity and sizing control [16]. DR is usu-
ally deterministic; although regions of acceptable points
have been characterized [12, 13], and one may select
from regions randomly to improve tetrahedron qual-
ity [5], randomized point positions are not a traditional
requirement. However, random meshes are of indepen-
dent interest for certain applications; e.g. in some frac-
ture mechanics methods, cracks propagate only along
mesh edges. Meshes from MPS produce more physically
realistic cracks [1, 2, 8, 7]. Ensembles of MPS meshes
can model natural material strength variations.

In a sphere packing no two disks overlap. If the disk
radii satisfy a Lipschitz condition then a quality mesh
results [19]. As in MPS and in reverse to DR, algo-
rithms add disks until the packing is (nearly) maximal,
and a good-quality DT follows. A fixed-r MPS sam-
pling is a sphere packing: halve the disk radius r so no
disks overlap. We define four new spatial variations for
MPS, however none are equivalent to maximal sphere
packings. Conflicts are defined by disks containing each
other’s centers; for unequal radii this is not equivalent
to non-overlapping 1/2-radii disks. Also, we achieve a

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

185

24th Canadian Conference on Computational Geometry, 2012

maximal distribution following a characterized statisti-
cal process.

MPS is popular for computer graphics [15] for tex-
ture synthesis because the distribution avoids repeating
patterns of distances between points which produce vis-
ible artifacts. Fixed radius disks are traditional, but not
suitable in all situations.

In real-time games and data exploration [17] with
level-of-detail adaptivity, renderings use a finer sam-
pling as the camera zooms in. Switching between dis-
crete sets of samples is common, but has the potential
to introduce visible artifacts or scene jumps [23]. Our
definitions enable smoothly increasing density in time.
Spatially varying samplings are useful for objects with
varying curvature and lighting [3, 14]. Curvature and
solution gradients motivate spatially-varying finite ele-
ment meshes, and incremental adaptivity is preferred
over mesh replacement.

Varying density sampling is popular in Graphics but
often the algorithms are heuristic, and the requirements
not well understood. This paper seeks to provide some
formal guidance. For example, the spatially-varying
sampling algorithm of Bowers et al. [3] uses a datas-
tructure that holds all the nearby points whose Poisson-
disks might conflict with a new point. This datastruc-
ture sometimes overflows in practice. We show that this
is the fault of the input and not their algorithm: the
bigger-disks criteria in Section 5 shows that a sizing
function with Lipschitz constant L < 1/2 is necessary
to bound the number of nearby points.

Classic dart throwing [6] generates samples and re-
jects those inside prior disks. The probability of gener-
ating an acceptable sample becomes vanishingly small,
so maximality is not reached. After many rejected sam-
ples McCool and Flume [18] reduce the radii of disks,
either locally or globally, to make room for more sam-
ples. An adaptive MPS variation [23] for deforming
point clouds coarsens to remove points that are too
close together, and refines to re-achieve maximality. For
coarsening the disk-free and maximal criteria hold ap-
proximately, subject to a tolerance band. In Section 3
we e↵ectively tune this tolerance band by the ratio of
the two radii, and scale the radii continuously in Sec-
tion 4.

3 Di↵erent inhibition and coverage radii

Here we relax the condition that the coverage and in-
hibition radii are equal. We focus on a particular re-
laxation that proves useful for generating hierarchical
point sets, and flatter FFT radial power spectra.

Let Rf Rc denote the inhibition and coverage radii,
respectively. The empty disk property is

8i < j n, |xi � xj | � Rf . (5)

The set of free points is defined to be

S(X) = {y 2 ⌦ : |y� xi| � Rf , i = 1..n}. (6)

The set of uncovered points is defined to be

U(X) = {y 2 ⌦ : |y� xi| � Rc, i = 1..n}. (7)

The sampling is maximal if U(X) is empty,

U(X) = ;. (8)

For this variation to be useful and di↵erent than the
single radius case, we sample from S, but restrict to
points that are close enough to U to reduce it:

T (X) = S(X) \ {U(X) + Rc}. (9)

The bias-free process selects from T (X) uniformly.

This variation is useful to add randomness to ini-
tial and continuously parameterized hierarchical sam-
ples. Samplings will likely have points that could be
removed and still meet the coverage condition (Equa-
tion 8). There are more extra points the smaller Rf is
compared to Rc. This process provides samplings that
are less uniform, i.e., with greater variation in inter-
sample distances, than classical MPS. In particular, as
the ratio of inhibition and coverage radii grows, the rings
in the FFT spectrum of the output are reduced. For a
modest ratio, Rc/Rf = 2, the radial power oscillations
are barely perceptible: the resulting FFT spectrum is
much closer to a uniform-random distribution, except
for the low frequency component. See Figures 4–10 for
examples.

3.1 Edge Length and DT Angle Bounds

We consider a Delaunay triangulation (DT) of our point
cloud. The inhibition radius bounds the shortest edge
length. The coverage radius bounds the largest empty
Delaunay circumcircle. The longest edge length is at
most the diameter of that circle. To summarize:

Proposition 1 |e| 2 [Rf , 2R] and R Rc, where R is
the radius of a Delaunay circumcircle.

The Central Angle Theorem provides a relation be-
tween the smallest angle ↵, the shortest edge length |e|,
and the circumradius R of a triangle. (This has been
used to provide quality bounds for separated-yet-dense
points since DR’s inception [4].)

Proposition 2 sin↵ � |e|/2R.

For example, in a DT of a point set with Rc = Rf ,
we have ↵ > 30�. If Rc = 2Rf , then ↵ > 14.4�.

24th Canadian Conference on Computational Geometry, 2012

186

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

4 Hierarchical Sampling

4.1 Parameterized radii

Consider a maximal sampling, from either a single disk
radius or di↵erent inhibition and coverage radii. We
scale these radii by t; e.g., t could be time. For t 2 (0, 1]
we have rf (t) = tRf and rc(t) = tRc.

x1

x3
x2

x4

u

(a) rc ⇡ rf

x1

x2

x3

x5

x4

x6

x9

x7

X8

u

(b) rc ⌧ rf .

Figure 1: Possible T shapes for two radii when t is re-
duced to uncover a single point u = U . The circumcircle
of 4x1x2x3 has center u and radius rc. T is the part of
this circumcircle outside the light rf disks at xi.

4.2 Continuous Decrease Refinement

Consider decreasing t continuously from 1 to 0. The
sampling becomes non-maximal for some t⇤ when
U(X) 6= ;; recall Equation 8. To simplify the discussion
assume distinct Delaunay circumradii so the largest one
is unique; then at t⇤ we have that U(X) grows by a
single point, a single Voronoi vertex u. A new sample
is needed. If rf = rc then there is only one place to
put the sample, at u, so the process is deterministic.
Otherwise, we insert a random point from the set T of
free points which will reduce the size of the uncovered
set. See Figure 1 for example T shapes. E�ciently se-
lecting a new sample can be done by sampling from a
geometric outer approximation to T and resampling if
necessary [10, 11].

In 2d periodic or infinite domains, we observe that u
is the circumcenter of a non-obtuse triangle, which lies
inside it. For obtuse triangles, the Delaunay triangle
sharing its longest edge has a larger circumsphere, so
its center would be uncovered for a smaller t.

DR can be implemented with a priority queue, pri-
oritizing the circumcenters of Delaunay triangles by de-
creasing radii. A new sample creates new triangles and
destroys some old ones, so the queue must be updated.
This is essentially the generic Delaunay refinement al-
gorithm with a largest-first queue priority for inserting
circumcenters. DR makes no restrictions on the circum-
center insertion order, and the Triangle code [22] takes
the opposite approach: processing the smallest triangles
first. The main di↵erence is that when an event occurs,

we insert a nearby random point, but DR inserts the
point itself (or an o↵-center, etc.).

4.3 Discrete Decrease Refinement

Consider decreasing t in discrete jumps. For a new value
of t, the sampling may be non-maximal, and the same
algorithm that generated the initial sampling can be
continued to achieve maximality. Figure 2 shows com-
pleting a sampling after a jump. Some new samples are
inside the light covered region, but, nonetheless, each of
their rc disks reduced the white uncovered area when it
was introduced.

(a) t = 0.8 end (b) t = 0.6 start (c) t = 0.6 end

Figure 2: A step in a discrete hierarchy of samplings.

5 Spatially Varying Radii

We aim to produce spatially varying point density ac-
cording to a sizing function r(x) : ⌦ ! (0,1). A sam-
ple satisfies the empty disk property, vs. (1), if

8i < j n, |xi � xj | � f(xi,xj), (10)

and the set of uncovered points, vs. (2), is

S(X) = {y 2 ⌦ : |y� xi| � f(xi,y), i = 1..n}. (11)

Here f(xi,y) is a function of r(·) evaluated at a previ-
ously accepted sample xi and a later candidate sample
y. A candidate is accepted if |x � y| � f(x,y) 8x 2 X
so far. We have four variations:

f(x,y) := r(x) Prior-disks,

f(x,y) := r(y) Current-disks,

f(x,y) := max (r(x), r(y)) Bigger-disks,

f(x,y) := min (r(x), r(y)) Smaller-disks.

(Sphere packings use a sum-of-disks sizing function,
f(x,y) = r(x) + r(y).) The f are equivalent for a fixed
radius r, but are all distinct for spatially-varying r.
Each approach has certain advantages in terms of sim-
plicity, output size, DT quality, and how quickly the
sizing function may vary. See Table 1 for a summary,
below for proofs for one case, and the extended version
of this paper for the other cases.

A variation of Ebeida et al. [10] can e�ciently produce
a maximal sampling using a flat-quadtree to capture

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

187

24th Canadian Conference on Computational Geometry, 2012

Distance Order Full Conflict Edge Edge Sin Angle Max
Method Function Independent Coverage Free Min Max Min L

Prior r(x) no no no 1/(1 + L) 2/(1� 2L) (1� 2L)/2 1/2
Current r(y) no no no 1/(1 + L) 2/(1� L) (1� L)/2 1
Bigger max (r(x), r(y)) yes no yes 1 2/(1� 2L) (1� 2L)/2 1/2
Smaller min (r(x), r(y)) yes yes no 1/(1 + L) 2/(1� L) (1� L)/2 1

Table 1: Summary of results for spatially varying radii. Points closer than f conflict. Symmetric f provide order
independence: any sampling with the order of samples permuted still satisfies the empty disk property. Full
coverage means that every point of the domain is inside some sample’s r disk. Conflict free means that no sample
is inside another sample’s r disk. Edge max and min bound the lengths of an edge containing x in a Delaunay
triangulation of X, as a factor of r(x). The Lipschitz constant must be less than max L to bound the maximum
DT edge length and minimum DT angle.

the uncovered area. Implementing the conflict condition
and coverage checks is simpler for some variations.

There is a limit to how quickly r(·) is allowed to vary.
We require that r is L-Lipschitz, i.e., for all x,y 2 ⌦,
|r(x)� r(y)| L |x� y| for some constant L. The
lengths of DT edges at x depend not only on r(x) but
also on r(y), which can be bounded using L. Some ap-
proaches require L < 1, others L < 1/2. The quality
guarantees disappear as L approaches the upper limit.
As L approaches zero the quality guarantees smoothly
approach those in the uniform case.

Bias-free An alternative to uniform-random is to
weight the uncovered set by the local sizing function,
i.e., the desired output density. In dimension d,

w(S) =

Z

S

1

r(x)d
dx, and

8A ⇢ S(X) : P (xn+1 2 A | X) =
w(A)

w(S(X))
. (12)

While we have not implemented it, one could approx-
imate Equation 12 from values at quadtree corners.

Prior-disk Output Guarantees We justify the edge-
length and angle guarantees in Table 1 for prior-disks.
The proofs for the other criteria are similar and are
given in the extended version of this paper.

Proposition 3 If X satisfies the empty disk property,

then for all i,j, |xi � xj | � r(xi)
1+L .

Proof. If i < j, the empty-disk definition implies
|xi � xj | � r(xi). Otherwise,

r(xi) r(xj) + L |xi � xj | |xi � xj | + L |xi � xj |
by the Lipschitz property and the fact that xi satisfies
the empty-disk property when it is inserted. ⇤

Proposition 4 If X is maximal and T is a result-
ing Delaunay triangle, then the circumradius RT
min

⇣
r(y)
1�L , r(x)

1�2L

⌘
where y is the circumcenter and x is

any triangle vertex.

x

y

< r(y)

z

< r(z)

Figure 3: Notation for proofs
of circumradii bounds in the
Delaunay triangulation of a
maximal sampling.

Proof. Since X is maximal, |z� y| r(z) for some
sample z 2 X, where z is not required to be a vertex of
T ; see Figure 3. The Lipschitz property gives

|z� y| r(z) r(y) + L |z� y| .
Rearranging gives RT |z� y| r(y)

1�L . Applying the
Lipschitz property again gives,

RT = |x� y| |z� y| r(y)

1� L
 r(x) + L |x� y|

1� L
.

Rearranging again completes the proof. ⇤

Corollary 5 If X is maximal, |xi � xj | 2r(xi)
1�2L .

Lemma 6 Suppose X is a maximal sample satisfying
the empty disk property. Then all the angles in the De-
launay triangulation are at least arcsin

�
1�2L

2

�
.

Proof. Let ↵ be an angle in the Delaunay triangula-
tion of X and let x be the vertex on the edge oppo-
site of ↵ which was inserted first. This opposite edge
has length at least r(x). Propositions 2 and 4 give

sin↵ � r(x)
2r(x)/(1�2L) = 1�2L

2 . ⇤

6 Experimental Results

We consider the spectra of distributions generated with
the di↵erent methods, but similar coverage/inhibition
radii. Spectra are analyzed using the Point Set Anal-
ysis [21] tool, which generates standardized diagrams,
aiding direct comparison. The first panel is the point
set. The second panel is the FFT spectrum of the point
set with the DC component removed. The third panel

24th Canadian Conference on Computational Geometry, 2012

188

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

is the radial mean power, which measures the average
variation of the second panel’s rings’ magnitudes.

Figure 4 is for uniform MPS. In the FFT spectrum
we see the typical dark central disk surrounded by al-
ternating light and dark rings decreasing in magnitude.
Figures 5 and 8 show the PSA results for point clouds
generated using di↵erent inhibition and coverage radii.
The FFT ringing artifacts are dramatically reduced, as
is the size of the central disk. Comparing Figures 4
& 5 to 6 & 7 shows that there is little di↵erence in the
spectra whether a sampling is generated in a discrete hi-
erarchy over t or directly. Using a large coverage radius
yields significantly fewer samples, as seen in Figures 8
and 9.

Figure 11 shows sampling results using the same
pseudo-random number sequence over all four spatially
varying radii strategies. The experimental results match
the theory: the smaller-disk construction yields a larger
minimum angle. Figure 12 shows our resampling of a
stippled image [14, 24].

7 Conclusions

We provide simple definitions for separated-yet-dense
random samplings, which are amenable to simple algo-
rithms for generating provable quality point sets and
meshes. Intermediate triangulations and Delaunay cir-
cumspheres are not needed. Of our spatial variations,
the smaller-disks approach has the weakest require-
ments and provides the best quality, but generates the
most points. The prior-disks method is the easiest to
implement, as it is a minor change to existing MPS al-
gorithms. However, it has the most restrictions on the
input and provides the weakest output guarantees.

Acknowledgements

Sandia National Laboratories is a multi-program labo-
ratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corpora-
tion, for the U.S. Department of Energy’s National Nu-
clear Security Administration under contract DE-AC04-
94AL85000. The research of the authors from Univer-
sity of Texas at Austin was supported in part by NSF
grant CNS-0540033 and NIH grant R01-EB004873.

References

[1] J. Bishop. Simulating the pervasive fracture of materi-
als and structures using randomly close packed Voronoi
tessellations. Comput. Mech., 44:455–471, 2009.

[2] J. E. Bolander and S. Saito. Fracture analyses using
spring networks with random geometry. Eng. Fracture
Mech., 61(5-6):569–591, 1998.

(a) Point Set (b) FFT Spectrum

(c) Radial Power

Figure 4: Uniform MPS with r = 0.01 (6656 points).

Figure 5: Two-radii, rc = 2rf = 0.01 (8566 points).

Figure 6: Final sampling in a ten step discrete hierarchy
terminating with rc = rf = 0.01 (6727 points).

Figure 7: Ten steps to rc = 2rf = 0.01 (8432 points).

Figure 8: Two-radii, rc

2 = rf = 0.01 (2010 points).

Figure 9: Ten steps to rc

2 = rf = 0.01 (2006 points).

Figure 10: Uniform-random sampling (2010 points).

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

189

24th Canadian Conference on Computational Geometry, 2012

(a) prior-disks (b) current-disks (c) bigger-disks (d) smaller-disks

0 10 20 30 40 50 60

0.
0

1.
0

2.
0

3.
0

Minimum Angle (60 bins)

Fr
ac

tio
n

* 6
0

Smaller
Current
Prior
Bigger

(e) angles

Figure 11: Experimental results for spatially varying radii samplings across conflict criteria. Left, sampling the
linear-ramp function, r(x, y) = 0.001 + 0.3x. Right, typical DT angle histograms for an r with L ⇡ 0.37.

Figure 12: A point cloud was scanned, grayscaled,
smoothed for L, then resampled. (Wei, Kopf et al.)

[3] J. Bowers, R. Wang, L.-Y. Wei, and D. Maletz. Par-
allel Poisson disk sampling with spectrum analysis on
surfaces. ACM Trans. Graphics, 29:166:1–166:10, 2010.

[4] L. P. Chew. Guaranteed-quality triangular meshes.
Technical Report 89-983, Department of Computer Sci-
ence, Cornell University, 1989.

[5] L. P. Chew. Guaranteed-quality Delaunay meshing in
3D. In Proc. 13th Symp. Comput. Geom., pages 391–
393, 1997.

[6] R. Cook. Stochastic sampling in computer graphics.
ACM Trans. Graphics, 5(1):51–72, 1986.

[7] M. S. Ebeida, P. M. Knupp, V. J. Leung, J. E. Bishop,
and M. J. Martinez. Mesh generation for modeling and
simulation of carbon sequestration process. In Proc.
DOE Scientific Discovery through Advanced Computing
(SciDAC) conference, July 2011.

[8] M. S. Ebeida and S. A. Mitchell. Uniform random
Voronoi meshes. In Proc. 20th Int. Meshing Roundtable,
pages 258–275, 2011.

[9] M. S. Ebeida, S. A. Mitchell, A. A. Davidson, A. Pat-
ney, P. M. Knupp, and J. D. Owens. E�cient and good
Delaunay meshes from random points. Comput. Aided
Des., 43(11):1506–1515, 2011.

[10] M. S. Ebeida, S. A. Mitchell, A. Patney, A. A. David-
son, and J. D. Owens. A simple algorithm for maxi-
mal Poisson-disk sampling in high dimensions. Comput.
Graphics Forum, 31(2):tbd, 2012.

[11] M. S. Ebeida, A. Patney, S. A. Mitchell, A. David-
son, P. M. Knupp, and J. D. Owens. E�cient max-
imal Poisson-disk sampling. ACM Trans. Graphics,
30(4):49:1–49:12, 2011.

[12] H. Erten and A. Üngör. Quality triangulations with
locally optimal Steiner points. SIAM J. Sci. Comput.,
31:2103, 2009.

[13] P. Foteinos, A. Chernikov, and N. Chrisochoides. Fully
generalized 2D constrained Delaunay mesh refinement.
SIAM J. Sci. Comput., 32:2659–2686, 2010.

[14] J. Kopf, D. Cohen-Or, O. Deussen, and D. Lischinski.
Recursive Wang tiles for real-time blue noise. ACM
Trans. Graphics, 25(3):509–518, 2006.

[15] A. Lagae and P. Dutré. A comparison of methods for
generating Poisson disk distributions. Comput. Graph-
ics Forum, 27(1):114–129, 2008.

[16] X.-Y. Li, S.-H. Teng, and A. Üngör. Simultaneous re-
finement and coarsening: Adaptive meshing with mov-
ing boundaries. In Proc. 7th Int. Meshing Roundtable,
pages 201–210, 1998.

[17] P. Ljung. Adaptive sampling in single pass, GPU-based
raycasting of multiresolution volumes. In Eurographics,
pages 39–46, 2006.

[18] M. McCool and E. Fiume. Hierarchical Poisson disk
sampling distributions. In Graphics Interface, pages
94–105, 1992.

[19] G. L. Miller, D. Talmor, S.-H. Teng, N. J. Walkington,
and H. Wang. Control volume meshes using sphere
packing: Generation, refinement and coarsening. In
Proc. 5th Int. Meshing Roundtable, pages 47–61, 1996.

[20] J. Ruppert. A Delaunay refinement algorithm for
quality 2-dimensional mesh generation. J. Algorithms,
18(3):548–585, 1995.

[21] T. Schlömer. PSA point set analysis. Version 0.2.2,
http://code.google.com/p/psa/, 2011.

[22] J. R. Shewchuk. Delaunay refinement algorithms for tri-
angular mesh generation. Comput. Geom., 22(1–3):86–
95, 2002.

[23] D. Vanderhaeghe, P. Barla, J. Thollot, and F. Sillion.
Dynamic point distribution for stroke-based rendering.
In Rendering Techniques, pages 139–146, 2007.

[24] L.-Y. Wei. Parallel Poisson disk sampling. ACM Trans.
Graphics, 27(3):20:1–20:9, Aug. 2008.

24th Canadian Conference on Computational Geometry, 2012

190

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Cannons at Sparrows∗

Günter M. Ziegler†

The story told in this lecture starts with an innocuous little geometry problem (one that Erdős would have liked),
posed in a September 2006 blog entry by R. Nandakumar, an engineer from Calcutta, India: “Can you cut every
polygon into a prescribed number of convex pieces that have equal area and equal perimeter?” This little problem
is a “sparrow”, tantalizing, not as easy as one could perhaps expect, and Recreational Mathematics: of no practical
use.

I will sketch, however, how this little problem connects to very serious mathematics, including Computational
Geometry: For the modelling of this problem we employ insights from a key area of Applied Mathematics, the
Theory of Optimal Transportation, which leads to weighted Voronoi diagrams with prescribed areas. This will set
up the stage for application of a major tool from Very Pure Mathematics, known as Equivariant Obstruction Theory.
This is a “cannon”, and we’ll have fun with shooting it at the sparrow.

On the way to a solution, combinatorial properties of the permutahedron turn out to be essential. These will, at
the end of the story, lead us back to India, with some time travel 100 years into the past: For the last step in our
(partial) solution of the sparrows problem we need a simple divisibility property for the numbers in Pascal?s triangle,
which was first observed by Balak Ram, in Madras 1909.

But even if the existence problem is solved, the Computational Geometry problem is not: If the solution exists,
how do you find one? This problem will be left to you. Instead, I will comment on the strained relationship between
cannons and sparrows, and to this avail quote a poem by Hans Magnus Enzensberger.

∗Erdős Memorial Lecture
†Freie Universität Berlin

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

191

24th Canadian Conference on Computational Geometry, 2012

192

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

A Note on Interference in Random Networks

Luc Devroye∗ Pat Morin†

Abstract

The (maximum receiver-centric) interference of a geo-
metric graph (von Rickenbach et al. (2005)) is stud-
ied. It is shown that, with high probability, the follow-
ing results hold for a set, V , of n points independently
and uniformly distributed in the unit d-cube, for con-
stant dimension d: (1) there exists a connected graph
with vertex set V that has interference O((log n)1/3);
(2) no connected graph with vertex set V has interfer-
ence o((log n)1/4); and (3) the minimum spanning tree
of V has interference Θ((log n)1/2).

1 Introduction

Von Rickenbach et al. [8, 9] introduce the notion of
(maximum receiver-centric) interference in wireless net-
works and argue that topology-control algorithms for
wireless networks should explicitly take this parame-
ter into account. Indeed, they show that the minimum
spanning tree, which seems a natural choice to reduce
interference, can be very bad; there exists a set of node
locations in which the minimum spanning tree of the
nodes produces a network with maximum interference
that is linear in the number, n, of nodes, but a more
carefully chosen network has constant maximum inter-
ference, independent of n. These results are, however,
worst-case; the set of node locations that achieve this
are very carefully chosen. In particular, the ratio of the
distance between the furthest and closest pair of nodes
is exponential in the number of nodes.

The current paper continues the study of maximum
interference, but in a model that is closer to a typical
case. In particular, we consider what happens when the
nodes are distributed uniformly, and independently, in
the unit square. This distribution assumption can be
used to approximately model the unorganized nature of
ad-hoc networks and is commonly used in simulations
of such networks [10]. Additionally, some types of sen-
sor networks, especially with military applications, are
specifically designed to be deployed by randomly placing
(scattering) them in the deployment area. This distri-
bution assumption models these applications very well.

∗School of Computer Science, McGill University,
lucdevroye@gmail.com
†School of Computer Science, Carleton University,

morin@scs.carleton.ca

Our results show that the maximum interference, in
this case, is very far from the worst-case. In particular,
for points independently and uniformly distributed in
the unit square, the maximum interference of the min-
imum spanning tree grows only like the square root of
the logarithm of the number of nodes. That is, the max-
imum interference is not even logarithmic in the number
of nodes. Furthermore, a more carefully chosen network
topology can reduce the maximum interference further
still, to the cubed root of the logarithm of n.

1.1 The Model

Let V = {x1, . . . , xn} be a set of n points in Rd and let
G = (V,E) be a simple undirected graph with vertex
set V . The graph G defines a set, B(G), of closed balls
B1, . . . , Bn, where Bi has center xi and radius

ri = max{‖xixj‖ : xixj ∈ E} .

(Here, and throughout, ‖xy‖ denotes the Euclidean dis-
tance between points x and y.) In words, Bi is just
large enough to enclose all of xi’s neighbours in G. The
(maximum receiver-centric) interference at a point, x,
is the number of these balls that contain x, i.e.,

I(x,G) = |{B ∈ B(G) : x ∈ B}| .

The (maximum receiver-centric) interference of G is the
maximum interference at any vertex of G, i.e.,

I(G) = max{I(x,G) : x ∈ V } .

Figure 1 shows an example of a geometric graph G and
the balls B(G). Each node, x, is labelled with I(x,G).

One of the goals of network design is to build, given
V , a connected graph G = (V,E) such that I(G) is
minimized. Thus, it is natural to consider interference
as a property of the given point set, V , defined as

I(V) = min{I(G) : G = (V,E) is connected} .

A minimum spanning tree of V is a connected graph,
MST (V), of minimum total edge length. Minimum
spanning trees are a natural choice for low-interference
graphs. The purpose of the current paper is to prove the
following results (here, and throughout, the phrase with
high probability means with probability that approaches
1 as n→∞):

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

193

24th Canadian Conference on Computational Geometry, 2012

2

2

4

5

5

5

2

5

Figure 1: A geometric graph G with I(G) = 5.

Theorem 1. Let V be a set of n points independently
and uniformly distributed in [0, 1]d. With high probabil-
ity,

1. I(MST (V)) ∈ O((log n)1/2);

2. I(V) ∈ O((log n)1/3), for d ∈ {1, 2}; and

3. I(V) ∈ O((log n)1/3(log log n)1/2), for d ≥ 3.

Theorem 2. Let V be a set of n points independently
and uniformly distributed in [0, 1]d. With high probabil-
ity,

1. I(MST (V)) ∈ Ω((log n)1/2)

2. I(V) ∈ Ω((log n)1/4).

1.2 Related Work

This section surveys previous work on the problem of
bounding the interference of worst-case and random
point sets. A summary of the results described in this
section is given in Figure 2. In the statements of all
results in this section, |V | = n.

The definition of interference used in this paper was
introduced by von Rickenbach et al. [8] who proved up-
per and lower bounds on the interference of one dimen-
sional point sets:

Theorem 4 (von Rickenbach et al. 2005). For any d ≥
1, there exists V ⊂ Rd such that I(V) ∈ Ω(n1/2).

The point set, V , in this lower-bound consists of any
sequence of points x1, . . . , xn, all on a line, such that
‖xi+1xi‖ ≤ (1/2)‖xixi−1‖, for all i ∈ {2, . . . , n − 1}.
That is, the gaps between consecutive points decrease
exponentially.

This lower bound is matched by an upper-bound:

Theorem 5 (von Rickenbach et al. 2005). For all V ⊂
R, I(V) ∈ O(n1/2).

The upper bound in Theorem 5 is obtained by select-
ing n1/2 vertices to act as hubs, connecting the hubs into
any connected network and then having each of the re-
maining nodes connect to its nearest hub. This idea was
extended to two and higher dimensions by Halldórsson
and Tokuyama [3], by using a special type of (n−1/2)-net
as the set of hubs:

Theorem 6 (Halldórsson and Tokuyama 2008). For all
V ⊂ Rd,

1. I(V) ∈ O(n1/2) for d = 2; and

2. I(V) ∈ O((n log n)1/2), for d ≥ 3.

Several authors have shown that the interference of a
point set is related to the (logarithm of) the ratio be-
tween the longest and shortest distance defined by the
point set. In particular, different versions of the fol-
lowing theorem have been proven by Halldórsson and
Tokuyama [3]; Khabbazian, Durocher, and Haghnegah-
dar [4]; and Maheshwari, Smid, and Zeh [6]:

Theorem 7 (Halldórsson and Tokuyama 2008; Khab-
bazian, Durocher, and Haghnegahdar 2011; Mahesh-
wari, Smid, and Zeh 2011). For any constant d ≥ 1
and for all V ⊂ Rd, I(V) = O(logD), where D =
max{‖xy‖ : {x, y} ⊆ V }/min{‖xy‖ : {x, y} ⊆ V }.

At least two of the proofs of Theorem 7 proceed by
showing that I(MST (V)) = O(logD). A strengthening
of this theorem is that the numerator in the definition
of D can be replaced with the length of the longest edge
in MST (V) [4, 6].

Theorem 7 suggests that point sets with very high
interference are unlikely to occur in practice. This in-
tuition is born out by the results of Kranakis et al. [5],
who show that high interference is unlikely to occur in
random point sets in one dimension:

Theorem 8 (Kranakis et al. 2010). Let V be a set
of n points independently and uniformly distributed
in [0, 1]. Then, with high probability, I(MST (V)) ∈
Θ((log n)1/2).

Note that, in this one-dimensional case, the minimum
spanning tree, MST (V), is simply a path that connects
the points of V in order, from left to right. Taken to-
gether, Part 1 of Theorems 1 and 2 generalize Theorem 8
to arbitrary constant dimensions d ≥ 1.

In higher dimensions, Khabbazian, Durocher, and
Haghnegahdar [4] use their version of Theorem 7 to
show that minimum spanning trees of random point sets
have at most logarithmic interference.

Theorem 9 (Khabbazian, Durocher, and Haghnegah-
dar 2011). Let V be a set of n points independently and
uniformly distributed in [0, 1]d. Then, with high proba-
bility, I(MST (V)) ∈ O(log n).

24th Canadian Conference on Computational Geometry, 2012

194

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Ref. Dimension Statement

[8] d ≥ 1 there exists V s.t. I(V) ∈ Ω(n1/2)
[8] d = 1 for all V , I(V) ∈ O(n1/2)
[3] d = 2 for all V , I(V) ∈ O(n1/2)
[3] d ≥ 3 for all V , I(V) ∈ O((n log n)1/2)
[5] d = 1 for V i.u.d. in [0, 1], I(MST (V)) ∈ Θ((log n)1/2) w.h.p.
[4] d ≥ 2 for V i.u.d. in [0, 1]d, I(MST (V)) ∈ O(log n) w.h.p.
Here d ≥ 1 for V i.u.d. in [0, 1]d, I(MST (V)) ∈ Θ((log n)1/2) w.h.p.
[5, 8] d = 1 for V i.u.d. in [0, 1], I(V) ∈ Ω((log n)1/4) w.h.p.
Here d ≥ 1 for V i.u.d. in [0, 1]d, I(V) ∈ Ω((log n)1/4) w.h.p.
Here d ∈ {1, 2} for V i.u.d. in [0, 1]d, I(V) ∈ O((log n)1/3) w.h.p.
Here d ≥ 3 for V i.u.d. in [0, 1]d, I(V) ∈ O((log n)1/3(log log n)1/2) w.h.p.

Figure 2: Previous and new results on interference in geometric networks.

Part 1 of Theorem 1 improves the upper bound in
Theorem 9 to O((log n)1/2) and Part 1 of Theorem 2
gives a matching lower bound.

The second parts of Theorems 1 and 2 show that min-
imum spanning trees do not minimize interference, even
for random point sets. For random point sets, one can
construct networks with interference O((log n)1/3) and
the best networks have interference in Ω((log n)1/4).

The remainder of this paper is devoted to proving
Theorems 1 and 2. For ease of exposition, we only
present these proofs for the case d = 2 though they gen-
eralize, in a straightforward way, to arbitrary (constant)
dimensions. Due to space constraints, some proofs are
omitted from this version of the paper. All proofs can
be found in the preprint version [2].

2 Proof of the Upper Bounds (Theorem 1)

In this section, we prove Theorem 1. However, before
we do this, we state a slightly modified version of The-
orem 7 that is needed in our proof.

Lemma 1. Let V ⊂ Rd, let r > 0, and let MST r(V) de-
note the subgraph of MST (V) containing only the edges
whose length is in (r, 2r]. Then I(MST r(V)) ∈ O(1).

Proof. (This proof is similar to the proof of Lemma 3
in Ref. [6].) Let x be any point in Rd and let B the
set of all balls in B(MST r(V)) that contain x so that,
by definition I(x,MST r(V)) = |B|. All the centers of
balls in B are contained in a ball of radius 2r centered
at x. Therefore, a simple packing argument implies that
there exists a ball, b, of radius r/2 that contains at least
|B|/5d centers of balls in B. (5d is the volume of a ball
of radius 5r/2 divided by the volume of a ball of radius
r/2.) The center of each of these ball is the endpoint
of an edge of length at most 2r. The other endpoints
of these edges are all contained in a ball of radius 5r/2
centered around b. The same packing argument shows

that we can find a ball of radius r/2 that contains at
least |B|/(5 · 6)d of these other endpoints.

We claim that this implies that |B|/30d < 2 (so |B| <
2 · 30d). Otherwise, MST (V) contains two edges, xixj
and xkx`, each of length greater than r and such that
‖xixk‖ ≤ r and ‖xjx`‖ ≤ r. But this contradicts the
minimality of MST (V), since one could replace xixj
with one of xixk or xjx` and obtain a spanning tree
of smaller total edge length. We conclude that |Si| <
2 · 30d, and this completes the proof.

Note that Lemma 1 implies Theorem 7, since it im-
plies that we can partition the edges of MST (V) into
dlog2De classes, based on length, and each class will
contain only a constant number of edges.

We are ready to prove Parts 2 and 3 of Theorem 1.
The sketch of the proof is as follows: We partition [0, 1]d

into equal cubes of volume 1/nt, for some parameter t
to be chosen later. Using Chernoff’s bounds, we show
that each cube contains O((log n)2/3) points so that the
points within each cube can be connected, using the
results of Halldórsson and Tokuyama, with maximum
interference O((log n)1/3). Next, the cubes are con-
nected to other cubes by selecting one point in each
cube and connecting these selected points with a mini-
mum spanning tree. Lemma 1 is then used to show that
this minimum spanning tree has maximum interference
O((log n)1/3). Without further ado, we present:

Proof of Theorem 1, Parts 2 and 3. Partition [0, 1]2

into square cells of area 1/nt for some value t to be
specified later. Let Ni denote the number of points
that are contained in the ith cell. Then Ni is binomial
with mean µ = 1/t. Recall Chernoff’s Bounds [1] on
the tails of binomial random variables:

Pr{Ni ≥ (1 + δ)µ} ≤
(

eδ

(1 + δ)1+δ

)µ
.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

195

24th Canadian Conference on Computational Geometry, 2012

In our setting, we have,

Pr{Ni ≥ k} = Pr{Ni ≥ ktµ}

≤
(

ekt

(kt)kt

)1/t

=
ek

(kt)k

≤ 1

tk
for k ≥ e

≤ 1

nc+2
,

for t = 2(logn)
1/3

and k = (c+ 2)(log n)2/3.
Note that the number of cells is no more than nt ≤ n2,

for sufficiently large n. Therefore, by the union bound,
the probability that there exists any cell containing
more than k points is at most n−c.

Within each non-empty cell, we apply Theorem 6 to
connect the vertices in the ith cell into a connected
graph Gi with I(Gi) = O(

√
Ni).

1 In fact, a some-
what stronger result holds, namely that max{I(x,Gi) :
x ∈ R2} = O(

√
Ni). Notice that each edge in Gi has

length at most
√

2/nt. Stated another way, in
⋃
iGi,

any point, x, receives interference only from cells within
distance

√
2/nt of the cell containing x. There are only

25 such cells, so

max

{
I

(
x,
⋃

i

Gi

)
: x ∈ R2

}
= O(

√
k) = O((log n)1/3)

with high probability.
Thus far, the points within each cell are connected

to each other and the maximum interference, over all
points in R2, is O(

√
k). To connect the cells to each

other, we select one point from each non-empty cell
and connect these using a minimum spanning tree, T .
What remains is to show that the additional interfer-
ence caused by the addition of the edges in T does not
exceed O((log n)1/3).

Suppose that I(x, T) = r, for some point x ∈ R2.
There are at most 9 vertices in T whose distance to x
is less than 1/

√
nt. Therefore, by Lemma 1, T must

contain an edge of length at least c2r/
√
nt, for some

constant c > 1.
A well-known property of minimum spanning trees is

that, for any edge xixj in T , the open ball with diame-
ter xixj does not contain any vertices of T . In our set-
ting, this means that there is an open ball, B, of radius
c2r/2

√
nt such that every cell contained in B contains

no point of V . Inside of B is another empty ball B′

of radius c2r/(2
√
nt) −

√
2/nt whose center is also the

center of some cell.

1This is where the discrepancy between Parts 2 and 3 of the
theorem occurs. For d ≥ 3, Theorem 6 only guarantees I(Gi) =
O(
√
Ni logNi).

At least one quarter of the area of B′ is contained in
[0, 1]2, so the number of cells completely contained in
B′ is at least πc222r/16 − O(2r/

√
nt). By decreasing c

slightly, and only considering r larger than a sufficiently
large constant, r0, we can simplify this number of cells
to πc2r/16.

For a fixed ball B′, the probability that the cπ22r/16
cells defined by B′ are empty of points in V is at most

p ≤ (1− cπ22r/16nt)n

≤ exp(−cπ22r/16t)

≤ 1/n2+c
′
,

for r ≥ log(16/cπ) + log t + log(2 + c′) + log lnn. By
the union bound, the probability that there exists any
such B′ is at most pnt ≤ 1/nc

′
. Since we can choose

r ∈ O(log t + log logn) = O((log n)1/3), this completes
the proof.

The proof of Part 1 of Theorem 1 is just a matter of
reusing the ideas from the previous proof of Parts 2 and
3.

Proof of Theorem 1, Part 1. Let x be any point in R2.
We partition the balls in B(MST (V)) that contain x
into three sets:

1. the set B0 of balls having area at most 1/nt;

2. the set B1 of balls having area in the range
[1/nt, (c log n)/n]; and

3. the set B2 of balls having area greater than
(c log n)/n.

In this proof, the parameter t = 2(logn)
1/2

.
The set B0 consists of points contained in a ball

of area 1/nt centered at x. Exactly the same argu-
ment used in the first part of the previous proof shows
that, with high probability, every such ball contains
O((log n)1/2) points, so

|B0| ∈ O((log n)1/2) .

The set B1 consists of balls whose radii are in the
range [

√
1/πnt,

√
(c log n)/πn]. Lemma 1 shows that

the number of these balls is

|B1| ∈ O
(

log

(√
(c log n)/πn√

1/πnt

))

= O(log log n+ log t)

= O((log n)1/2) .

Finally, any edge in the set B2 implies the existence
of an empty ball, with center in [0, 1]2, having area
c log n/n. The second part of the previous proof shows
that the probability that such a ball exists is O(n−c).
Therefore, with high probability,

|B2| = 0 .

24th Canadian Conference on Computational Geometry, 2012

196

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

u(3i+1 − 3i − 2)

D0 Di Di+1

u3i + 2u

x0
xi

xi+1

Figure 4: The ball centered at xi that contains xi+1 also
contains x0.

3 Proof of The Lower Bounds (Theorem 2)

In this section, we prove the lower bounds in Theorem 2.
We define a Zeno configuration as follows (see Figure 3):
A Zeno configuration of size k, centered at a point, x, is
defined by a set of k + 1 balls. The construction starts
with disjoint balls D0, . . . , Dk−1, each having radius u.
The ball D0 is centered at x. The center of Di, i ∈
{1, . . . , k− 1} is at x+ (u3i, 0). A final large ball, D, of
radius r = u3k is centered at x and contains all other
balls. A Zeno configuration occurs at location x in a
point set V when D contains exactly k points of V and
these occur with exactly one point in each ball Di.

The following lemma shows that a Zeno configuration
in V causes high interference in MST (V).

Lemma 2. If V contains a Zeno configuration of size
k, I(MST (V)) ≥ k − 1.

Proof. Let xi, i ∈ {0, . . . , k − 1}, denote the point of V
contained in Di. Note that, for i ∈ {1, . . . , k − 1} the
closest point to xi in V is xi−1. Since MST (V) contains
the nearest-neighbour graph, this implies that MST (V)
contains the edges xixi+1 for all i ∈ {0, . . . , k − 2}. See
Figure 4 for what follows. We claim that, for all i ∈
{0, . . . , k − 2}, the ball Bi centered at xi that contains
xi+1 also contains x0. This is clearly true for i = 0 and
i = 1. Next, note that

‖xix0‖ ≤ u(3i + 2) .

On the other hand, for i ≥ 2,

‖xixi+1‖ ≥ u(3i+1−3i−2) = 2u3i−2u ≥ u(3i+7) > ‖xix0‖ .

Therefore, I(x0,MST (V)) ≥ k − 1.

The next lemma shows that a Zeno configuration
causes high interference on any connected graph on ver-
tex set V .

Lemma 3. If V contains a Zeno configuration of size
k, then I(V) ≥

√
k − 1.

Proof. Let G be any connected graph on V . Using the
same notation as in the proof of Lemma 2, call a ver-
tex, xi, a big one if xi is adjacent to any vertex xj ,

with j > i, or xi is adjacent to any vertex x not in
D. The proof of Lemma 2 shows that every big one
contributes to the interference at x0. Therefore, if the
Zeno configuration contains

√
k − 1 or more big ones,

then I(x0, G) ≥
√
k − 1 and there is nothing left to

prove. Otherwise, note that each of x0, . . . , xk−2 is ei-
ther a big one or adjacent to a big one. Therefore, there
must be a big one, xi, with degree at least

√
k − 1− 1,

so I(xi, G) ≥
√
k − 1.

To prove Theorem 2, all that remains is to show a
Zeno configuration of size Ω((log n)1/2) occurs in V with
high probability. We omit this proof due to space con-
straints.

4 Discussion

Summary. This paper gives new bounds on the maxi-
mum interference for graphs defined by points randomly
distributed [0, 1]d. Minimum spanning trees have inter-
ference Θ((log n)1/2), but better graphs exist; a strat-
egy based on bucketing yields a graph with interference
O((log n)1/3). No graph on such a point set has inter-
ference o((log n)1/4).

Open Problem. An obvious open problem is that
of closing the gap between the upper bound of
O((log n)1/3) and the lower bound of Ω((log n)1/4. One
strategy to achieve this would be to prove the following
conjecture, which has nothing to do with probability
theory:

Conjecture 1. For any V ⊂ Rd, I(V) =
O(
√
I(MST (V))).

A weaker version of this conjecture is due to
Halldórsson and Tokuyama [3], who conjecture that
I(V) = O(

√
logD) where D is the ratio of the lengths

of the longest and the shortest edges of MST (V).

Unit Disk Graphs. Several of the references consider
interference in the unit disk graph model, in which the
graph G is constrained to use edges of maximum length
r(n). It is straightforward to verify that all of the
proofs in this paper continue to hold in this model,
when r(n) ∈ Ω(

√
(log n)/n). This is not an unreason-

able condition; for i.u.d. points in [0, 1]d, it is known
that r(n) ∈ Ω(

√
(log n)/n) is a necessary condition to

be able to form a connected graph G [7].

Locally Computable Graphs. Khabbazian, Durocher,
and Haghnegahdar [4] give a local algorithm, called Lo-
calRadiusReduction, that is run at the nodes of a
communication graph, G = (V,E), and that reduces the
number of edges of G. The resulting graph G′ comes
from a class of graphs that they denote as T (V). The

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

197

24th Canadian Conference on Computational Geometry, 2012

D0 D1 D2

. . .

0 u3 u32 u3k−1

D2

. . .

u3k

D

. . .

−u3k

Figure 3: A Zeno configuration of size k.

class T (V) includes the minimum spanning tree of V
and the graphs in this class share many of the same
properties as the minimum spanning tree. In particu-
lar, the following result can be obtained by using the
proof of Theorem 1 Part 1 and properties of the family
T (V) [4, Theorem 3].

Theorem 3. Let V be a set of n independently and uni-
formly distributed points in [0, 1]d and let G be any graph
in T (V). With high probability, I(G) = O((log n)1/2 +
log(`

√
n)), where ` is the length of the longest edge in

G.

In particular, Theorem 3 implies that running the Lo-
calRadiusReduction algorithm at the nodes of a unit
disk graph with unit r(n) ∈ O(2

√
logn/

√
n) yields a con-

nected graph with maximum interference O((log n)1/2).

Acknowledgement

The research in this paper was started at the work-
shop on Models of Sparse Graphs and Network Algo-
rithms (12w5004), hosted at the Banff International
Research Station (BIRS), February 5–10, 2012. The
authors are grateful to the other workshop organizers,
Nicolas Broutin and Gábor Lugosi, the other partici-
pants, and the staff at BIRS, for providing a stimulating
research environment.

References

[1] H. Chernoff. A measure of the asymptotic efficient
of tests of a hypothesis based on the sum of obser-
vations. Annals of Mathematical Statistics, 23:493–
507, 1952.

[2] L. Devroye and P. Morin. A note on interference
in random networks. CoRR, abs/1202.5945, 2012.

[3] M. M. Halldórsson and T. Tokuyama. Minimizing
interference of a wireless ad-hoc network in a plane.
Theoretical Computer Science, 402(1):29–42, 2008.

[4] M. Khabbazian, S. Durocher, and A. Haghnegah-
dar. Bounding interference in wireless ad hoc net-
works with nodes in random position. CoRR,
abs/1111.6689, 2011.

[5] E. Kranakis, D. Krizanc, P. Morin, L. Narayanan,
and L. Stacho. A tight bound on the maximum in-
terference of random sensors in the highway model.
CoRR, abs/1007.2120, 2010.

[6] A. Maheshwari, M. Smid, and N. Zeh. Low-
interference networks in metric spaces with
bounded doubling dimension. Information Process-
ing Letters, 111(23–24):1120–1123, 2011.

[7] M. D. Penrose. The longest edge of the random
minimal spanning tree. The Annals of Applied
Probability, 7(2):340–361, 1997.

[8] P. von Rickenbach, S. Schmid, R. Wattenhofer, and
A. Zollinger. A robust interference model for wire-
less ad-hoc networks. In IPDPS. IEEE Computer
Society, 2005.

[9] P. von Rickenbach, R. Wattenhofer, and
A. Zollinger. Algorithmic models of interference in
wireless ad hoc and sensor networks. IEEE/ACM
Transactions on Networking, 17(1):172–185, 2009.

[10] G. Mao X. Ta and B. D. O. Anderson. On the
phase transition width of K-connectivity in wire-
less multi-hop networks. IEEE Transactions on
Mobile Computing, 8(7):936–949, 2009. To appear.

24th Canadian Conference on Computational Geometry, 2012

198

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

On Farthest-Point Information in Networks∗

Prosenjit Bose† Jean-Lou De Carufel† Carsten Grimm†‡ Anil Maheshwari† Michiel Smid†

Abstract

Consider the continuum of points along the edges of a
network, an embedded undirected graph with positive
edge weights. Distance between these points can be
measured as shortest path distance along the edges of
the network. We introduce two new concepts to capture
farthest-point information in this metric space. The
first, eccentricity diagrams, are used to encode the dis-
tance towards farthest points for any point on the net-
work compactly. With this, we can solve the minimum
eccentricity feed-link problem, i.e., the problem to ex-
tend a network by one new point minimizing the largest
network distance towards the new point. The second,
network farthest-point diagrams, provide an implicit
description of the sets of farthest points. A network
farthest-point diagram is, in principle, a compressed
farthest-point network Voronoi link diagram generated
by the entire continuum of uncountably many points
on the network at hand. We provide construction al-
gorithms for data structures that allow for queries for
the distance to farthest points as well as their location
from any point on a network in optimal time. Thus, we
establish first bounds on construction times and storage
requirements of such data structures.

1 Introduction

The topic of this article was inspired by the follow-
ing network extension problem introduced by Aronov
et. al. [2]. We are given a network of roads and the
position of a site, e.g., a hospital, that is not on the net-
work, yet. The site needs to be connected to the existing
roads with a new one, referred to as a feed-link. Aronov
et. al. [2] seek a feed-link that minimizes the largest ra-
tio between the distance to the site via the roads versus
the Euclidean distance from any location on the roads.
This ratio signifies the largest detour one may take to
the site by traveling along the roads as opposed to fly-
ing directly to it. When this detour, also referred to
as dilation, is minimized, the distances via the network

∗Research supported in part by FQRNT and NSERC.
†School of Computer Science, Carleton University,

jit@scs.carleton.ca, jdecaruf@cg.scs.carleton.ca,

carsten.grimm@ovgu.de, anil@scs.carleton.ca,

michiel@scs.carleton.ca
‡Institut für Simulation und Graphik, Fakultät für Informatik,

Otto-von-Guericke-Universität Magdeburg

resemble the straight line distances as best as possible.
An illustration is shown in Figure 1. Grüne [7] provides
a summary of dilation and its properties. Notice that
all positions on the network are taken into account to
evaluate a feed-link and that the feed-link might be con-
nected to any location along the roads. In this sense the
dilation is a generalization of the stretch factor [11].

p

r
C

q

Figure 1: A polygonal cycle C with a point p in it that
is connected to C via a feed-link at q. The dilation of
point r on the cycle is the ratio between the highlighted
path (orange) via the roads to p versus the Euclidean
distance between p and r (blue, dotted).

Depending on the application at hand, one might con-
sider other measures. For instance, if the site is a hospi-
tal, one might seek to optimize emergency unit response
times [5]. Assume an accident occurs along any of the
roads, then it is desirable to ensure that the time an
emergency crew needs to drive from the hospital to the
accident is as small as possible or below a certain critical
threshold. Therefore, we seek to minimize the largest
road-wise distance to the hospital. The set of farthest
locations from the site is precisely the same as that for
the meeting point of the feed-link with an existing road.
Hence, determining how the set of farthest points and
the road-wise distances to them change along the exist-
ing roads turns out to be helpful to solve this variant of
the feed-link problem.

In this article, we will solve the latter for arbitrary
networks of roads using novel data structures that sup-
port queries for farthest-point information.

1.1 Problem Definition

A network is a straight-line embedding of a simple,
finite, connected, and undirected graph G = (V,E),
where V is a set of points in R2, and E is a set of
segments whose endpoints are in V . Each edge e has
a positive weight we > 0. A point p ∈ R2 is on G,
denoted by p ∈ G, if p is on some edge of G. A

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

199

24th Canadian Conference on Computational Geometry, 2012

point p on an edge uv ∈ E subdivides uv such that
|up| = λ |uv| and |pv| = (1− λ) |uv| for some λ ∈ [0, 1].
We choose the weights of the resulting sub-edges up and
pv according to the fraction λ, viz., wup := λwuv and
wpv := (1 − λ)wuv. A point can only be on one edge.
Thus, if a point happens to lie on the proper intersec-
tion of two edges, the point can only be associated with
one edge. Consider the weighted shortest path distance
dG : V ×V → [0,∞) between vertices of G with respect
to the edge weights we, e ∈ E. This can be extended to
arbitrary points p and q on G by considering them to be
vertices for the sake of evaluating dG(p, q) [2, 7]. We re-
fer to this as the network distance on G. The following
definition generalizes a term that is usually introduced
with respect to distances between vertices [9, pp. 35–36].

Definition 1 (Eccentricity) Let G be a network (re-
fer to Figure 2). For a point p on G, the largest network
distance towards p is the eccentricity of p with respect
to G and it is denoted by eccG(p), i.e.,

eccG(p) := max
q∈G

dG(p, q).

The point q on G is eccentric to p if it is a farthest
point from p with respect to the network distance, i.e.,
if dG(p, q) = eccG(p)1.

4

2
1

2
√

2
2

(a) A network G.

p p̄

(b) A point p on G and a
point p̄ eccentric to p.

Figure 2: A network G (a) with edge weights as indi-
cated. A point p with its non-vertex eccentric point p̄
is shown (b). Here we have ecc(p) = 10 + 4

√
2 achieved

on the highlighted path (black).

Our goal is to design algorithms and data structures
for a given network G in order to answer the following
types of queries. For any point p on G.

1. What is the eccentricity of p?

2. Which points on G are farthest from p with respect
to the network distance?

3. Let uv be an edge such that p ∈ uv. Which points
r on uv have the same farthest points as p?

1In the remainder of this article we will omit the subscript
indicating the underlying network G in all of the above notation
when it is clear from the context.

1.2 Related Work

The relation between points p on a network G and their
farthest points p̄ on G can be expressed in terms of exist-
ing notions as follows. It can be stated as the farthest-
point Voronoi diagram on the metric space (G, d(·, ·))
where all of the uncountable infinitely many points on
G are considered to be sites or generators of the di-
agram. Usually Voronoi diagrams are computed with
respect to a finite set of n ∈ N sites. The farthest-point
Voronoi diagram is a special case of the k-th nearest
neighbor Voronoi diagram with k = n. Even though
Voronoi diagrams on networks have been studied be-
fore, e.g., [3, 5, 8, 13], they were defined with respect to
a finite set of generators. A survey of various notions of
Voronoi diagrams, including some for networks, can be
found in [12]. Refer to [13] for generalized variants of
network Voronoi diagrams and further references.

Information about the eccentricity of points along the
edges of a network is also useful in contexts other than
the stated feed-link problem. For instance, in the con-
tinuous absolute 1-center problem from location analysis
[4, 14] we seek a point with minimum eccentricity in a
network. Furthermore, a point of maximum eccentricity
and one of its farthest points form a pair of diametral
points. Recent surveys of existing related notions and
results can be found in [10, 14].

2 Eccentricity Diagrams

We seek a concise representation of the mapping from
the points on a network G to their eccentricity value.
Frank [4] seeks a point with minimum eccentricity on G.
He finds it by determining the smallest among the mini-
mal eccentricity values on each edge uv. To obtain these
values, Frank [4] computes the eccentricity of points on
edge uv as a function as follows. Let φstuv : [0, 1]→ [0,∞)
be the mapping such that

[0, 1] 3 λ
φstuv7−→ max

q∈st
d((1− λ)u+ λv, q).

Consider a point p on edge uv with p = (1 − λ)u +
λv, λ ∈ [0, 1]. The value φstuv(λ) is the largest network
distance from p to any point on edge st. We obtain the
eccentricity function for the points p on uv by building
the upper envelope of the functions φeuv for all edges e
of the network, since

ecc(p) = max
q∈G

d(p, q) = max
e∈E

max
q∈e

d(p, q).

The shape of the functions is described in Lemma 2 and
depicted in Figure 3.

Lemma 2 ([4]) Let uv and st be edges of a network G.
Then the function φstuv is piece-wise linear with slopes
+wuv, 0, and −wuv in this order.

24th Canadian Conference on Computational Geometry, 2012

200

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

u
v

s
t

t̄ s̄

ūv̄

p

(a) Case p ∈ ut̄.

u
v

s
t

t̄ s̄

ūv̄

p

p̄

(b) Case p ∈ t̄s̄.

@u @t̄ @s̄ @v
d(u, ū)

d(t̄, t)

λ

φ
s
t

u
v
(λ

)

(c) The function φst
uv.

Figure 3: The function φstuv for two edges uv an st consist
of three linear segments. The point ū (respectively v̄) is
the farthest point from u (respectively v) on st. Like-
wise, the point t̄ (respectively s̄) is the farthest point
from t (respectively s) on uv. Shortest paths attaining
the network distance φstuv(p) form p to the farthest point
p̄ from p on st are shown in (a) and (b).

As a consequence, the eccentricity along an edge uv of
a network withm edges is the upper envelope ofm piece-
wise linear functions as in Lemma 2. The domain of
all these functions is [0, 1]. We can compute this upper
envelope using a divide-and-conquer approach described
by Agarwal and Sharir [1, Section 2.3].

Lemma 3 Let uv be an edge of a network G. Any pair
of functions φeuv and φe

′
uv for edges e and e′ of G inter-

sect at most twice disregarding overlaps.

Theorem 4 ([1]) Let F be a set of k continuous, to-
tally defined functions with a common domain whose
graphs intersect in at most two points. The sequence of
functions along the upper envelope of F can be obtained
in O(k log(k)) time and has length at most 2k − 1.

With Lemmas 2 and 3 we can use Theorem 4 to esti-
mate the size and construction time of the upper enve-
lope of the functions φstuv.

Corollary 5 Let uv be an edge of a network G with m
edges. The eccentricity on uv is a piece-wise linear and
continuous function, consisting of at most 6m − 3 line
segments. It can be computed in O(m log(m)) time.

Due to its piece-wise linearity, we can describe the
eccentricity completely by stating the value of the ec-
centricity at the endpoints of each linear segment. That
is for any point p in the segment ab with linear eccen-
tricity and with p = (1− λ)a+ λb, we have

ecc(p) = (1− λ) ecc(a) + λ ecc(b).

This leads us to the following notion.

Definition 6 (Eccentricity Diagram) Let G be a
network. Consider the subdivisions G′ of G with

ecc(a+ λ(b− a)) = (1− λ) ecc(a) + λ ecc(b),

for each edge ab of G′ and each λ ∈ [0, 1]. Among these
we call the one with the least number of vertices the
eccentricity diagram of G and denote it by ED(G).

The eccentricity diagram of a network is well-defined
and unique, as it can be obtained by subdividing each
edge uv at the endpoints of the line segments of the ec-
centricity function on uv. By Corollary 5, this yields
a finite subdivision with the minimum number of addi-
tional vertices. An example is shown in Figure 5. As
the computation of the upper envelope is performed on
each edge, we have the following corollary.

Corollary 7 The eccentricity diagram of a network
with m edges has size O(m2) and can be constructed
in O(m2 log(m)) time, provided the shortest path infor-
mation between any pair of vertices is known a-priori.

Next we establish that the size bound stated in Corol-
lary 7 is tight for planar networks. In the full version
of this paper we establish a lower bound of Ω(nm) for
general networks with n vertices and m edges.

Lemma 8 For all n ∈ N, there exists a (planar) net-
work G with n vertices that has an eccentricity diagram
ED(G) of size Ω(n2).

Proof. Consider the network G depicted in Figure 4
for k > 2 and a value of ε with 0 < ε < 3

2(k−2) . Each of

the k edges uivi, i = 1, . . . , k, is subdivided into k sub-
edges in the eccentricity diagram of G on uivi by k − 1
additional vertices. Thus, we have at least k(k − 1) ∈
Ω(n2) additional vertices in total, as the network has
n = 4k vertices. �

ε

ε
1

k
−
1

2

w1

w2

w3

w4

wk−1

wk

u0

v0

2

2

2

2

2

1

1

1

1

v1 v2 v3 v4 vk−1 vk
ε ε ε ε ε

u1 u2 u3 u4 uk−1 uk
ε ε ε ε ε

k
−
1

k
−
1

k
−
1

k
−
1

k
−
1

k
−
1

Figure 4: A network whose number of vertices in the
eccentricity diagram is quadratic in the number of ver-
tices n in the network itself. Along the edges uivi for
i = 1, . . . , k, the farthest point among w1, . . . , wk is in-
dicated in the corresponding colour.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

201

24th Canadian Conference on Computational Geometry, 2012

14
2

2

2
2

8

2

2
3

2

2
2

u v

a
b

c

d

e

f

g

h

i

(a) A network.

0

5

10

15

20

u h̄ x y f̄ ē ā v

(b) The functions φst
uv and their upper envelope.

Figure 5: An example for the brute-force method ap-
plied to the edge uv of the network in (a). The functions
φstuv representing the edge-to-edge distances are shown
in (b) together with their upper envelope, representing
the eccentricity along uv. The vertices h̄, x, y, and ā
must be added to uv, to obtain the subdivision of uv in
the eccentricity diagram ED(G) of G.

Assume we are given the eccentricity diagram ED(G)
of a network G as well as the eccentricity values ecc(v)
of all vertices v of ED(G). Then we can answer queries
for the eccentricity value ecc(p) of a point p on an edge
uv using the piecewise linearity of ecc(·) on uv, where

ecc(p) =

(
1− wap

wab

)
ecc(a) +

wap

wab
ecc(b),

and ab is the sub-edge of uv in ED(G) containing p. We
assume that we are given the edge uv of the original
network G containing p when conducting such a query.
The sub-edge ab of uv can be found in O(log(n)) time
using binary search as there are at most 6m−3 ∈ O(n2)
additional vertices on uv in ED(G) by Corollary 5.
The above yields in combination with Corollary 7 and
Lemma 8 the following theorem.

Theorem 9 Given a network G with n vertices and m
edges. There is a data structure that can be used to de-
termine the eccentricity value ecc(p) of any point p on
G in O(log(n)) time, provided that the edge uv of G
containing p is given. This data structure can be con-
structed in O(m2 log(n)) time, provided that the network
distances between all vertices of G are known. The size
of this data structure is at most O(m2) in general and
can be at least Ω(n2) for certain planar networks.

3 Network Farthest-Point Diagrams

In addition to computing the distance towards farthest
points, we are also interested in their location. That is
we seek to query for the set of farthest points from any
point g on a network G. This suggests the introduc-
tion of a continuous version of a farthest-point Voronoi
diagram on the metric space formed by the edges of a
network and the corresponding network distance.

Definition 10 Let G be a network. Consider the set

Vfar-net(g) := {p ∈ G : ∀g′ ∈ G : d(p, g′) ≤ d(p, g)} ,

of points p ∈ G whose network distance d(p, g) to a point
g on G is largest among the network distances to all
other points g′ on G. We call Vfar-net(g) the farthest-
point network Voronoi link cell of g. We obtain the
farthest-point network Voronoi link diagram of G by
adding a new vertex to G for each boundary point of
the non-empty farthest-point network Voronoi link cells,
i.e., at all points of the set

⋃
g∈G ∂Vfar-net(g). If the lat-

ter set is finite, we say that the diagram is finite.

The existing notions of Voronoi diagrams are deter-
mined by a finite set of reference points. For instance
the farthest-point Voronoi diagram [12, Section 3.3] sub-
divides the plane into regions such that the points in the
interior of any region have one common unique farthest
point among a finite set of points in R2. Likewise, the
network Voronoi link diagram on G [12, Section 3.8]
subdivides a network into parts, such that the points in
the interior of each part are closest to a common subset
of a finite set of points on G. However, for the queries
described in Section 1.1, the situation is different. First,
we are oblivious of which points g on G are considered
farthest points, i.e., satisfy Vfar-net(g) 6= ∅, when cre-
ating the farthest-point network Voronoi link diagram.
Thus, the set of reference points is to be determined as
opposed to given a-priori. Secondly, this set of reference
points may be infinite, as depicted in Figure 6. There-
fore, known methods to determine Voronoi diagrams do
not necessarily apply here. Moreover, we need to find a
way to deal with infinite farthest-point network Voronoi
link diagrams. If a finite number of vertices is added, the
farthest-point network Voronoi link diagram is a subdi-
vision of G. In that case, it is considered a network it-
self. Otherwise, it is an infinite network, i.e., a network
with infinitely many vertices and degenerate edges that
may have an empty interior and identical endpoints. In
the finite case, it would be sufficient to store the set
of farthest points at each vertex and each edge of the
farthest-point network Voronoi link diagram to give a
full description of the location of eccentric points. How-
ever, this is impossible to do explicitly in the infinite
case. Next, we will investigate the latter in order to
obtain a finite representation of the same information.

24th Canadian Conference on Computational Geometry, 2012

202

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

(a) Finite diagram.

p

p̄ p̄′

(b) Infinite diagram.

Figure 6: The farthest-point network Voronoi link di-
agrams for two networks. Parts that have a common
farthest point (square) are indicated in colour. In the
finite case (a), the network is subdivided into regions
with a fixed farthest point. We have a different be-
haviour on the vertical edges (black) of (b). When the
point p is moved upwards, its two farthest points p̄ and
p̄′ move downwards accordingly. No two points on this
edge have a common farthest point.

Theorem 11 Let G be a network. The farthest-point
network Voronoi link diagram of G is infinite if and
only if there exists an edge ab of the eccentricity diagram
ED(G) of G such that the eccentricity is constant on ab,
i.e., we have ecc(a) = ecc(p) for all p ∈ ab.

We distinguish two types of phenomena on the edges
of the eccentricity diagram. On edges uv with non-
constant eccentricity, the farthest points are stationary
in the sense that uv can be subdivided into finitely many
sub-edges without any change of the farthest-point set
in their interior. On edges with constant eccentricity
however, each point has its own set of farthest points
distinct from that of any of the uncountably many other
points on it. Nonetheless, we can subdivide edges that
exhibit the latter behavior into finitely many portions,
such that the farthest points on each portion are con-
tained in a common set of edges. This simplification
yields a finite representation of the farthest-point net-
work Voronoi link diagram defined as follows.

Definition 12 (Farthest-Point Diagram) Let G be
a network. Consider the subdivisions G′ of the eccen-
tricity diagram ED(G) of G such that each edge uv of
G′ is of one of the following types.

(i) The eccentricity on uv is non-constant, and all
points in the interior of uv have the same set of
farthest points in G.

(ii) The eccentricity on uv is constant, and all points
in the interior of uv have the same set of edges of
G containing their farthest points in G.

Among these subdivisions we call the one with the least
number of additional vertices the network farthest-point
diagram of G and denote it by FD(G).

The network farthest-point diagram can be obtained
in the same manner as the eccentricity diagram. During
the construction of the upper envelope, we keep track
of the edges e whose functions φeuv contribute to this
envelope. See Figure 7 for an example.

For each edge of the network farthest-point diagram
we can store the set of farthest points or the set of edges
containing them depending on the type of the edge.
Each of these sets consist of at most m elements. With
this data we can answer queries for the set of farthest
points of a point p on a given edge uv of G as follows.
First, we identify the sub-edge ab of uv in FD(G) con-
taining p using binary search. If a set of farthest points
is stored with ab, we return this set. Otherwise, we
store the set of edges containing the farthest points of
p with ab. In that case we use the distances between
all vertices of G to obtain the locations of the farthest
points from p in constant time per point.

Theorem 13 2 Given a network G with n vertices and
m edges. There is a data structure that can be used to
determine the set of farthest points of any point p on G
in O(log(n)+k) time, when given the edge uv containing
p, where k is the size of the output. This data structure
has a construction time and size of O(m3).

0

5

10

15

20

u h̄ x y f̄ ē ā v

(a) The functions φst
uv and thier upper envelope.

v

a
b

c

d

e

f

g

h

i

āu
h̄ x f̄y

ȳ x̄

2
3

2

2

2

2
2

2

2

1 2 4 6 1

242

2

(b) The network farthest-point diagram on uv indicated
with colours. Farthest points are located at the dot(ted
segments) of matching colour.

Figure 7: An example for determining the network
farthest-point diagram for the network G from Figure 5.
The upper envelope (a) of the functions φstuv reveals
which edges contain farthest points (b).

2In the full version of this paper, we show how to obtain this
result with a construction time and size bound of O(m2 log(n)).

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

203

24th Canadian Conference on Computational Geometry, 2012

4 Solving a Feed-Link Problem

Now we demonstrate how to solve the feed-link prob-
lem stated in the introduction with the aid of the data
structure from Theorem 9. We begin with a formal def-
inition of the former. Here we assume all edge weights,
including that of any possible feed-link, to be equal to
the Euclidean length of the corresponding line segment.
A network with this property is referred to as geometric.
Further, if we introduce the feed-link pq to a point q on
G, we denote the resulting network by G+ pq and refer
to q as the anchor of p in G+ pq.

Definition 14 Let G be a geometric network. Further,
let p be a point in the plane that is not on G. We call
the problem of determining a point q on G such that the
eccentricity of p with respect to G + pq is smallest the
minimum eccentricity feed-link problem.

Lemma 15 Let uv be an edge of the eccentricity dia-
gram of G. If the eccentricity is increasing on uv from
u to v, then u is the optimal anchor on uv. Otherwise,
the closest point to p on uv is the optimal anchor on uv.

The (globally) optimal anchor on G is found by scan-
ning through all edges of the eccentricity diagram of G
and determining the (locally) optimal anchor on each of
them. In case there are restrictions for the position of
the anchor point, we only use the part of the eccentric-
ity diagram for the allowed anchor points. For example,
one could require that the extended network G + pq
should be planar. Then only the points on G that are
visible from p may be anchors.

5 Future Work

The construction algorithms for the data structures in
Theorem 9 and 13 work for any type of network, yet they
suffer from slow running times and the need to know all
vertex-to-vertex distances in the network. The follow-
ing improvements [6] upon these results are beyond the
scope of this extended abstract and will be the matter of
future publications. For cactus networks, we can obtain
data structures with the same query times as in The-
orem 9 and 13 but with storage requirement and con-
struction time of O(n). Moreover, for planar networks,
we can construct a data structure for a designated face
in O(n log(n)) time. Neither of these results require pre-
computed vertex-to-vertex distances. For more details
refer to Grimm [6].

References

[1] P. K. Agarwal and M. Sharir. Davenport-Schinzel se-
quences and their geometric applications. In Handbook
of computational geometry, pages 1–47. North-Holland,
2000.

[2] B. Aronov, K. Buchin, M. Buchin, B. M. P. Jansen,
T. de Jong, M. J. van Kreveld, M. Löffler, J. Luo, R. I.
Silveira, and B. Speckmann. Connect the dot: Comput-
ing feed-links for network extension. Journal of Spatial
Information Science, 3(1):3–31, 2011.

[3] M. Erwig. The graph Voronoi diagram with applica-
tions. Networks, 36(3):156–163, 2000.

[4] H. Frank. A note on a graph theoretic game of Hakimi’s.
Operations Research, 15(3):567–570, 1967.

[5] T. Furuta, A. Suzuki, and K. Inakawa. The k-th nearest
network Voronoi diagram and its application to district-
ing problem of ambulance systems, 2005.

[6] C. Grimm. Eccentricity diagrams. Diplomarbeit
(Master’s thesis), Otto-von-Guericke-Universität Mag-
deburg, Magdeburg, 2012.

[7] A. Grüne. Geometric Dilation and Halving Distance.
Dissertation (PhD thesis), Rheinische Friedrich-Wilhel-
ms-Universität Bonn, Bonn, 2006.

[8] S. L. Hakimi, M. Labbé, and E. F. Schmeichel. The
Voronoi partition of a network and its implications
in location theory. INFORMS Journal on Computing,
4(4):412–417, 1992.

[9] F. Harary. Graph theory. Narosa/Addison-Wesley, in-
dian student edition edition, 1989.

[10] R. K. Kincaid. Exploiting structure: Location prob-
lems on trees and treelike graphs. In Foundations of
Location Analysis, volume 155 of International Series
in Operations Research & Management Science, pages
315–334. Springer US, 2011.

[11] G. Narasimhan and M. Smid. Geometric spanner net-
works. Cambridge University Press, 2007.

[12] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spa-
tial tessellations: concepts and applications of Voronoi
diagrams. Wiley Series in Probability and Statistics.
John Wiley & Sons Ltd., Chichester, 2nd edition, 2000.

[13] A. Okabe, T. Satoh, T. Furuta, A. Suzuki, and K. Oka-
no. Generalized network Voronoi diagrams: Con-
cepts, computational methods, and applications. Inter-
national Journal of Geographical Information Science,
22(9):965–994, 2008.

[14] B. Ç. Tansel. Discrete center problems. In Foundations
of Location Analysis, volume 155 of International Series
in Operations Research & Management Science, pages
79–106. Springer US, 2011.

24th Canadian Conference on Computational Geometry, 2012

204

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Tight Linear Lower Memory Bound for Local Routing in Planar Digraphs

Maia Fraser∗

Abstract

Local geometric routing algorithms with logarithmic
memory are in widespread use in modern MANETs
(mobile ad hoc networks). Formally, these are algo-
rithms executed by an agent traveling from node to
node in a geometric graph, using only local geometric
information at each node, leaving no traces and car-
rying O(log n) bits of memory. For the case of undi-
rected graphs, theoretical and practical aspects of such
algorithms have been extensively developed since Face
Routing (FR) was proposed in 1999 for planar embed-
ded graphs. By contrast, the corresponding problem in
geometric digraphs has been relatively little studied. In
CCCG’08, the author and co-authors showed a lower
bound of Ω(n) bits on the memory of local geometric
routing algorithms for planar embedded digraphs.

The purpose of the present paper is to show this lower
bound is tight under two models: either node identifiers
(possibly coordinates) are known to come from an O(n)
size space and no marks may be left, or else O(log n) bits
suffice to identify a node (as assumed in FR) and peb-
bles may be left. We describe an analog to FR which un-
der either model guarantees delivery in polynomial time
in strongly connected planar embedded digraphs. In
the first model, memory of O(n) bits is transported, in
the second O(log n) bits are transported and O(n) peb-
bles are left. By contrast, for non-geometric algorithms
of the second model a tight lower memory bound of
Ω(n log n) bits follows from work of Ilcinkas and Fraig-
niaud with an exponential runtime algorithm. Our work
thus provides a first example confirming that geometry
simplifies routing in digraphs.

1 Introduction

Face Routing (FR), proposed in a CCCG’99 paper by
Kranakis, Singh and Urrutia, was the first routing algo-
rithm to use geometric and purely local information. It
guarantees delivery in time O(n) for planar embedded
(undirected) graphs of size n, while transporting only
O(log n) bits memory1. It opened a new era in routing
at a time when both wireless ad hoc networks (where
global connectivity information is not available) and

∗Department of Computer Science, University of Chicago,
maia@cs.uchicago.edu

1the minimal memory for a routing algorithm, if it by definition
carries at least the destination ID.

global positioning devices (which provide real-time po-
sition information) were becoming commonplace. The
idea is simple: to get from node s to node t the al-
gorithm walks one-by-one around the faces which meet
the segment st, until t is reached. While only applying
to graphs with no edge-crossings, the simplicity and ro-
bustness of the algorithm made it canonical and it was
modified and extended in many ways so that today most
practically occurring MANETs may be handled by some
derivative of FR, and it remains at the base of some of
the most commonly used algorithms in this class today.

By contrast very little is known for the case of geomet-
ric directed graphs (digraphs). In certain special cases of
planar embedded digraphs, local geometric routing algo-
rithms with logarithmic memory are known to exist: in
Eulerian graphs (in which in- and out-degrees coincide
and are constant) and in outerplanar graphs (in which a
single face contains all vertices) [2]. But these are very
restricted classes and even within the class of planar
embedded digraphs there is no hope of a logarithmic
memory algorithm like FR: in CCCG’08 we showed [5]
there exist planar embedded digraphs in which correct
local geometric routing requires Ω(n) bits memory. In
that paper, we considered only algorithms which do not
leave traces, however our proof can be adapted to cover
algorithms which do leave traces, in which case the re-
quired memory is the combined number of pebbles and
transported bits. We give the complete argument in the
full version of this paper. The point is that our proof of
the lower bound in [5] was based on a simulator of local
geometry for a special class, C, of graphs, defined by a
Kolmogorov random bit string x, and this simulator can
be made to reproduce pebbles as well.

The aim of the present paper is theoretical2. We show
the linear lower memory bound is tight under two mod-
els: either node identifiers (possibly coordinates) come
from an O(n) size space and no marks are left or else
O(log n) bits identify a node (as assumed in FR) and
marks (pebbles) may be left. We describe an analog
of FR which correctly routes in all strongly connected
planar embedded digraphs under these models. In the

2We concluded in [5] that uni-directional links should be
avoided in MANETs. In fact, there is another practical issue.
Unless we allow multicasting, node v will not send to node u un-
less it knows of u’s existence and given a uni-directional arc from
v to u this is impossible to achieve directly by communication
between the two nodes: nodes will not be locally aware of their
downstream neighbours.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

205

24th Canadian Conference on Computational Geometry, 2012

first model, memory of O(n) bits is transported and no
marks are left; in the second, O(log n) bits are trans-
ported and O(n) pebbles are left.

We remark that a significant amount of theoretical
work does exist on routing in non-geometric digraphs
under other models. In particular the problem of di-
rected st-connectivity is usually posed assuming a JAG
model (see for example the survey article [1]). JAG’s are
automata working in a team and able to teleport (jump)
to teammates. This is very different from our setting.
An instance of our agent may not be teleported but must
be transmitted and this is by definition only possible to
direct neighbours. Our second model, however, is the
geometric analog of a model considered by Ilcinkas and
Fraignaud in [3]. They assume an agent which cannot
jump but is able to leave pebbles at nodes and trans-
port some memory. They show such an agent needs
Ω(n log d) bits of memory to explore a digraph with
maximum out-degree d but no vertex labeling, even if it
can use a linear amount of pebbles. Since no geometric
information is present, by the adversary argument this
is also a lower bound on routing (the destination would
be marked instead of specified by ID). They give such
an algorithm with exponential runtime. By contrast,
our algorithm which has access to geometry (and hence
node ID’s) can successfully route in polynomial time
leaving O(n) pebbles and transporting O(log n) bits.

2 Directed Face Routing Algorithm

Let G be a directed graph of size n embedded in the
plane. The main strategy of the algorithm is the same
as that of FR:

Input: source s and destination t
Procedure:

1. Traverse anti-clockwise the face which is entered by
the segment st at s.

2. If t is visited then STOP.

3. Else if a node s′ such that d(s′, t) < d(s, t) is visited
then s← s′.

4. Go to step 1.

The process of traversing a face, however, is much
more arduous than in the undirected case.

3 Results

Assuming either of the two models defined above, we
will show:

Theorem 1 There is a local geometric algorithm, Di-
rected Face Traversal, which uses O(n) bits memory and
traverses a given face F of a strongly connected planar
embedded digraph G.

This then implies:

Corollary 2 Directed FR is a local geometric algorithm
transporting O(n) bits memory which guarantees deliv-
ery in any strongly connected planar embedded digraph
G.

Indeed, using Directed Face Traversal, Directed FR
is guaranteed to reach t by the usual argument: since G
is embedded in the plane, when the segment st enters
a face F it must meet the boundary of F again either
to exit F or to arrive at t; thus, one of the conditions
in steps 2. and 3. is guaranteed to hold and either we
will stop at t or the next iteration begins with a strictly
reduced distance d(s, t). Moreover, this local geometric
algorithm transports only O(log n) bits memory of its
own (to record coordinates of s and t) besides the mem-
ory of Directed Face Traversal so the over all memory
requirement remains O(n) bits.

Observation 1 For simplicity, we will describe the al-
gorithm in terms of the second model - leaving O(1) peb-
bles per node. In the case of the first model3, we may
associate O(1) bits to each node using an array of total
size O(n) bits, and so by transporting this memory we
can simulate the algorithm written for the second model.

The rest of this paper is devoted to describing Di-
rected Face Traversal and proving Theorem 1.

4 Terminology

First we fix some standard terminology for embedded
digraphs. By edge we mean an edge of the undirected
graph G′ obtained by forgetting the directions of arcs of
G. By face we mean a connected component of the com-
plement of G′ in the plane. A walk will refer to a walk of
G′; i.e., a sequence of vertices v0, vi, . . . , vk such that ei-
ther vi−1vi or vivi−1 is an arc of G for each i : 1 ≤ i ≤ k.
The walk is said to be directed if arc orientation is re-
spected, i.e. each vi−1vi is actually an arc of G. A walk
is closed if v0 = vk. The vertices of a walk may in prin-
ciple coincide; we say the walk is simple if they do not.
The fact the digraph G is strongly connected means that
for any two nodes, s and t, there exists a directed walk
starting at s and ending at t. Every face has a unique
boundary walk starting at a vertex v on the boundary of
the face, namely the closed walk consisting of the nodes

3We make two remarks. First, the assumption of O(logn)
identifiers is also made in standard FR when coordinates are used
as identifiers. Indeed, if nodes were arranged on the real line with
exponentially increasing spacing (e.g. distance 2k between k’th
and k + 1’st nodes) then coordinates with Ω(n) bits would be
needed in order to distinguish nodes; such an example is usually
ruled out. Second, if either node ID’s or coordinate pairs come
naturally from key spaces which are large they could be hashed
first; we assume we start with (possibly virtual) node ID’s which
are integers in a range [0, Cn] for some constant C.

24th Canadian Conference on Computational Geometry, 2012

206

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

which are encountered when following the face bound-
ary in its canonical boundary orientation, starting from
v. This orientation is to the left for an observer stand-
ing within the face. Boundary walks are in general not
directed walks.

Since G is embedded there is a natural cyclical order-
ing of edges at each vertex: draw a small circle around
v, travel around it in the clockwise direction and cycli-
cally order the edges incident at v by the cyclical order
in which they are encountered. Suppose uv is an in-
coming arc at v then we denote by succ(uv) the next
outgoing arc in this cyclical ordering. Given a set M of
marked vertices one may analogously define succM (uv)
as the next outgoing arc whose head belongs to M ; we
assume succM returns NULL if there are no such out-
going arcs.

This allows one to define a walk starting from a given
arc a by iteratively taking succ(a). If a walk v0, . . . , vk is
thus defined by succM where M is the vertex set of the
walk, we say the walk is left-free, since the condition is
equivalent to there being no edges of the walk incident
on the left side of the walk. Boundary walks are always
left-free (since there are no edges at all between uv and
vw)4. Simple walks are certainly left-free.

We now introduce two notions which will simplify our
discussion of face traversal.

Definition 1 A closed walk v0, v1, . . . , vk = v0 is said
to self-cross if some edge vi−1vi is incident at vk =
vi and lies strictly to one side of the walk at vk, while
vivi+1 lies strictly to the other. When a closed walk β
is not self-crossing we define C(β) to be the collection
of faces it encloses: those faces from which a curve
may be traced which first meets β on the left and not the
right side of β.

This is illustrated in Figure 1.

Figure 1: The shaded face is enclosed by the walk
a, b, c, a. On the other hand, the walk a, b, d, a encloses
a collection of two faces: the shaded one and the outer
face.

Suppose β is non self-crossing and F is a face not
in C(β) but adjacent to an edge vi−1vi of β. It lies

4For this to hold, it is important that the cyclical ordering
be done in clockwise fashion when one considers boundary walks
with canonical boundary orientation.

necessarily on the right of β and when one replaces the
sub-walk vi−1vi of β with the remainder of the boundary
walk of F (also a walk from vi−1 to vi) one obtains a
new non self-crossing walk β′ which encloses one more
face than did β. For example, in Figure 1, the unshaded
triangle is a face not enclosed by a, b, c, a, and so using it
we can produce the walk a, d, b, c, a which encloses both
triangular faces.

Definition 2 Given a directed walk α define its outer
shell shell(α) to be the (non self-crossing) closed di-
rected walk which includes α as a sub-walk and encloses
a minimal number of faces.

To see this is well-defined, suppose there are two non-
identical closed directed walks u, v, w1, . . . , wk = u and
u, v, w′1, . . . , w

′
k = u both enclosing a minimal number

M of faces. Starting from v let the last vertex where
they coincide be w`, so wi = w′i for i ≤ ` and w`+1 6=
w′`+1. Now let wm = w′p be the first vertices which
coincide for m, p > `. We then have two directed walks
from w` = w′` to wm = w′p which meet only at their
endpoints: w`, w`+1, . . . , wm and w′`, w

′
`+1, . . . , w

′
p. By

replacing one sub-walk with the other we can obtain
a closed directed walk which includes u, v and encloses
fewer than M faces, a contradiction.

5 Directed Face Traversal Algorithm

Idea The idea of this algorithm is to traverse the face
boundary β until an opposing arc a is encountered, say
at vertex v, and then to traverse the outer shell σ of the
arc a (or the outer shell of a longer directed walk ending
in a). This shell traversal cannot in general be done in
one iteration, rather our algorithm will on the i’th iter-
ation produce a non self-crossing directed closed walk δi
such that C(δi) ⊂ C(σ) and such that C(δi) (C(δi+1).
Eventually therefore we must have δ = σ. Suppose this
walk starts and ends at the head of a. We now use,
as an exit from this area, the outgoing arc uw whose
tail (on σ) most closely preceeds v (in the order on σ)
such that there are no outgoing arcs on the right of σ
between uw at u and the incoming arc at v and thus
we know that this part of σ (which includes a) is part
of the face boundary β which we seek. And then we
continue. This process must terminate since we always
increase the visited portion of β.

5.1 Internal memory

Under the first model, the algorithm stores three binary
arrays of size O(n):

INNER[], OUTER[], and MID[],

all initialized to zero. Under the second model it
uses pebbles of types INNER, OUTER, MID. In

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

207

24th Canadian Conference on Computational Geometry, 2012

both models, it also records three node identifiers:
JOIN, NEW EXIT, and EXIT, each of size O(log n)
as well as the coordinates of s and t. We will assume
there is a simple logspace subroutine which verifies if a
given edge crosses the segment st.

In addition, Directed Face Traversal records
its state which is one of the following:
WALK BDRY, BACKTRACK, FIND EXIT,
GO EXIT. Finally there is a Boolean flag TEN-
TATIVE, initially set to false.

5.2 State diagram

The state diagram for the algorithm is cyclical:

WALK BDRY→ BACKTRACK

→ FIND EXIT

→ GO EXIT →WALK BDRY

5.3 Invariant

In the full version of this paper we prove that the follow-
ing property is an invariant, always true upon entering
a new state.

Path property:

1. The nodes marked OUTER form a directed simple
walk, τ , from s to EXIT.

2. The nodes marked INNER form a left-free walk
from s to JOIN which passes through EXIT. We
denote by η the sub-walk up to EXIT and by λ the
sub-walk after EXIT.

3. The nodes marked INNER and MID can be used
to form a directed walk from EXIT to s (take MID
when INNER cannot be taken).

4. τ concatenated with −η (which goes from EXIT to
s) is non self-crossing and all nodes marked MID
belong to faces enclosed by this concatenated curve.

This is illustrated in Figure 2.

Explanation Borrowing the notation used to describe
the Idea of the algorithm at the start of Section 5, the
point of the Path property is that it allows the current δi
to be defined by pebbles; namely, δi is ‘almost’ traversed
by starting at s and following τ then −η back to s. The
reason for the word ‘almost’ is that such a walk will in
general not be a directed walk: although τ is directed so
that one can indeed follow it in this direction, −η may
not be. The small walks marked MID are detours which
allow one to get back to s from EXIT (i.e. each piece
of MID by-passes an unsuitably directed part of −η).
Thus a more accurate statement is that by following

Figure 2: Path property

OUTER till EXIT and then INNER+MID back to s
one traverses δi.

In establishing the Path property, showing pebbles
form a walk relies on the following fact.

Lemma 3 Any left-free walk β may be uniquely fol-
lowed (from some vertex u onward) by a memory-less
(local) geometric algorithm as long as all its vertices
are marked by pebbles, no adjacent non-β vertices are
marked, and the algorithm is given a starting arc at u.

This holds because if we start at a pebble-marked
node u and are given the first arc uv to follow, then we
may iteratively follow the path defined by succM where
M is the set of pebble-marked vertices.

Now, assume we have established the Path property
as an invariant. We will upon entry into each state be
able to follow τ , −η, or λ . In our pseudocode we write
follow to indicate we are following one of these walks
appealing to these principles. We now describe the main
loop of Directed Face Traversal.

5.4 Main loop

We describe the algorithm in high-level pseudocode,
suitable for proving correctness. In the interests of clar-
ity we will refer to the curves η, τ and λ from the Path
property, as well as a vertex called PRIOR which is de-
fined below. All of these walks as well as PRIOR
can however be determined locally. The extended
version of this paper includes an appendix where lower-
level pseudocode is given for the algorithm. That code
does not refer to η, τ , λ and PRIOR but implements
the same actions as specified below.

It remains to define the high-level variable PRIOR.
Assuming the path property, the walk along INNER
from EXIT to JOIN meets either:

1. the walk INNER only, and on the left side of that
walk, in a section bypassed by MID (a) or not (b).

24th Canadian Conference on Computational Geometry, 2012

208

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

2. the walk OUTER only, and on the right side of that
walk

3. a vertex of both walks, either on the left or right
side (cases (a) and (b) resp.).

In all cases, we define PRIOR to be the vertex belonging
to both walks which most closely preceeds (or equals) the
vertex5 JOIN (in the walk that was met).

This is illustrated in Figure 3. The convention is the
same as in Figure 2: the dotted directed walk represents
OUTER and it ends at EXIT. After that point the walk
along INNER continues from EXIT to JOIN, where it
meets either INNER, or OUTER, or both. This is in-
dicated by a ray with its arrow pointing to the place of
return. The possible cases are illustrated and labeled as
above: 1ab, 2, 3ab.

Figure 3: PRIOR is shown for the various cases

We now make two remarks. They concern respec-
tively the setting of PRIOR (in the state BACK-
TRACK) and the use of PRIOR (in the state
FIND EXIT).

Observation 2 It is possible for the agent to deduce
which case has occurred by walking provisionally to the
left once JOIN occurs. A case by case analysis shows
the logic involved. The details are given in the extended
version of this paper. The key point is that the orien-
tation of arcs along INNER between intersections with
OUTER or MID is prescribed and so contradictions
must eventually arise if the provisional assumption is
wrong. We assume that PRIOR can be found, i.e. the
agent can walk to this vertex and determine that it is
the vertex PRIOR. Moreover, at that moment it knows
which way τ is oriented.

Observation 3 Once the agent is at PRIOR, by walk-
ing along τ and then −η (using detours provided by

5In the first case, where JOIN is a repeated vertex of INNER,
we refer to its first occurrence.

MID), always keeping track of the last outgoing arc on
the right until PRIOR is reached again, the location of
a new exit can be found. By strong connectivity some
outgoing arc must exist and this method of choosing it
will ensure there are no outgoing arcs between it and
PRIOR on the walk just described.

The actions to perform in the main loop depend on
the state. If at any point the following implicit exit
condition becomes valid the main loop is exited and the
algorithm places the agent at whichever endpoint u or
v is closer to t and returns.

Exit condition: the arc uv crosses the line segment st.
Initialization: Set EXIT and JOIN to s and let a = sv
be the first arc which exits s to the right of the line
segment st.
Main loop:

• WALK BDRY:

1. Use succ() starting along the arc a (at EXIT)
to build a left-free walk, marking all its ver-
tices with INNER. Stop when this walk first
meets an existing INNER or OUTER vertex
and let JOIN be the intersection vertex.

2. Change state to BACKTRACK.

• BACKTRACK:

1. Follow INNER+MID or OUTER and thereby
determine and reach the vertex PRIOR (see
Observation 2).

2. Change state to FIND EXIT.

• FIND EXIT:

1. Walk along τ then −η, always recording the
last outgoing arc encountered on the right (see
Observation 3). Let NEW EXIT be the ver-
tex where this outgoing arc is found (it will
be PRIOR itself if no later outgoing arc was
found).

2. Change state to GO EXIT.

• GO EXIT:

1. Return to NEW EXIT correcting all markers
so the Path property will be preserved6 upon
setting EXIT ← NEW EXIT. Set EXIT ←
NEW EXIT and also JOIN ← NEW EXIT.
Set a to succ(b) at EXIT, where b is the out-
going arc of the new −η at EXIT.

2. Change state to WALK BDRY.

6We want to move EXIT to a new vertex, NEW EXIT, along
the combined walk τ with −η and thus we will be changing the
breakpoint between τ and −η. To retain the Path property the
pebbles for INNER, MID and OUTER must be adjusted accord-
ingly. Details are given in the extended version of this paper.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

209

24th Canadian Conference on Computational Geometry, 2012

5.5 Correctness

Proof. Let F be the face determined by sv from the ini-
tialization. We will prove that Directed Face Traversal
traverses F . We assume that the Path property holds
upon entry to all states (the proof of this invariance is
given in the extended version).

Consider the first vi−1, vi on the boundary walk β of
F which is not an arc. Then vivi−1 is an arc. We claim
the agent will eventually reach vi. Let α be a maximal
directed sub-walk of −β which ends with vi, vi−1. Let
σ = shell(α) be the outer shell of α.

Let µ be the concatentation of τ with −η. We prove
by induction (on the iteration), that at the start of the
main loop we have C(µ) (C(σ) as long as the agent has
not yet arrived vi. To see this, assume µ is as at the start
of the k’th iteration and it satisfies this condition. We
claim its new value at the start of the k+ 1’st iteration
will also do so. We consider the new λ which will be
formed during the WALK BDRY state. Suppose the
agent will not arrive at vi by the start of the k + 1’st
iteration. Let F1, F2, F3, . . . be the faces encountered
on the left when following the new λ and a1, a2, a3, . . .
the corresponding arcs which are incoming to λ on the
left. If the first vertex of this walk after EXIT does not
belong to a face in C(σ) then since C(µ) ⊂ C(σ), the
walk µ must coincide with σ at EXIT. But following µ
back to vi−1 we do not meet any outgoing arcs on the
right. Thus µ and σ must coincide all the way back to
vi−1 and so µ passes through vi, a contradiction. Thus
the first vertex past EXIT on the new λ does indeed
belong to a face in C(σ). And so σ encloses F1. But
given the orientation of a1, this implies σ encloses the
outer shell of a1 and hence encloses F2, and so on. This
continues until we reach the end of the new λ (at the
new JOIN) because on the left side of λ there are only
incoming arcs. Thus at the start of the k+1’st iteration
we will have C(µ) ⊂ C(σ) and this inclusion must be
strict, otherwise µ would equal σ and the agent would
return to vi.

Moreover, we have also shown that C(µ) increases on
each such iteration. This cannot go on forever so eventu-
ally the agent must reach vi. This means it will advance
along β past a1. We repeat the above argument using
(in place of τ and η) τv and ηv, the sub-walks of τ and
η starting at v, where v is the next value of EXIT after
the agent has returned to vi (we know EXIT belongs to
both walks). This process continues and since the agent
thus advances by at least one edge along β every time,
eventually it must traverse all of β. �

6 Conclusions

We have shown that the lower linear bound on mem-
ory for local routing algorithms that was proved in [5]
is tight. Our algorithm mimics Face Routing but in-

volves a much more involved face traversal procedure.
Nevertheless the linear memory requirement of the algo-
rithm is a significant reduction in the Ω(n log n) mem-
ory required for local routing in non-geometric digraphs
proven by Ilcinkas and Fraigniaud [3], where they also
provide algorithms with exponential runtime or else
polynomial runtime and higher memory. Our geomet-
ric algorithm’s worst case runtime (hop-length) is poly-
nomial. Indeed on a given iteration of Directed Face
Traversal, each arc may be traversed at most O(1) times
and there are O(n) iterations for a given face (since the
node EXIT will be different on each) and O(n) faces in
total.

7 Acknowledgements

The author thanks the referees for their very useful com-
ments and suggestions, in particular for seeking clarifi-
cation on the models used and prompting Figure 1.

References

[1] G. Barnes, J. Edmonds. Time-space lower bounds
for directed st-connectivity on graph automata models.
SIAM J. on Computing, 27(4):1190–1202,1998

[2] E. Chavez, S. Dobrev, E. Kranakis, J. Opatrny, L. Sta-
cho, J. Urrutia. Route discovery with constant mem-
ory in oriented planar geometric networks. Networks,
48(1):7-15, 2006.

[3] P. Fraigniaud and D. Ilcinkas. Digraphs exploration
with little memory. 21st Symposium on Theoreti-
cal Aspects of Computer Science (STACS04), LNCS
2296:246-257, 2004.

[4] E. Kranakis, H. Singh, J. Urrutia. Compass routing in
geometric graphs. 11th Canadian Conference on Com-
putational Geometry (CCCG’99), 51-54, 1999.

[5] M. Fraser, E. Kranakis, J. Urrutia. Memory require-
ments for local geometric routing and traversal in di-
graphs. 20th Canadian Conference on Computational
Geometry (CCCG’08), 2008.

24th Canadian Conference on Computational Geometry, 2012

210

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Packing Trominoes is NP-Complete, #P-Complete and ASP-Complete

Takashi Horiyama∗ Takehiro Ito† Keita Nakatsuka‡ Akira Suzuki† Ryuhei Uehara§

Abstract

We study the computational complexity of packing puz-
zles of identical polyominoes. Packing dominoes (i.e.,
1 × 2 rectangles) into grid polygons can be solved in
polynomial time by reducing to a bipartite matching
problem. On the other hand, packing 2 × 2 squares is
known to be NP-complete. In this paper, we fill the
gap between dominoes and 2 × 2 squares, that is, we
consider the packing puzzles of trominoes. Note that
there exist only two shapes of trominoes: L-shape and
I-shape. We show that their packing problems are both
NP-complete. Our reductions are carefully designed
so that we can also prove #P-completeness and ASP-
completeness of the counting and the another-solution-
problem variants, respectively.

1 Introduction

Since Golomb introduced the notion of polyominoes,
many puzzles have been considered and solved for poly-
ominoes [5]. Most puzzles are classified into two groups:
the sliding-block puzzles and the packing puzzles (see
Figure 1(a) and Figure 1(b), respectively). The compu-
tational complexity of solving sliding-block puzzles was
a long standing open problem since Gardner introduced
the problem in 1964 [4]. In 2005, it was settled by Hearn
and Demaine [6]: generalized sliding-block puzzles are

(a) (b)

Figure 1: (a) A sliding-block puzzle and (b) a packing
puzzle.

∗Information Technology Center, Saitama University,
horiyama@al.ics.saitama-u.ac.jp

†Graduate School of Information Sciences, Tohoku University,
{takehiro, a.suzuki}@ecei.tohoku.ac.jp

‡Faculty of Engineering, Saitama University,
nakatsuka@al.ics.saitama-u.ac.jp

§School of Information Science, JAIST, uehara@jaist.ac.jp

PSPACE-complete even if all blocks are of size 1×2. On
the other hand, sliding-block puzzles are polynomial-
time solvable if all blocks are of size 1 × 1 (see [7] for
further details). Thus, in this sense, we have no gap for
sliding-block puzzles.

In this paper, we consider packing puzzles, and we
aim to fill this kind of gap. We consider the problem
of so-called identical packing into the two dimensional
plane: Given k identical polyominoes and a polygon P ,
determine whether the k polyominoes can be placed in
P without overlap or not. We note that P may contain
holes. Packing dominoes (i.e., 1 × 2 rectangles) into a
polyomino P (i.e., a polygon made by connecting unit
squares) can be solved in polynomial time by reducing
to a bipartite matching problem. (See [8] for a bipartite
matching algorithm.) On the other hand, packing 2× 2
squares into a polyomino is known to be NP-complete [2,
3]. That is, there exist gaps between dominoes and 2×2
squares: Can you pack trominoes into a polyomino in
polynomial time?

Here, a tromino is a (connected) polygon with three
unit squares. As shown in Figure 2, trominoes have
only two possible types of shapes: L-trominoes and I-
trominoes. We consider the corresponding two prob-
lems, called 3L-packing and 3I-packing. In 3L-
packing, an integer k and a polyomino P are given.
P is given as a set of pairs of integers, corresponding
to the positions (e.g., the centers) of unit squares in P .
The 3L-packing problem is to determine whether k L-
trominoes can be placed in P without overlap or not.
3I-packing is defined in the same manner, so as to pack
I-trominoes.

We prove both problems are NP-complete by giv-
ing reductions from one-in-three 3SAT. The reduc-
tions are carefully designed so that each (valid) pack-
ing of trominoes has one-to-one correspondence with
a (valid) solution of the original instance of one-in-
three 3SAT. Therefore, our reductions also imply the re-
sults for the counting variant and the another-solution-
problem variant of the tromino packing problems. Sim-

(a) (b)

Figure 2: (a) An L-tromino and (b) an I-tromino.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

211

24th Canadian Conference on Computational Geometry, 2012

(a) (b)

Figure 3: (a) Instance Gϕ of 1-in-3 GO, and (b) its valid orientation.

ilar to other ASP-complete problems [10], the another-
solution-problem variant is defined as follows: Given
an instance (k, P) of 3L-packing or 3I-packing and
its (valid) solution s, find a solution s′ of (k, P) other
than s. The counting variants and the another-solution-
problem variants for the 3L-packing and 3I-packing
problems are #P-complete and ASP-complete, respec-
tively.

2 Reduction

To prove the NP-completeness of 3L-packing and 3I-
packing, we introduce a graph orientation problem,
called the one-in-three graph orientation problem (or
1-in-3 GO in short), and give reductions from one-in-
three 3SAT to 3L-packing and 3I-packing via 1-in-3
GO.

2.1 Reduction to 1-in-3 Graph Orientation Problem

We first give a polynomial-time reduction from one-in-
three 3SAT to 1-in-3 GO.

In one-in-three 3SAT, we are given a 3-CNF ϕ con-
sisting of m clauses with n variables, where each clause
Cj contains three literals (variables or their negations).
One-in-three 3SAT is to determine whether there is a
satisfying assignment to the variables so that each clause
in ϕ has exactly one true literal. For example, given
ϕ = (x ∨ y ∨ z)(x ∨ z ∨ w), we have a satisfying assign-
ment (x, y, z, w) = (False, False, False,True).

1-in-3 GO is defined as follows:

Definition 1 1-in-3 GO (One-in-three Graph Orienta-
tion Problem).

An undirected 3-regular graph G = (V,E) is given,
where V can be partitioned into three (disjoint) node-
subsets V`, Vc and Vn consisting of literal nodes, clause

Figure 4: A clause node and its corresponding negated-
clause node.

nodes, and negated-clause nodes, respectively. The ob-
jective is to determine whether we can assign a direction
to each edge so that (1) every literal node in V` has in-
degree 0 or 3; (2) every clause node in Vc has exactly
one inbound edge, i.e., in-degree 1; (3) every negated-
clause node in Vn has exactly one outbound edge, i.e.,
out-degree 1.

Figure 3(a) illustrates the undirected graph Gϕ cor-
responding to an instance ϕ = (x ∨ y ∨ z)(x ∨ z ∨ w).
Note that a node in Gϕ is depicted by a (black or gray)
circle. The upper half of Gϕ consists of n cycles, each
of which corresponds to a variable in ϕ. Each cycle con-
sists of some pairs of literal nodes, and the number of
pairs equals to the number of occurrences of the variable
in ϕ. If a pair of literal nodes is located in the upper half
of its belonging cycle, the left (resp., right) node of the
pair is labeled with a positive (resp., negative) literal.
Otherwise, the left (resp., right) node is labeled with a
negative (resp., positive) literal. The lower half of Gϕ

consists of m gadgets given in Figure 4, where the nodes
labeled with Cj are clause nodes, and those labeled with
Cj are negated-clause nodes. If clause Cj contains three
literals `1, `2 and `3, the clause node labeled with Cj

has exactly three edges connecting with literal nodes la-
beled with `1, `2 and `3. A negated-clause node labeled
with Cj has exactly three edges connecting with literal
nodes labeled with the negated literals `1, `2 and `3.

Therefore, Gϕ contains 8m nodes and 12m edges in

24th Canadian Conference on Computational Geometry, 2012

212

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

(a) (b) (c)

Figure 5: A line gadget and its two ways of packing.

total. We can draw Gϕ within the grid of width O(m)
and height O(n). Thus, we can obtain Gϕ in O(mn)
time.

Figure 3(b) illustrates a valid orientation of the graph
Gϕ in Figure 3(a). Note that the two vertical edges
emanating from a pair of literal nodes have different
orientations, which implies that one is assigned True
and another is assigned False. Also note that the lit-
eral nodes labeled with the same literal have the same
vertical orientation, i.e., there is a consistency on the
assignment to the variables. If a positive literal node
has a downward (resp., upward) edge, its corresponding
variable in ϕ is assigned True (resp., False). Restric-
tion (2) on clause node labeled with Cj guarantees that
exactly one literal in Cj is assigned True.

Thus, valid orientations to Gϕ of 1-in-3 GO have
one-to-one correspondence with satisfying assignments
to ϕ of one-in-three 3SAT. We can easily check 1-in-
3 GO is in NP, in #P and in ASP. Since one-in-three
3SAT is NP-complete [9], #P-complete [1] and ASP-
complete [10], we have the following theorem.

Theorem 1 1-in-3 GO is NP-complete, #P-complete
and ASP-complete.

2.2 Reduction to 3L-packing

Now, we give a polynomial-time reduction from 1-in-3
GO to 3L-packing. An intuitive correspondence be-
tween the two problems can be observed in Figure 5.
We use the gadget in Figure 5(a) as a line gadget. We
can place trominoes on both of the solid and dotted
unit squares. If we pack as many L-trominoes as possi-
ble into this gadget, we have only two ways of packings
as illustrated in Figures 5(b) and (c). We regard the
line gadget in Figure 5(a) as an edge, and the ways of
packings (b) and (c) as two corresponding orientations
of the edge: Packing (b) corresponds to the orientation
from left to right; in contrast, packing (c) corresponds
to the orientation from right to left. The dotted unit
square covered (resp., not covered) by a tromino repre-
sents that the orientation is outbound (resp., inbound).

If we need to bend an edge, we use a corner gadget
in Figure 6(a). Similarly to the case of a line gadget, if
we pack as many L-trominoes as possible into a corner
gadget, we have only two ways of packings. The dotted
unit square covered by a tromino represents that the

(a) (b)

Figure 6: (a) A corner gadget, and (b) a combination
of line and corner gadgets.

(a) (b) (c)

(d) (e)

Figure 7: A cross gadget and its four ways of packings.

orientation is outbound. By combining gadgets as in
Figure 6(b), we can propagate the orientations of edges.

We respectively replace the crossing points of edges,
pairs of literal nodes, clause nodes, and negated-clause
nodes by cross, duplicator, clause, negated-clause gad-
gets, which are defined later. All but the duplicator
gadget are of the same size. (More precisely, the normal
size is 11×11.) The size of a duplicator gadget equals to
that of a combination of two normal-size gadgets, since
we replace two literal nodes by one duplicator gadget.
As a result of the replacement, we can obtain a patch-
work of the gadgets as a polyomino of 3L-packing.

A cross gadget is given in Figure 7(a). There are
four ways, as illustrated in Figure 7(b)–(e), to cover the
crossing unit square in Figure 7(a) by an L-tromino.
Note that the left and right dotted unit squares always
represent the same orientation; so do the upper and bot-
tom dotted unit squares. In contrast, the orientations
of vertical and horizontal directions are independent.

A pair of literal nodes is replaced by a duplicator gad-
get given in Figure 8(a). As mentioned before, the width
of a duplicator gadget equals to that of a combination
of two normal-size gadgets. Apart from the cross gad-
gets, if we pack as many L-trominoes as possible into a
duplicator gadget, we have only two ways of packings.
The two dotted unit squares in the left half of the gad-
get have the same orientation (inbound or outbound);
so do the two dotted unit squares in the right half.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

213

24th Canadian Conference on Computational Geometry, 2012

(a)

(b)

(c)

Figure 8: A duplicator gadget and its two ways of pack-
ings.

(a) (b)

(c) (d)

Figure 9: A clause gadget and its three ways of packings.

A clause node is replaced by a clause gadget given in
Figure 9(a). We have three ways of packing. In every
packing, there are exactly one inbound orientation and
exactly two outbound orientations. We can regard this
gadget as a three-forked road. The tromino covering the
center of the three-forked road indicates which edge has
inbound orientation. A negated-clause node is replaced
by a negated-clause gadget given in Figure 10. Similar
to the case of a clause gadget, we have three ways of
packing. In every packing, however, there are exactly
one outbound orientation and exactly two inbound ori-
entations.

Since the drawing of graph Gϕ is of size O(mn), we
use at most O(mn) gadgets for replacing the elements
in Gϕ. All gadgets consist of constant number of unit

Figure 10: A negated-clause gadget.

squares, which implies a polynomial-time construction
of P for the reduction.

We set the ‘magic number’ k of 3L-packing as |P |/3,
where |P | denotes the number of unit squares in P . This
enforces that no unit squares in P remain uncovered.
All of the above explained packings satisfy this con-
straint. Moreover, there is no other way of packing.
Thus, valid packings to P of 3L-packing have one-to-
one correspondence with valid orientations to Gϕ of 1-
in-3 GO. We can easily check 3L-packing is in NP, in
#P and in ASP, since P is given as a set of the coordi-
nates of all unit squares in P . By Theorem 1, we have
the following theorem.

Theorem 2 3L-packing is NP-complete, #P-
complete and ASP-complete.

2.3 Reduction to 3I-packing

By a similar argument as above, we give a polynomial-
time reduction from 1-in-3 GO to 3I-packing. We use
the gadgets in Figure 11(a)–(f) as line, corner, cross,
duplicator, clause and negated-clause gadgets, respec-
tively. The gadgets in Figure 11(a), (b) and (e) are
straightforward for packing. We note that a crank in
a line gadget (Figure 11(a)) guarantees exactly two
ways of packings, which correspond to two orientations.
These non-trivial gadgets work as follows.

(c) Cross gadget. In general, the cross gadgets are the
most difficult part to design in these kinds of reductions,
as mentioned in [7]. Such situation also occurs in 3I-
packing as you can observe from Figure 11(c) and 12.
We first observe that each of the left and right squares
drawn in dotted line has two ways of packings since it is
close to the corner as in the line gadget in Figure 11(a).
The top and bottom dotted squares also have two ways
since they are close to a three-forked road in the gad-
get. Next, the gadget (or the huge square) contains
127 squares. Thus, the gadget is covered by 43 tromi-
noes, and two squares remain. The remaining squares
can cover two out of the four dotted squares. Carefully
tracing all possible packings, we can check that both of
the top and bottom dotted squares cannot be covered
at the same time, and both of the right and left dotted
squares cannot be covered at the same time. Therefore,
we only have four valid packings shown in Figure 12.

24th Canadian Conference on Computational Geometry, 2012

214

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

(a) (b)

(c)

(d)

(e) (f)

Figure 11: Gadgets for the reduction to 3I-packing.

(d) Duplicator gadget. At the center of the gadget in
Figure 11(d), there are three bridges of length 4 join-
ing the right and left parts. Each of the bridges can
be packed in two possible ways by putting a tromino
left or right. As in the cross gadget, since the num-
ber of the squares in the gadget is 106, we can place
two squares at the positions of the dotted squares. use
two squares at the dotted squares. The corners close
to dotted squares force the configuration of trominoes.
Contrary to the case of the cross gadget, these condi-
tions allow us to pack I-trominoes in only two ways as
shown in Figure 13.

(a) (b)

(c) (d)

Figure 12: Four ways of packings for a cross gadget.

(f) Negated-clause gadget. In the negated-clause
gadget given in Figure 11(f), the center rectangle of size
2×4 is critical. We can pack two trominoes in four ways
here, but if they take different heights, we cannot pack
trominoes in the horizontal segment between the left
and right corners. Therefore, there are only two ways
to pack the trominoes into the rectangle. This gives us
three valid packings as illustrated in Figure 14.

The two ways of packings for a line gadget corre-
spond to the orientations of the edge. A clause gadget
has three ways of packings such that exactly one of the
three dotted unit squares gives an inbound orientation.
In contrast, a negated-clause gadget has three ways of
packings such that exactly one of the three dotted unit
squares gives an outbound orientation. Therefore, valid
packings for P in 3I-packing have one-to-one corre-
spondence with valid orientations of Gϕ in 1-in-3 GO.
We thus have the following theorem.

Theorem 3 3I-packing is NP-complete, #P-complete
and ASP-complete.

3 Concluding Remarks

We have studied the computational complexity of pack-
ing problems with L-trominoes and I-trominoes. Our
results fill the complexity gap between packing domi-
noes (i.e., 1 × 2 rectangles) and packing 2 × 2 squares.

We can extend our results to the following problems.

(1) Tromino-Packing (i.e., a mixture variant of packing
trominoes): Given an integer k and a polyomino P ,

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

215

24th Canadian Conference on Computational Geometry, 2012

(a)

(b)

Figure 13: Two ways of packings for a duplicator gad-
get.

(a) (b)

(c)

Figure 14: Three ways of packings for a negated-clause
gadget.

determine whether k trominoes can be placed into P
without overlap. Note that we can use both L-trominoes
and I-trominoes in this variant. By constructing new
gadgets, similar arguments establish that this variant is
NP-complete, #P-complete and ASP-complete.

(2) 3L-Cover, 3I-Cover and Tromino-Cover: Given
an integer k and a set S of points in the plane, deter-
mine whether k trominoes can cover all points in S. In

3L-cover and 3I-cover, we are only allowed to use
identical L-trominoes and I-trominoes, respectively. In
tromino-cover, we are allowed to use both shapes.
Trominoes are allowed to mutually overlap each other.

(3) 3L-Unique-Cover, 3I-Unique-Cover and Tromino-
Unique-Cover: Given an integer k and a set S of
points in the plane, determine whether k trominoes can
uniquely cover all points in S, that is, no overlap of
trominoes is allowed.

By converting the gadgets in this paper to the posi-
tions of points (and regarding the set of points as the
set S), we can easily see the correspondence between the
packing and the covering problems. Therefore, all these
variants in (2) and (3) are NP-complete, #P-complete
and ASP-complete.

References

[1] N. Creignou and M. Hermann, Complexity of general-
ized satisfiability counting problems. Information and
Computation, 125, pp. 1–12, 1996.

[2] D. El-Khechen, M. Dulieu, J. Iacono and N. van Omme.
Packing 2 × 2 unit squares into grid polygons is NP-
complete. Proc. 21st Canadian Conf. on Comput.
Geom., pp. 33–36, 2009.

[3] R. J. Fowler, M. Paterson and S. L. Tanimoto. Optimal
packing and covering in the plane are NP-complete. Inf.
Process. Lett., 12(3):133–137, 1981.

[4] M. Gardner. The hypnotic fascination of sliding-
block puzzles. Scientific American, 210:122–130, 1964.
(Also Chapter 7 of Martin Gardner’s Sixth Book of
Mathematical Diversions, University of Chicago Press,
Chicago, 1984.)

[5] S. Golomb. Polyominoes (2nd edition). Princeton Uni-
versity Press, 1994.

[6] R. A. Hearn and E. D. Demaine. PSPACE-complete-
ness of sliding-block puzzles and other problems
through the nondeterministic constraint logic model
of computation. Theoretical Computer Science, 343(1-
2):72–96, 2005.

[7] R. A. Hearn and E. D. Demaine. Games, Puzzles, and
Computation. A K Peters Ltd., 2009.

[8] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm
for maximum matchings in bipartite graphs. SIAM J.
Computing, 2(4):225–231, 1973.

[9] T. J. Schaefer. The complexity of satisfiability prob-
lems. Proc. 10th Ann. ACM Symp. on Theory of Com-
puting, pp. 216–226, 1978.

[10] T. Yato and T. Seta. Complexity and completeness
of finding another solution and its application to puz-
zles. IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences, E86-
A(5):1052–1060, 2003.

24th Canadian Conference on Computational Geometry, 2012

216

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Tiling Polyhedra with Tetrahedra

Andras Bezdek∗ Braxton Carrigan†

Abstract

When solving an algorithmic problem involving a poly-
hedron in R3, it is common to start by partitioning the
given polyhedron into simplier ones. The most com-
mon process is called triangulation and it refers to par-
titioning a polyhedron into tetrahedra in a face-to-face
manner. In this paper instead of triangulations we will
consider tilings by tetrahedra. In a tiling the tetrahedra
are not required to be attached to each other along com-
mon faces. We will construct several polyhedra which
can not be triangulated but can be tiled by tetrahedra.
We will also revisit a nontriangulatable polyhedron of
Rambau and a give a new proof for his theorem. Fi-
nally we will identify new families of non-tilable, and
thus non-triangulable polyhedra.

1 Introduction and Definitions

One of the fundamental approaches found in computa-
tional geometry is to break a region into smaller or sim-
pler pieces. What is simple depends on the application.
The process of partitioning a closed region into trian-
gles has been abstracted to higher dimensions, yet still
bears the name triangulation. One of the classical appli-
cations of triangulation is the art gallery theorem which
states the fewest number of guards needed to guard a
two dimensional polygonal region.

In this paper we will be concerned with the triangu-
lation of polyhedra, in particular identifying polyhedra
which cannot be triangulated. We will give five known
examples of non-triangulable polyhedra and provide an-
other example to justify a more general type of parti-
tioning which we call tiling by tetrahedra. We will use
the general partition to revisit the analogue of example
5, providing a shorter proof. In doing so we will show
another family of polyhedra which cannot be tiled by
tetrahedra and thus is non-triangulable. Finally we will
introduce more families of non-tilable polyhedra and
pose a generalization to this family.

Definition 1 A triangulation of a polytope P ∈ Rd

is a collection of d-simplices that satisfies the following
two properties:

∗Department of Mathematics and Statistics, Auburn Univer-
sity, bezdean@auburn.edu
†Department of Mathematics, Southern Connecticut State

University, bac0004@auburn.edu

1. The union of all these simplices equals P . (Union
Property)
2. Any pair of these simplices intersect in a common
face (possibly empty). (Intersection Property)

In this paper, we restrict ourselves to partitions where
the vertices of each tetrahedron is a subset of the vertex
set of P . For further information on triangulation, we
suggest the texts [2], [3], and [5].

We wish to introduce the concept of tiling by tetrahe-
dra, which weakens the intersection property of trian-
gulation.

Definition 2 A tiling by tetrahedra of a polyhedron
P is a collection of tetrahedra, all of whose vertices are
vertices of P, that satisfies the following two properties:
1. The union of all these tetrahedra equals P. (Union
Property)
2. The intersection of any two tetrahedra (possibly
empty) is a subset of a plane. (Intersection Property)

Remark 1 Figure 1 is an example of a tiling of the
cube which is not a triangulation.

Dissect the cube down the diagonal plane.

Triangulate each
piece so that its
dotted diagonal is
used.

Figure 1: Tiling a cube

2 Non-Triangulable Polyhedra

It was first shown in 1911 by Lennes [4] that not all
three-dimensional polyhedra are triangulable. We will
provide eight other known examples of non-triangulable
polyhedra in this section.

Example 1 (Schönhardt)
A frequently quoted and simple example was given by

Schönhardt [10] in 1927. Schönhardt made a non-convex

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

217

24th Canadian Conference on Computational Geometry, 2012

Figure 2: Schönhardt’s twisted triangular prism

twisted triangular prism (Figure 2) by rotating the top
face of a triangular prism so that a set of cyclic diagonals
became edges with interior dihedral angles greater than
180o.

Claim: Schönhardt’s Twisted Triangular Prism cannot
be triangulated.

Proof. Every diagonal of the polyhedron lies outside
the polyhedron. Therefore any tetrahedron containing
four vertices of the twisted triangular prism will contain
at least one edge lying outside the polyhedron. �

Example 2 (Bagemihl)

Figure 3: Bagemihl’s generalization

In 1948, Bagemihl [1] modified Schönhardt’s idea to
construct a nonconvex polyhedron on n ≥ 6 vertices
by replacing one of the twisted vertical edges with a
concave curve and placing n−6 vertices along the curve
so that the interior dihedral angles of the edges to these
vertices are greater than 180o.

Claim: Bagemihl’s Generalization cannot be triangu-
lated.

Proof. If a triangulation exists, then the top triangular
face must be a face of some tetrahedron. For every
vertex v, not on the top face, there is a diagonal from
v to some vertex on the top face which lies outside the
polyhedron. Therefore there is no tetrahedron from the
vertex set which has the top face as a boundary lying
inside the polyhedron. �

Example 3 (Ruppert and Seidel)
Another method of creating non-triangulable poly-

hedra with large number of vertices was presented by
Ruppert and Seidel [9]. They attached a copy of a non-
triangulable polyhedron to another polyhedron. Fig-
ure 4 shows a polyhedron where a copy of Schönhardt’s

Figure 4: Attaching a niche to a cube

non-convex twisted triangular prism, called a niche, is
attached to a face of a cube along a base of the twisted
triangular prism.

Claim: If a niche is attached properly, the union of the
polyhedron and the niche cannot be triangulated.

Proof. It can be arranged that the vertices of the
Schöhardt prism which do not lie on the face of the cube
do not see any vertex of the cube. Since each diago-
nal to the non-attached base of the triangular prism lies
outside the polyhedron, then there must exist a tetrahe-
dron contained inside the non-convex twisted triangular
prism. We know from Example 1 this is not possible, so
no set of tetrahedra triangulates the union. �

Example 4 (Thurston et al.)

Figure 5: Thurston polyhedron

Figure 5 was attributed to Thurston by Paterson and
Yao [7], where 18 non-intersecting square prisms, six
from each pair of parallel faces, are removed from the
cube. It is important to note that this polyhedron was
independently discovered by several people including W.
Kuperberg, Holden, and Seidel.

Claim: Thurston’s polyhedron cannot be triangulated.

Proof. A point in a polyhedron “sees” another point
in the polyhedron if the line segment between the two
points is contained inside the polyhedron. We observe
that each point of a tetrahedron can see each of the
tetrahedron’s vertices. If a polyhedron contains a point
which does not see at least four non-coplanar vertices of
the polyhedron, then it cannot be contained in a tetra-
hedron from the triangulation. In Thurston’s polyhe-
dron, the center of the cube does not see any vertex of
the polyhedron, so it is obviously not in the interior of
a tetrahedron of a triangulation. �

24th Canadian Conference on Computational Geometry, 2012

218

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Example 5: (Rambau)

Figure 6: Twisted prism SC6

Rambau [8] provided another generalization of the
Schönhardt twisted triangular prism. To construct the
Nonconvex Twisted Prism we will first define a right
prism over a convex polygon with n vertices, Cn. Label
the vertices of Cn clockwise as v1, v2, ..., vn. He defines
the right prism over Cn as PCn

= conv{(Cn × {0}) ∪
(Cn × {1})}.

Now pick a point O in the interior of Cn and rotate
Cn clockwise about O by ε, and label the vertices of
Cn(ε), v1(ε), v2(ε), ..., vn(ε), corresponding to the ver-
tices of Cn.The convex twisted prism over Cn is
PCn

(ε) = conv{(Cn × {0}) ∪ (Cn(ε)× {1})}.
The non-convex twisted prism over Cn (Fig-
ure 6) is SCn = PCn(ε) - conv{(vi,0),(vi+1,0),
(vi(ε),1),(vi+1(ε),1)}, for all i ∈ (1, n) taken modulo n.

In [8] Rambau proves:

Theorem 1 For all n ≥ 3, no prism PCn
admits a

triangulation without new vertices that uses the cyclic
diagonals {(vi,0), (vi+1,1)}.

Which implies

Corollary 2 For all n ≥ 3 and all sufficiently small
ε > 0, the non-convex twisted prism SCn

cannot be tri-
angulated without new vertices.

The proof of Theorem 1 is too long to discuss here,
but we will provide a shorter proof in the following sec-
tion for Corollary 2.

3 Tilling by Tetrahedra

Notice that Rambau’s results do not imply that SCn

cannot be tiled with tetrahedra. Rambau uses Theorem
1 to conclude that no triangulation of SCn

exist, but
Figure 1 clearly shows that a tiling by tetrahedra exists
for PC4 , which is not a triangulation. Furthermore, this
shows that there exists such a tiling which uses the cyclic
diagonals of the cube. We prove that:

Theorem 3 There exist a polyhedron which is not tri-
angulable, but can be tiled by tetrahedra.

E F

A
B

CD
E′

F ′

O

Figure 7: A non-triangulable polyhedron which can be
tiled with tetrahedra

Proof. Example 6 will provide this result.

Example 6

Start with a horizontal unit square Q. Let A,B,C
and D be the vertices of Q in counterclockwise order
when we look down at the square from above. Choose
the point O over Q at unit distance from its vertices.
Next add to this arrangement a segment EF , whose
midpoint is O, has length 4, and which is parallel to
AB (assume E is closer to A than to B). Rotate this
segment clockwise (i.e. opposite to the order of the ver-
tices A,B,C and D) around the vertical line through O
by a small angle ε. Let P be a non-convex polyhedron
bounded by Q and by six triangles EAB, EBF , BFC,
CDF , EFC, and EDA.

Finally let P ′ be the image of P under the reflection
around the plane of Q followed by a 90◦ rotation around
the vertical line containing O. Label the images of E
and F as E′ and F ′ respectively.

First notice that P is triangulable as it is the union of
the tetrahedra EABD,EBDF and DBCF . Since the
same holds for P ′ we have that the union of P and P ′

can be tiled by tetrahedra.

Next we show that the union of P and P ′ is not tri-
angulable. Since neither E nor F can see the vertices
E′ and F ′, we have that any triangulation of the union
is the union of triangulations of P and P ′. The poly-
hedron P was constructed so that the dihedral angles
corresponding to the edges EB and FD are concave,
therefore the diagonals AF and EC lie outside of P . It
is easy to see that the triangles ABC and ACD cannot
be faces of disjoint tetrahedra contained in P , thus di-
agonal BD must be an edge of at least one tetrahedron
in any triangulation of P . A similar argument applied
for P ′ gives that the diagonal AC is an edge of at least
one tetrahedron in any triangulation of P ′. Thus the
union of P and P ′ is not triangulable. �

Observation 1 A non-triangulable polyhedron is
tilable only if it contains at least four coplanar vertices
where no three are incident with a common face.
(We wish to thank one of the referees for this helpful
observation)

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

219

24th Canadian Conference on Computational Geometry, 2012

Since SCn
does not contain 4 coplanar points, for suf-

ficiently small ε, where no three are incident with a
common face, Remark 1 implies that no tiling exists.
However we wish to provide a shorter proof than that
of Theorem 1 and provide a more general family of non-
tilable polyhedra.

We will look at possible tetrahedra contained inside a
polyhedron and determine if any two interior tetrahedra
intersect. If two tetrahedra intersect in more than a
plane, we can conclude that both tetrahedra cannot be
in the tiling.

Lemma 4 Let two tetrahedra TO and TB share an edge
e and contain two coplanar faces tO and tB respectively
on a plane P . If there exists a plane Q 6= P containing
e such that the fourth vertex O of TO is in the open
halfplane bounded by Q containing tB, and such that the
fourth vertex B of TB is in the open halfplane bounded
by Q containing tO, then TO∩TB is a polyhedron, hence
the interiors of TO and TB are not disjoint.

Figure 8: Edge sharing tetrahedra which cross

Lemma 4 can simply be proven by noticing that the
interior dihedral angle of TO, created by the faces tO and
{E,O}, and the interior dihedral angle of TB , created
by the faces tB and {E,B}, sum to greater than 180o.

Remark 2 We will use Lemma 4 to say TO and TB
cannot both be tetrahedra of a tiling by tetrahedra.

Since each face of a tetrahedron t ∈ T is a triangle, we
say T induces a surface triangulation. Rambau used this
observation in proving Corollary 2 by using Theorem 1.
We will also use this observation to determine which
tetrahedron contains a particular surface triangle as a
face.

Definition 3 An ear of a 2-dimensional triangulation
of a polygon P is a triangle with exactly two of its edges
belonging to P .

Theorem 5 (Meisters [6]) For n > 3, every triangula-
tion of a polygon has at least 2 ears.

It is common to view each triangulation as a tree by
letting each triangle be represented by a dual vertex
where two dual vertices are adjacent if the correspond-
ing triangles share an edge. In this dual tree each ear
is a leaf. We will borrow the terminology of pruning a
leaf, to prune ears of a triangulation.

Definition 4 An ear, E, is pruned by deleting the ear
from the triangulation, leaving the edge which was not
an edge of P as an edge of P ′ = P − E. In doing so,
we delete a vertex of the polygon.

Example 7:
Define an infinite set of polyhedra BCn

(Figure 10) as
follows:

Let the bottom base be a convex polygon on n ver-
tices, Cn, with vertices labeled clockwise as b1, b2, ..., bn.
Define li to be the line containing edge bibi+1 (indices
taken modulo n). Now we will call the closed area
bounded by the lines li, li−1, and li−2, which contains
bi−1bi but does not contain Cn, region Ri (Figure 9).
(Region Ri may be infinite if li and li−2 are parallel or
intersect on the same side of li−1 as the polygon.)
Now define the upper base as the convex polygon Un =
conv{ui, u2, ..., un}, where ui ∈ Ri.

Let B′Cn
= conv{(Cn × {0}) ∪ (Un × {1})}, so that

BCn
= B′Cn

− conv{(bi,0),(bi+1,0),(ui+1,1),(ui+2,1)},
for all i ∈ {1, 2, . . . , n} taken modulo n.

Cn

b1

b2

b3

b4
b5

b6

b7

l2

l1

l3 l4
l5

l6

l7R2

R1

R3

R4 R5

R6

R7

Figure 9: All regions Ri for C7

Theorem 6 The non-convex polyhedron BCn cannot be
tiled with tetrahedra.

Proof. Assume a set of simplices (tetrahedra) S tiles
BCn . The tiling by S induces a triangulation of (Un ×

24th Canadian Conference on Computational Geometry, 2012

220

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

b1

b2

b3
b4

b5
b6

b7u1

u2

u3

u4 u5

u6

u7

Figure 10: BC7

{1}), which we will call T . Now, for every t ∈ T there
exists exactly one s ∈ S such that t is a face of s.
Obviously, the fourth vertex of s must be a vertex of
(Cn × {0}).

Define a sub-polygon to be the convex hull of a subset
of the vertices of a polygon. Let P be the set of sub-
polygons of Un such that every edge of a sub-polygon
p ∈ P is an edge of some t ∈ T .

Let e be an edge of p and let t be a triangle of T inside
p, having e as an edge. We will say p is separating if
every point bi in the open halfplane bounded by the
line containing e which does not contain p, is not in a
tetrahedron of S with t.

Let P ′ ⊆ P so that every p′ ∈ P ′ is separating. P ′ is
not empty since Un is a separating sub-polygon.

Let a minimal separating sub-polygon be the sub-
polygon with the fewest vertices.

Let m ∈ P ′ be a minimal separating sub-polygon with
n vertices. If n > 3, then there is a t ∈ T which is an
ear of m. Let d be the edge of t which is not an edge
of m. Observe that there exists a triangle t′ ∈ T which
has d as an edge and is contained in m.

Remark 3 The construction of Un yields the property
that the line containing the diagonal uiuj (for i < j)
bounds two open halfplanes such that the halfplane con-
taining the vertices uk for i < k < j also contains the
vertices bm for i ≤ m < j and no other vertices from
the polygon Cn.

Let Q be the plane through d, perpendicular to the
plane containing Un. Since m is separating, we can

conclude by Lemma 4 that t′ cannot be in a tetrahe-
dron with any (bi, 0) where bi is in the open halfplane,
bounded by the line containing d, containing t. There-
fore we can prune t so that m − t is a separating sub-
polygon with fewer vertices than m. Thus m is not
a minimal separating sub-polygon. Therefore we can
conclude that the minimal separating sub-polygon is a
triangle.

So there is a t = {ux, uy, uz} ∈ T which is a minimal
separating sub-polygon. Since t is separating, for every
bi outside of t, t is not in a tetrahedron with (bi, 0). By
Remark 3, the only vertices which can exist inside t are
bx, by, or bz, but the segments (bi, 0)(ui, 1) lie outside
the polyhedron by the construction of BCn

. Thus there
exists a surface triangle which is not the face of a tetra-
hedron of S. Therefore there is no set of tetrahedra
which tiles BCn

. �

A closer look at the proof yields that Remark 3 is the
only observation necessary of Un for the proof. Thus we
will define a particular alteration, ACn , of a prism.

Let Cn be the same convex polygon defined in BCn
.

Let An = conv{a1, a2, ..., an}, where the line containing
the diagonal aiaj (for i < j) bounds two open halfplanes
such that the halfplane containing the vertices ak for
i < k < j also contains the vertices bm for i ≤ m < j
from the polygon Cn. Let A′Cn

= conv{(Cn × {0}) ∪
(An × {1})}. The non-convex altered prism over Cn is
ACn

= A′Cn
− conv{(bi,0),(bi+1,0),(ai,1),(ai+1,1)}, for

all i ∈ (1, n) taken modulo n.

Corollary 7 For all n ≥ 3 the non-convex altered
prism ACn

cannot be tiled by tetrahedra, hence it also
cannot be triangulated.

Remark 4 Upon close inspection, it is easy to see that
there is a convex polygon Cn where no rotational cen-
ter yields the observations made in Remark 3. Such an
example is provided on the coordinate plane in Figure
11.

We note that, for small rotations, if the center of ro-
tation lies on a point with a positive or 0 x-coordinate,
then the diagonal (−1, 1)(−3, 1− ε) will not satisfy Re-
mark 3. Similarly, if the center of rotation lies on a
point with a negative or 0 x-coordinate, then the diago-
nal (1,−1)(3,−1 + ε) will not satisfy Remark 3.

Theorem 8 For all n ≥ 3 and all sufficiently small
ε > 0, the non-convex twisted prism SCn

cannot be tiled
by tetrahedra without new vertices.

Proof. It suffices to show that for any Cn, there ex-
ists a sufficiently small ε such that for any diagonal
(vi, 1)(vj , 1) (for i < j) of Cn(ε) there is a plane Q

containing the diagonal (vi, 1)(vj , 1) which bounds two
open halfspaces such that the halfspace containing the

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

221

24th Canadian Conference on Computational Geometry, 2012

(-1,1)

(2,-1)(1,-1)

(-2,1)

(-3,1-ε)

(3,-1+ε)

O

Figure 11: No rotational center

vertices (vk, 1) for i < k < j also contains the vertices
(vm, 0) for i ≤ m < j and no other vertices from the
polygon Cn × {0}. When constructing Cn(ε) we must
consider the planes through each diagonal. Now, for
any rotational center O, there is some angle of rota-
tion αij where the diagonal vi(αij)vj(αij) lies on a line
parallel to the diagonal vi−1vj−1. Thus, for every SCn

where 0 < εij < αij there exists a plane Q satisfying the

conditions of Lemma 4 for the diagonal (vi, 1)(vj , 1). It
follows that if we let α = min{αij |i, j ∈ (1, 2, 3, ..., n)},
then for every ε, 0 < ε < α, SCn

cannot be tiled by
tetrahedra. �

Example 8: (Nonconvex Twisted Dodecahedron)

Figure 12: Planar representation of DH(ε)

Let two parallel faces of a regular dodecahedron be
the Bottom and Top faces. Let l be the line through the
center of the two parallel faces. Rotate the Bottom face
about l counterclockwise by an angle β ≤ ε, and the Top
face about l clockwise by an angle τ ≤ ε. The nonconvex
twisted dodecahedron DH(ε) (Figure 12) is obtained
by taking the convex hull of the 20 points and then
removing the convex hull of each set of five points which
was the face of the dodecahedron, with the exception of
the Top and Bottom faces.

Theorem 9 For sufficiently small ε the nonconvex
twisted dodecahedron cannot be tiled by tetrahedra.

A generalization of Lemma 4 and the argument used
for Theorem 6 suffice to show Theorem 9 to be true.

Furthermore we believe the previous known techniques
would not be able to show this family of polyhedra is
non-triangulable.

4 Open Problem

The result for DH(ε) motivates a generalization, as
Schönhardt’s twisted triangular prism motivated Ram-
bau’s generalization.

Notice that the position of the Top and Bottom faces
of the regular dodecahedron is the same as the right
pentagonal anti-prism. A n-gonal pentaprism PPn is
bounded by two congruent regular n-gonal bases in the
same position as the right n-sided anti-prism and 2n
pentagonal lateral faces, one adjacent to each edge of a
base. If δ is the interior dihedral angle of the right n-
sided anti-prism, then let the angle between a base and a
lateral pentagon be δ < α < 180. A non-convex twisted
n-gonal pentaprism PPn(ε) is created by twisting the
Top and Bottom faces of PPn as in DH(ε).

Remark 5 DH = PP5 for ε = arccos(−1√
5
).

We leave the reader with this open problem. Is the
non-convex twisted PPn non-tilable by tetrahedra for
all n > 3?

References

[1] F. Bagemihl, On indecomposable polyhedra, American
Math Monthly 55, (1948), 411-413.

[2] J.A. De Loera, J. Rambau, and F. Santos, Triangula-
tions: structures for algorithms and applications, Al-
gorithms and Computation in Mathematics, Vol. 25,
Springer, (2010).

[3] S. Devadoss and J. O’Rourke, Discrete and Computa-
tional Geometry, Princeton University Press, (2011).

[4] N.J. Lennes, Theorems on the simple finite polygon
and polyhedron, American Journal of Mathematics 33,
(1911), 37-62.

[5] J. O’Rourke, Computational Geometry in C, ed. 2,
Cambridge University Press, (1998).

[6] G.H. Meisters, Polygons have ears, American Mathe-
matical Monthly, June/July 1975,(648-651).

[7] M. S. Paterson and F. F. Yao, Binary partitions with
applications to hidden-surface removal and solid model-
ing, Proc. 5th ACM Symp. Comp. Geom. (1989) 23-32.

[8] J. Rambau, On a generalization of Schönhardt’s polyhe-
dron, Combinatorial and Computational Geometry 52,
(2005), 501-516.

[9] J. Ruppert and R. Seidel, On the difficulty of triangu-
lating three-dimensional nonconvex polyhedra, Discrete
Computaional Geometry 7 issue 3, (1992), 227-253.

[10] E. Schönhardt, Über die Zerlegung von Dreieckspolyed-
ern in Tetraeder, Mathematics Annalen 89, (1927), 309-
312.

24th Canadian Conference on Computational Geometry, 2012

222

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Point-Set Embedding in Three Dimensions ∗

Henk Meijer† Stephen Wismath‡

Abstract

Given a graph G with n vertices and m edges, and a set
P of n points on a three-dimensional integer grid, the
3D Point-Set Embeddability problem is to determine
a (three-dimensional) crossing-free drawing of G with
vertices located at P and with edges drawn as poly-
lines with bend-points at integer grid points. We solve
a variant of the problem in which the points of P lie on
a plane. The resulting drawing lies in a bounding box
of reasonable volume and uses at most O(logm) bends
per edge.

If a particular point-set P is not specified, we show
that the graph G can be drawn crossing-free with at
most O(logm) bends per edge in a volume bounded by
O((n + m) logm). Our construction is asymptotically
similar to previously known drawings, however avoids a
possibly non-polynomial preprocessing step.

1 Introduction

The two-dimensional (2D) graph drawing literature is
extensive. Drawing graphs in three dimensions (3D)
has been considered by several authors under a vari-
ety of models. One natural model is to draw vertices
as points at integer-valued grid points in a 3D Carte-
sian coordinate system and represent edges as straight
line segments between adjacent vertices, with no pair of
edges intersecting.

Cohen, Eades, Lin and Ruskey [4] showed that it is
possible to draw any graph in this model, and indeed
the complete graph Kn is drawable within a bounding
box of volume Θ(n3). Restricted classes of graphs may
however be drawn in smaller asymptotic volume. For
example, Calamonieri and Sterbini [3] showed that all
2-, 3-, and 4-colourable graphs can be drawn in O(n2)
volume. Pach, Thiele and Tóth [17] showed a volume
bound of Θ(n2) for r-colourable graphs, where r is a
constant. Dujmović, Morin and Wood [9] investigated
the connection of bounded tree-width to 3D layouts.
For outerplanar graphs, Felsner, Liotta and Wismath
[13] described a 3D drawing in Θ(n) volume. Establish-

∗Supported in part by the Natural Sciences and Engineering
Research Council of Canada. (NSERC).
†Roosevelt Academy, Middelburg, the Netherlands

h.meijer@roac.nl
‡Dept. of Mathematics & Computer Science, U. of Lethbridge,

Canada. wismath@uleth.ca

ing tight volume bounds for the class of planar graphs
remains an open problem. An upper bound of O(n1.5)
was established by Dujmović and Wood [10]. Recently,
di Battista, Frati and Pach [8] improved the volume
bound for planar graphs to O(n log16 n).

In two-dimensional graph drawing, the effect of allow-
ing bends in edges has been well studied. For example,
Kaufmann and Wiese [15] showed that all planar graphs
can be drawn with only two bends per edge and all ver-
tices located on a straight line.

The consequences of allowing bends in 3D has re-
ceived less attention. The model considered here draws
both vertices and bend points of edges at integer grid
points. A simple one-bend construction achieving a vol-
ume of O(n·m) uses two skew lines – one for the vertices
and one for a single bend-point on each edge. Bose,
Czyzowicz, Morin, and Wood [1], showed that the num-
ber of edges in a graph provides an asymptotic lower
bound on the volume regardless of the number of bends
permitted, thus establishing Ω(n2) as the lower bound
on the volume for Kn. This lower bound was explic-
itly achieved by Dyck, Joevenazzo, Nickle, Wilsdon and
Wismath [12] who presented a construction with at most
two bends per edge. The upper bound is also a conse-
quence of a more general result of Dujmović and Wood
[11]. Morin and Wood [16], presented a one-bend draw-
ing of Kn that achieves O(n3/ log2 n) volume and in [5]
the gap between this result and the Ω(n2) lower bound
was narrowed to achieve a one-bend drawing with vol-
ume O(n2.5).

It is also interesting to consider the volume of classes
of graphs when bends are allowed. Dujmović and Wood
[11] showed that in general, a volume of O(n+m log q) is
achievable with O(log q) bends per edge, where q is the
queue number of the graph and thus q ≤ n. A recent re-
sult of di Battista et al. [8] on the queue number for pla-
nar graphs thus implies a volume of O(n log log n) with
O(log log n) bends per edge for planar graphs. Both
of these results implicitly rely on bounding the queue
number of the given graph and obtaining an initial or-
dering of the vertices that achieves the queue layout. It
is known that determining the queue number of a graph
is in general NP -Complete [14].

In this paper, we describe a three-dimensional draw-
ing technique that is asymptotically competitive with
previous volume bounds for some classes of graphs, in-
cluding planar graphs, at the expense of a relatively
large number of bends per edge. For planar graphs, the

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

223

24th Canadian Conference on Computational Geometry, 2012

volume of our drawing is bounded by O(n log n) with
at most O(log n) bends per edge. Previous results were
primarily existential, whereas our technique is construc-
tive and does not rely on computing a queue layout of
the graph. Our construction achieves the stated bounds
independent of the vertex ordering.

Furthermore, our construction can be extended to re-
solve an interesting three-dimensional point-set embed-
dability problem. For example, we show that if P is a
set of n points given on a plane and in a bounding box
of size W by H, then any graph with n vertices and m
edges can be drawn crossing-free on P within a bound-
ing box of dimensions max(W,m)×(H+3)×(2+logm)
and with at most O(logm) bends per edge.

1.1 Point-Set Embedding

Embedding a graph onto a specified point-set in 2D has
been considered in various models. We formulate a vari-
ant which includes consideration of the resulting area
and number of bends per edge.

2DPSE: Given a planar graph G with n vertices,
V = {v1, v2, . . . vn}, and given a set of n distinct points
P = {p1, p2, . . . pn} each with integer coordinates in the
plane, can G be drawn crossing-free on P with vi at pi
and with a number of bends polynomial in n and in an
area polynomial in n and the dimension of P?

If the bijection is relaxed so that each vertex vi is
mapped to any point pj , the embedding is said to be
without mapping, and if a specific bijection is provided,
the embedding is said to be with mapping.

We now formulate a version of the 2DPSE problem
for three dimensions which also constrains the bends
and volume of the resulting drawing.

3DPSE: Given a graph G with n vertices, V =
{v1, v2, . . . vn}, and given a set of n distinct points
P = {p1, p2, . . . pn} each with integer coordinates in
three dimensions, can G be drawn crossing-free on P
with vi at pi and with a number of bends polynomial in
n and in an volume polynomial in n and the dimension
of P?

This general problem remains open. The existence
version of the problem, ignoring bend and volume con-
straints is resolved in section 4 where we also present
a version of the 3DPSE problem that is solvable via a
modification of the construction we present in section 2.
But here we first review the relevant results from 2D.

In two dimensions, Cabello [2] showed that determin-
ing whether there exists a straight-line drawing of pla-
nar graph G on P without mapping is NP-hard. Pach
and Wenger [18] proved that for the with mapping ver-
sion, O(n2) bends may be required. The Kaufmann and
Wiese [15] result establishes that two bends are always
sufficient for the without mapping version of the prob-
lem, however the bend-points that are computed are not
required to have integer coordinates and the resulting

area appears to be inherently exponential. Di Giacomo
et al. [6] investigated a version of the point-set embed-
dability problem in which some of the edges of the graph
are specified to be straight-line segments. They showed
that some edges may then require O(2n) bends. These
two results thus motivate the 3DPSE problem in which
both the bends and volume are constrained.

2 Definitions and Preliminaries

Given an undirected graph G of n vertices and m edges,
a 3D grid drawing of G maps each vertex to a distinct
point of Z3, and each edge of G to a polyline between its
associated endpoints. The bend points of each edge are
also located at distinct integer grid points. No pair of
polylines representing edges is permitted to cross except
at common endpoints.

The volume of such a drawing is typically defined
in terms of a smallest bounding box containing the
drawing and with sides orthogonal to one of the co-
ordinate axes. If such a box B has width w, length l
and height h, then we refer to the dimensions of B as
(w + 1) × (l + 1) × (h + 1) and define the volume of B
as (w + 1) · (l + 1) · (h+ 1).

The concept of track drawing has been used by sev-
eral authors with slightly different definitions. Here we
follow the notation of [7]. Let G = (V,E) be an undi-
rected graph. A t-track assignment of G consists of a
partition of V into t sets V0, ...Vt−1, called tracks and
a total order ≤i for each set Vi. An overlap on track
ti occurs if there is an edge (u,w) and a vertex v with
u <i v <i w. An X-crossing occurs if there are two
edges (u, v) and (w, z) with u,w ∈ Vi, v, z ∈ Vj , u <i w
and z <j v. A t-track assignment with no overlaps and
no X-crossing is called a t-track layout.

In a subdivision of a graph G, at least one edge (u, v)
of G is replaced by a path u, d1, d2, . . . dk, v, with k ≥
1. The internal vertices on the path are called division
vertices.

For a specific ordering of the vertices of a graph, a
subset E′ forms a queue if for each edge (vi, vl) ∈ E′

there is no edge (vj , vk) ∈ E′ with i < j < k < l. I.e.
a FIFO invariant holds and no pair of edges nest. If,
for a specific vertex ordering, the edges of G can be
partitioned into q queues, then the partition is called
a queue layout of G. The queue number of a graph is
the minimum over all vertex orderings of the minimum
cardinality queue layout. Determining the queue num-
ber of a graph is in general NP-Hard, however many
properties of queue layouts are known – see [10] for an
overview of relevant results.

2.1 Perfect Matching Layouts

The technique developed in section 3 places all vertices
collinearly and with edges arranged to avoid intersec-

24th Canadian Conference on Computational Geometry, 2012

224

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Π

Figure 1: A perfect matching

tions. A critical device used in our construction involves
a track layout of a (subdivision of a) perfect matching.
See Fig. 1. We redraw the matching on a sequence of
tracks to eliminate any X-crossings. Such a track lay-
out can then be drawn in 3D without edge crossings.
Our technique is similar in spirit to that used in cir-
cuit design, for example the radix-k butterfly layout for
FFTs.

Lemma 1 Let m = 2k, where k is an integer. A perfect
matching between two sets of m points can be drawn on
3k + 1 tracks and with at most 2k bends per edge and
no X-crossings.

Proof. Assume the perfect matching is defined by a
permutation π(i) for 0 ≤ i < m. On each track there
are potentially points numbered 0, 1, 2, ...,m − 1 There
are 3k tracks.

Construction: Every point i on track 0 must be con-
nected (via a polyline) to point π(i) on track 3k. Divide
the points on track 3k in two equal sized intervals of size
m/2, and into 4 equal sized intervals of size m/4, etc. If
π(i) is in the first/second interval of size m/2 of track
3k, we place i on the first/second interval of size m/2
of track 3. If π(i) is in the first/second/third/fourth
interval of size m/4 of track 3k, we place i on the
first/second/third/fourth interval of size m/4 of track
6. In general if π(i) is in the h-th interval of size m/(2j)
of track 3k, we place i on the h-th interval of size m/(2j)
track 3j.

The above construction yields a track layout of a sub-
division of the given matching. Furthermore, the result-
ing track layout contains no X-crossings. The proof is
by induction on k.

0 1 0 1

π(0) π(1) π(1) π(0)

t0

t1

t2

t3

Figure 2: Base case – the two possible matches.

0 1 2 3 4 5 6 7

0

1

2

3

Figure 3: Inductive case. Bend-points shown in black.
A simple 3D layout places tracks 0 and 3 in the plane
Z = 0, track 1 in Z = −1, and track 2 in Z = +1 which
thus eliminates crossings.

Base case, k = 1: See Fig. 2. If π(0) = 0, we
connect points 0 and 1 on track 0 to points 0 and 1 on
track 3. If π(0) = 1, we connect point 0 on track 0 via
a point on track 1 to point π(0) on track 3. We connect
point 1 on track 0 via a point on track 2 to point π(1)
on track 3. Thus the potential X-crossing formed by 0,
π(0) and 1, π(1) is removed.

Inductive case, k > 1: See Fig. 3. If (i < m/2 and
π(i) < m/2) or (i ≥ m/2 and π(i) ≥ m/2), we connect
point i on track 0 to point i on track 3. If (i < m/2 and
π(i) ≥ m/2) we connect point i on track 0 to point i
on track 1. We connect the points in track 1 to the re-
maining points in the second half on track 3 so that the
points have the same order on both tracks. If (i ≥ m/2
and π(i) < m/2) we connect point i on track 0 to point
i on track 2. We connect the points in track 2 to the
remaining points in the first half on track 3 so that the
points have the same order on both tracks. There are
no crossings involved within each of these three cases,
since the same order is maintained within each case.
A crossing occurring between two different cases is not
an X-crossing since each case involves different tracks –
an intersection can only occur between a pair of edges
involving two of tracks 0,3, tracks 1,3, and tracks 2,3.
Tracks 1, 2 and 3 contain at most 2 subdivision vertices
per edge which correspond to bend-points.

We can now recursively connect the 2k−1 points in the
first half of track 3 to the first half of track 3k, using the
first halves of tracks 4, 5, 6, ..., 3k and at most 2(k − 1)
bends per edge. And we can recursively connect 2k−1

points in the second half of track 3 to the second half of
track 3k, using the second halves of tracks 4, 5, 6, ..., 3k
and with at most 2(k − 1) bends per edge. �

This matching construction will be used in section 3
but it is instructive to note a simple three-dimensional
drawing with all points on three parallel planes. Since
there are no X-crossings in the resulting layout, a 3D
drawing is easily constructed by placing each track ti as
follows:

• if i = 0(mod 3) then track ti is in the plane Z = 0

• if i = 1(mod 3) then track ti is in the plane Z = −1

• if i = 2(mod 3) then track ti is in the plane Z = +1

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

225

24th Canadian Conference on Computational Geometry, 2012

3 Three-Dimensional Drawing of a Given Graph

Given an arbitrary graph with n vertices and m edges,
we outline a technique to draw the graph in three di-
mensions. As a first step, a track layout of (a subdivi-
sion of) the graph is produced, and subsequently a three
dimensional drawing is produced.

Each vertex of the graph is placed on track t0 with
coordinates for vi at (i, 0). A matching is now created
based on the edges. For each edge (i, j), i < j, a point is
placed on track t1 at consecutive integer x values. The
order of the edges is lexicographic – all edges for vertex
vi come before those of vi+1, and the point for edge
(i, j) comes before (i, j + 1). Thus there are m points
on track t1; each point representing edge (i, j) is joined
by a line segment to vi on track t0. Label the points
1,...m. Fig. 4 shows this preliminary step for K6 but
with a modified labeling.

Figure 4: The matching for the 15 edges of K6. The
intervals are 8, 4, and 2. Vertices are labeled 1,2,...6 and
the label for edge (i, j) is denoted as i, j. X-crossings
in the matching are removed as in Lemma 2.1. Edges
from the lowest track to the vertices are not displayed.

Similarly, on track t∗, m points are located as follows.
For each edge (i, j) with i < j, points for vj come before
those of vj+1 and those from vi are before those of vi+1.
The labels for the points on track t∗ are determined
from the associated edge point on track t1; if edge (i, j)
has label α on track t1, then it maintains that label on
track t∗. Each edge point on track t∗ associated with
an edge (i, j) is joined by a line segment to vj on track
t0. The resulting perfect matching between the edge
points on the two tracks t1 and t∗ can be processed as
in the previous section. The track drawing thus con-
structed has 3 logm + 2 tracks and no X-crossings and
no overlaps. The width of the drawing is max(n,m).

One method to convert the final track drawing into
a three-dimensional drawing is to use the technique de-
scribed in [7] which would automatically yield a drawing

of volume O((n+m) log3m), however a more compact
drawing can be achieved as follows.

X

Y

Z

1

2

3

t1

t0

t∗

Figure 5: Sketch of track construction – only the first
and last sets of tracks for the j groups are shown.

Place track t0 along the x-axis (y = 0, z = 0). Place
track t1 parallel to t0 but at y = 2, z = 0 and then each
group j of 3 tracks for 0 ≤ j < logm at: y = 1, z = j+1;
y = 3, z = j + 1; y = 2, z = j + 1.

The track t∗ is placed at y = 1, z = logm + 1 and
connected to each point on the final track which is at y =
2, z = logm. Finally, each point on track t∗ is joined to
the associated vertex on track t0. Fig. 5 sketches the
layout of the tracks.

The volume is O((n+m) logm). Each point produced
in the perfect matching construction may contribute a
bend point and there are at most 2 logm such points.
The construction outlined above can be summarized in
the following theorem.

Theorem 2 An arbitrary graph with n vertices and m
edges can be drawn crossing-free in three dimensions in
volume O((m + n) logm) with at most O(logm) bends
per edge.

For planar graphs m ≤ 3n − 6. Hence the following
corollary is immediate.

Corollary 3 A planar graph with n vertices can be
drawn crossing-free in three dimensions with a volume
of O(n log n), and with at most O(log n) bends per edge.

3.1 Modified Construction

We now modify the previous construction to obtain a
drawing with asymptotically similar volume but slightly
improved bend complexity.

The previous construction has dimensions m × 4 ×
(1+logm) and indeed is contained in an infinite wedge-
shaped region defined by t0, and the two half-planes

24th Canadian Conference on Computational Geometry, 2012

226

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

through t0,t1 and t0,t∗. We now partition the edges of
G into groups of cardinality n, and draw each group
in a separate wedge. Let z = dm/ne. Arbitrarily
partition the edges of E into E1, · · · , Ez. Each set of
edges Ei is drawn in a separate (infinite) wedge bounded
by t0, and the two half-planes containing t0 and the
tracks ti1 at y = 1, z = i(1 + log n) and ti∗ at y = 1,
z = i(1+log n)+log n. The intersection of these wedges
is exactly the track at t0 containing the vertices of G.
The volume of the resulting drawing is O(n · z log n)
which is O(m log n), and there are O(log n) bends. Note
that these results match asymptotically those of Duj-
mović, and Wood [10], however our construction is in-
dependent of the vertex ordering, whereas their con-
struction requires knowledge of a queue layout.

4 Three Dimensional Point-Set Embedding

Our first result is that the existence version of 3DPSE
is always solvable if the volume of the drawing is uncon-
strained.

Theorem 4 The complete graph Kn can be drawn
crossing-free on any set of n distinct grid points in 3D,
with at most 3 bends per edge.

The proof is existential and omitted in this version.
Clearly, if no bends are allowed, Kn may be undraw-
able on the specified point-set.

Since the 3DPSE problem remains open when the
bends and volume are constrained, it is natural to con-
sider constraints on the point-set in this context. We
now consider a three dimensional version of the point-
set embeddability problem with mapping.
3DPSEp: Given a graph G with n vertices, V =
{v1, v2, . . . vn}, and given a set of n distinct points
P = {p1, p2, . . . pn} each with integer coordinates in the
XY plane, can G be drawn crossing-free on P with vi at
pi and with a polynomial number of bends (with integer
coordinates) and in a polynomial volume?

Remark: Since our construction does not rely on
properties of the graph, we assume the with mapping
version of the problem. Our solution trivially solves the
without mapping version of the problem by creating an
arbitrary mapping.

Theorem 5 Let G be an arbitrary graph with n vertices
and m edges and let P be a set of n points each with
integer coordinates in the XY plane in a bounding box
of size W × H, with W ≥ H. Then G can be drawn
crossing-free on P within a bounding box of dimensions
max(W,m) × (H + 3) × (2 + logm) and with at most
O(logm) bends per edge.

Proof. Without loss of generality, we assume the points
are labelled in order by X-coordinate, and then by

Y -coordinate in the case of points with equal X-
coordinate. We assume X(p0) = 0 and mini Y (pi) = 0.
Then, W = X(pn) and H = maxi Y (pi). See Fig. 6.

p1

p2

p3

p4

p5

p6

p7

p8

p9

(0,0) W

H

L0 in Z = −1 plane

X

Y

Figure 6: Points specified in the Z = 0 plane and pro-
jection of the line L0

The drawing technique described in section 3 can now
be almost directly applied, using two lines that host the
required matching of the edge points. We construct a
line L0 from (0,-2,-1) to (m − 1,-2,-1). The m edges of
G are ordered lexicographically. That is, edge (vi, vj)
precedes edge (vi, vj+1), and if i < j then all edges from
vi precede those of vj . More precisely, the following
pseudocode specifies the ordering as drawn.

e:=0;

for i:=1 to n-1

for j:= i+1 to n

if (vi, vj) ∈ E(G) then

{ join pi to (e,-2,-1);

e++; }
The line L′ from (0,-1, logm) to (m − 1,−1, logm)

provides the matching, but for convenience a parallel
line L′′ is used from (0,0,1+logm) to (m−1, 0, 1+logm)
and joined to the vertex points as follows.

e:=0;

for j:=2 to n

for i:= 1 to j-1

if (vi, vj) ∈ E(G) then

{ join pj to (e,0,1+logm);

e++; }
Each point (i,0,1+logm) is joined to the correspond-

ing point (i,−1, logm) on L′. The matching construc-
tion from L0 to L′ then lies between the planes Y = −1
and Y = −3.

We now prove there are no crossings in the graph
as drawn. Consider the line segments between L0 and
the points P . A pair of segments that crossed would
necessarily have two endpoints on L0, one from each

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

227

24th Canadian Conference on Computational Geometry, 2012

segment. Consider the set of all planes containing L0

and intersecting a pair of points pi and pj . These two
points must have the same Y -coordinate, in which case
their edges cannot cross since all edges from pi come
strictly before any edges from pj .

A similar argument holds for the segments between
L′′ and P . Finally, no segments in the matching inter-
sect the segments in the previous two cases since they
are separated in space by a plane. �

A simple consequence of our construction is that Kn

can be drawn with the vertices located in an
√
n×√n

2D grid and with a volume of m · √n · logm. Since
m = n(n− 2)/2, this volume is O(n2.5 log n).

Similarly, any planar graph can be drawn with ver-
tices in an

√
n × √n 2D grid and with a volume of

O(n log n). The aspect ratio of such a drawing is su-
perior to previously published drawings, thus partially
addressing the open problem presented in [8].

5 Conclusions and Open Problems

This paper presented a constructive technique to draw
arbitrary graphs in three dimensions with low volume
but with a non-constant number of bends. In particular
for planar graphs the construction results in a volume
of O(n log n) with O(log n) bends per edge. It remains
an open problem to determine if planar graphs can be
drawn in O(n) volume with any number of bends.

Our solution to the 3DPSEp problem requires
O(logm) bends per edge. Can the number of bends
per edge be reduced to a constant while preserving a
reasonable volume bound? The general 3D point-set
embeddability problem in which the specified point-set
is not constrained to a plane remains as an interesting
open problem if the volume must be constrained.

Acknowledgments: A python implementation of
the construction described in section 3 was writ-
ten by Ian Stewart and Fei Wang and has been
incorporated as a plugin to the GLuskap software
package for drawing and editing graphs in 3D.
See http://www.cs.uleth.ca/~wismath/bends3d for
links and additional pictures.

References

[1] P. Bose, J. Czyzowicz, P. Morin, D. R. Wood. The
maximum number of edges in a three-dimensional grid-
drawing, JGAA, 8(1):21–26, 2004.

[2] S. Cabello. Planar embeddability of the vertices of a
graph using a fixed point set is NP-Hard. JGAA 10
(2006) 353–363.

[3] T. Calamoneri and A. Sterbini. 3D straight-line grid
drawing of 4-colorable graphs, Information Processing
Letters 63(2):97–102, 1997.

[4] R. F. Cohen, P. Eades, T. Lin, and F. Ruskey. Three-
dimensional graph drawing, Algorithmica, 17:199–208,
1997.

[5] O. Devillers, H. Everett, S. Lazard, M. Pentcheva,
S. Wismath. Drawing Kn in three dimensions with one
bend per edge, JGAA 2006, Vol. 10 (2), pp. 287–295.

[6] E. Di Giacomo, W. Didimo, G. Liotta, H. Meijer, S.
Wismath. Constrained point-set embeddability of pla-
nar graphs. IJCGA Vol. 20, (5), pp. 577-600, 2010.

[7] E. Di Giacomo, G. Liotta, H. Meijer, S. Wismath. Vol-
ume requirements of 3D upward drawings, Discrete
Mathematics 309, pp. 1824-1837, 2009

[8] G. Di Battista, F. Frati, J. Pach. On the queue number
of planar graphs, FOCS 2010, 365-374

[9] V. Dujmović, P. Morin, and D. R. Wood. Layout of
graphs with bounded tree-width, SIAM J. of Comput-
ing, 34(3)553-579, 2005.

[10] V. Dujmović, and D. R. Wood. Three-dimensional grid
drawings with sub-quadratic volume, (GD ’03), LNCS
2912:190–201, Springer-Verlag, 2004.

[11] V. Dujmović, and D. R. Wood. Stacks, queues and
tracks: layouts of graph subdivisions, Discrete Math
and Theoretical Computer Science, 7:155-202, 2005.

[12] B. Dyck, J. Joevenazzo, E. Nickle, J. Wilsdon, and
S. Wismath. Drawing Kn in 3D with 2 bends per edge,
U. of Lethbridge Tech Rep #CS-01-04: 2–7, Jan 2004.

[13] S. Felsner, G. Liotta, S. Wismath. Straight-line draw-
ings on restricted integer grids in two and three dimen-
sions, JGAA, 7(4):363–398, 2003.

[14] L. Heath and A. Rosenberg. Graph layouts using
queues, SIAM Journal on Computing, 21(5):927–958,
1992.

[15] M. Kaufmann and R. Wiese. Embedding vertices at
points: few bends suffice for planar graphs, JGAA,
6(1):115–129, 2002.

[16] P. Morin and D. R. Wood. Three-dimensional 1-bend
graph drawings, JGAA, 8(3), 2004.

[17] J. Pach, T. Thiele, and G. Tóth. Three-dimensional
grid drawings of graphs, (GD ’97), LNCS, 1353:47–51,
Springer-Verlag, 1997.

[18] J. Pach and R. Wenger. Embedding planar graphs at
fixed vertex locations. Graph and Combinatorics 17,
2001, 717–728.

24th Canadian Conference on Computational Geometry, 2012

228

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Approximating Majority Depth

Dan Chen∗ Pat Morin†

Abstract

We consider the problem of approximating the majority
depth (Liu and Singh, 1993) of a point q with respect to
an n-point set, S, by random sampling. At the heart of
this problem is a data structures question: How can we
preprocess a set of n lines so that we can quickly test
whether a randomly selected vertex in the arrangement
of these lines is above or below the median level. We
describe a Monte-Carlo data structure for this problem
that can be constructed in O(n log n) time, can answer
queries O((log n)4/3) expected time, and answers cor-
rectly with high probability.

1 Introduction

A data depth measure quantifies the centrality of an
individual (a point) with respect to a population (a
point set). Depth measures are an important part of
multivariate statistics and many have been defined, in-
clude Tukey depth [17], Oja depth [13], simplicial depth
[10], majority depth [11], and zonoid depth [8]. For
an overview of data depth from a statistician’s point of
view, refer to the survey by Small [15]. For a computa-
tional geometer’s point of view refer to Aloupis’ survey
[1].

In this paper, we focus on the bivariate majority
depth measure. Let S be a set of n points in R2. For
a pair x, y ∈ S, the major side of x, y is the union of
the (at most 2) closed halfplanes having both x and y
on their boundary that contain at least n/2 points of S.
The majority depth [11, 14] of a point, q, with respect
to S, is defined as the number of pairs x, y ∈ S that
have q in their major side.

Under the usual projective duality [9], the set S be-
comes a set, S∗, of lines; pairs of points in S become ver-
tices in the arrangement, A(S∗), of S∗; and q becomes
a line, q∗. The median-level of A(S∗) is the closure of
the set of points on lines in S that have exactly bn/2c
lines of S above them. Then the majority depth of q
with respect to S is equal to the number of vertices, x,
in A(S∗) such that

1. x is above q∗ and x is above the median level; or

∗School of Computer Science, Carleton University,
dchen4@connect.carleton.ca
†School of Computer Science, Carleton University,

morin@scs.carleton.ca

2. x is below q∗ and x is below the median level.

Chen and Morin [5] present an algorithm for com-
puting majority depth that works in the dual. Their
algorithm works by computing the median level, com-
puting the intersections of q∗ with the median level, and
using fast inversion counting to determine the number,
t, of vertices of the arrangement sandwiched between q∗

and the median level. The majority depth of q is then
equal to

(
n
2

)
− t. The running time of this algorithm is

within a logarithmic factor of m, the complexity of the
median level.

The maximum complexity of the median level of n
lines has been the subject of intense study since it was
first posed. The current best upper bound is O(n4/3),
due to Dey [7] and the current best lower bound is

2Ω(
√

log n), due to Tóth [16]. The median level can be
computed in time O(min{m log n, n4/3}) [2, 3]. Thus,
the worst-case running time of Chen and Morin’s ma-
jority depth algorithm is ω(n(log n)c) for any constant
c, but no worse than O(n4/3 log n).

It seems difficult for any algorithm that computes the
exact majority depth of a point to avoid (at least im-
plicitly) computing the median level of A(S∗). This
motivates approximation by random sampling. In par-
ticular, one can use the simple technique of sampling
vertices of A(S∗) and checking whether

1. each sample lies above or below q∗; and

2. each sample lies above or below the median level of
S∗.

In the primal, this is equivalent to taking random pairs
of points in S and checking, for each such pair, (x, y),
if, (1) the closed upper halfplane, hxy, with x and y on
its boundary, contains q and (2) if hxy contains n/2 or
more points of S.

The former test takes constant time but the latter test
leads to a data structuring problem: Preprocess the set
S∗ so that one can quickly test, for any query point, x,
whether x is above or below the median level of A(S∗).
(Equivalently, does a query halfplane, h, contain n/2 or
more points of S.) We know of two immediate solutions
to this problem. The first solution is to compute the
median level explicitly, in O(min{m log n, n4/3}) time,
after which any query can be answered in O(log n) time
by binary search on the x-coordinate of x. The sec-
ond solution is to construct a half-space range counting

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

229

24th Canadian Conference on Computational Geometry, 2012

structure—a partition tree—in O(n log n) time that can
count the number of points of S in hxy in O(n1/2) time
[4].

The first solution is not terribly good, since Chen and
Morin’s algorithm shows that computing the exact ma-
jority depth of q can be done in time that is within a
logarithmic factor of m, the complexity of the median
level. (Though if the goal is to preprocess in order to ap-
proximate the majority depth for many different points,
then this method may be the right choice.)

In this paper, we show that the second solution can be
improved considerably, at least when the application is
approximating majority depth. In particular, we show
that when the query point is a randomly chosen ver-
tex of the arrangement A(S∗), a careful combination of
partition trees [4] and ε-approximations [12] can be used
to answer queries in O((log n)4/3) expected time. This
faster query time means that we can use more random
samples which leads to a more accurate approximation.

The remainder of this paper is organized as follows.
In Section 2 we review results on range counting and
ε-approximations and show how they can be used for
approximate range counting. In Section 3 we show how
these approximate range counting results can be used
to quickly answer queries about whether a random ver-
tex of S∗ is above or below the median level of S∗. In
Section 4 we briefly mention how all of this applies to
the problem of approximating majority depth. Finally,
Section 5 concludes with an open problem.

2 Approximate Range Counting

In this section, we consider the problem of approximate
range counting. That is, we study algorithms to prepro-
cess S so that, given a closed halfplane h and an integer
i ≥ 0, we can quickly return an integer ri(h, S) such
that

||h ∩ S| − ri(h, S)| ≤ i .
This data structure is such that queries are faster when
the allowable error, i, is larger.

There are no new results in this section. Rather it
is a review of two relevant results on range searching
and ε-approximations that are closely related, but sep-
arated by nearly 20 years. The reason we do this is
that, without a guide, it can take some effort to gather
and assemble the pieces; some of the proofs are exis-
tential, some are stated in terms of discrepancy theory,
and some are stated in terms of VC-dimension. The
reader who already knows all this, or is uninterested in
learning it, should skip directly to Lemma 2.

The first tools we need come from a recent result of
Chan on optimal partition trees and their application
to exact halfspace range counting [4, Theorems 3.2 and
5.3, with help from Theorem 5.2]:

Theorem 1. Let S be a set of n points in R2 and let
N ≥ n be an integer. There exists a data structure that
can preprocess S in O(n logN) expected time so that,
with probability at least 1−1/N , for any query halfplane,
h, the data structure can return |h∩S| in O(n1/2) time.

We say that a halfplane, h, crosses a set, X, of points
if h neither contains X nor is disjoint from X. The
partition tree of Theorem 1 is actually a binary space
partition tree. Each internal node, u, is a subset of R2

and the two children of a node are the subsets of u
obtained by cutting u with a line. Each leaf, w, in this
tree has |w∩S| ≤ 1. The O(n1/2) query time is obtained
by designing this tree so that, with probability at least
1 − 1/N , there are only O(n1/2) nodes crossed by any
halfplane.

For a geometric graph G = (S,E), the crossing num-
ber of G is the maximum, over all halfplanes, h, of the
number of edges uw ∈ E such that h crosses {u,w}.
From Theorem 1 it is easy to derive a spanning tree of
S with crossing number O(n1/2) using a bottom-up al-
gorithm: Perform a post-order traversal of the partition
tree. When processing a node u with children v and w,
add an edge to the tree that joins an arbitrary point in
v ∩ S to an arbitrary point in w ∩ S. Since a halfplane
cannot cross any edge unless it also crosses the node
at which the edge was created, this yields the following
result [4, Corollary 7.1]:

Theorem 2. For any n point set, S, and any N ≥ n,
it is possible to compute, in O(n logN) expected time,
a spanning tree, T , of S that, with probability at least
1− 1/N , has crossing number O(n1/2).

A spanning tree is not quite what is needed for what
follows. Rather, we require a matching of size bn/2c.
To obtain this, we first convert the tree, T , from Theo-
rem 2 into a path by creating a path, P , that contains
the vertices of T in the order they are discovered by a
depth-first traversal. It is easy to verify that the cross-
ing number of P is at most twice the crossing number
of T . Next, we take every second edge of P to obtain a
matching:

Corollary 1. For any n point set, S, and any N ≥ n,
it is possible to compute, in O(n logN) expected time, a
matching, M , of S of size bn/2c that, with probability
at least 1− 1/N has crossing number O(n1/2).

The following argument is due to Matoušek, Welzl
and Wernsich [12, Lemma 2.5]. Assume, for simplicity,
that n is even and let S′ ⊂ S be obtained by taking
exactly one endpoint from each edge in the matching
M obtained by Corollary 1. Consider some halfplane h,
and let M I

h be the subset of the edges of M contained
in h and let MC

h be the subset of edges crossed by h.
Then

|h ∩ S| = 2|M I
h |+ |MC

h | .

24th Canadian Conference on Computational Geometry, 2012

230

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

In particular,

|h ∩ S| − |MC
h | ≤ 2|h ∩ S′| ≤ |h ∩ S|+ |MC

h |

Since |MC
h | ∈ O(n1/2), this is good news in terms of

approximate range counting; the set S′ is half the size
of S, but 2|h∩S′| gives estimate of |h∩S| that is off by
only O(n1/2). Next we show that this can be improved
considerably with almost no effort.

Rather than choose an arbitrary endpoint of each
edge in M to take part in S′, we choose each one of
the two endpoints at random (and independently of the
other n/2 − 1 choices). Then, each edge in MC

h has
probability 1/2 of contributing a point to h ∩ S′ and
each edge in M I

h contributes exactly one point to h∩S′.
Therefore,

E[2|h ∩ S′|] = 2

(
1|M I

h |+
1

2
|MC

h |
)

= |h ∩ S| .

That is, 2|h ∩ S′| is an unbiased estimator of |h ∩ S|.
Even better: the error of this estimator is (2 times)
a binomial(|MC

h |, 1/2) random variable, with |MC
h | ∈

O(n1/2). Using standard results on the concentration of
binomial random variables (i.e., Chernoff Bounds [6]),
we immediately obtain:

Pr{|2|h ∩ S′| − |h ∩ S|| ≥ cn1/4(logN)1/2} ≤ 1/N ,

for some constant c > 0. That is, with probability
1 − 1/N , 2|h ∩ S′| estimates |h ∩ S| to within an er-
ror of O(n1/4(logN)1/2). Putting everything together,
we obtain:

Lemma 1. For any n point set, S, and any N ≥ n, it
is possible to compute, in O(n logN) expected time, a
subset S′ of S of size dn/2e such that, with probability
at least 1− 1/N , for every halfplane h,

|2|h ∩ S′| − |h ∩ S|| ∈ O(n1/4(logN)1/2) .

What follows is another argument by Matoušek,
Welzl and Wernisch [12, Lemma 2.2]. By repeatedly ap-
plying Lemma 1, we obtain a sequence of O(log n) sets
S0 ⊃ S1 · · · ⊃ Sr, S0 = S and |Sj | = dn/2je. For j ≥ 1,
the set Sj can be computed from Sj−1 in O(2−jn logN)
time and has the property that, with probability at least
1− 1/N , for every halfplane h,

∣∣2j |h ∩ Sj | − |h ∩ S|
∣∣ ∈ O(23j/4n1/4(logN)1/2) . (1)

At this point, we have come full circle. We store each of
the sets S0, . . . , Sr in an optimal partition tree (Theo-
rem 1) so that we can do range counting queries on each
set Si in O(|Si|1/2) time. This (finally) gives the result
we need on approximate range counting:

Lemma 2. Given any set S of n points in R2 and any
N ≥ n, there exists a data structure that can be con-
structed in O(n logN) expected time and, with probabil-
ity at least 1 − 1/N , can, for any halfspace h and any
integer i ∈ {0, . . . , n}, return a number ri(h, S) such
that

||h ∩ S| − ri(h, S)| ≤ i .

Such a query takes O(min{n1/2, (n/i)2/3(logN)1/3})
expected time.

Proof. The data structure is a sequence of optimal par-
tition trees on the sets S0, . . . , Sr. All of these structures
can be computed in O(n logN) time, since |S0| = n and
the size of each subsequent set decreases by a factor of
2.

To answer a query, (h, i), we proceed as follows: If
i ≤ n1/4, then we perform exact range counting on the
set S0 = S in O(n1/2) time to return the value |h ∩ S|.
Otherwise, we perform range counting on the set Sj

where j is the largest value that satisfies

C23j/4n1/4(logN)1/2 ≤ i ,

where the constant C depends on the constant in
the big-Oh notation in (1). This means |Sj | =
O((n/i)4/3(logN)2/3)) and the query takes expected
time

O(|Sj |1/2) = O((n/i)2/3(logN)1/3) ,

as required.

Our main application of Lemma 2 is a test that checks
whether a halfspace, h, contains n/2 or more points of
S.

Lemma 3. Given any set S of n points in R2 and any
N ≥ n, there exists a data structure that can be con-
structed in O(n logN) expected time and, with probabil-
ity at least 1− 1/N , can, for any halfspace h determine
if |h ∩ S| ≥ n/2. Such a query takes expected time

Q(i) =

{
O(n1/2) for 0 ≤ i ≤ n1/4

O((n/i)2/3(logN)1/3) otherwise,

where i = ||h ∩ S| − n/2|.

Proof. As preprocessing, we construct the data struc-
ture of Lemma 2. To perform a query, we perform
a sequence of queries (h, ij), for j = 0, 1, 2, . . ., where
ij = n/2j . The jth such query takes O(22j/3(logN)1/3)
time and the question, “is |h ∩ S| ≥ n/2?” is resolved
once n/2j < i/2. Since the cost of successive queries
is exponentially increasing, this final query takes time
O(min{n1/2, (n/i)2/3(logN)1/3}) and dominates the to-
tal query time.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

231

24th Canadian Conference on Computational Geometry, 2012

3 Side of Median Level Testing

We are now ready to tackle the main problem that
comes up in trying to estimate majority depth by ran-
dom sampling: Given a range pair of points x, y ∈ S,
determine if there are more than n/2 points in the up-
per halfspace, hxy, whose boundary is the line through
x and y. In this section, though, it will be more natu-
ral to work in the dual setting. Here the question be-
comes: Given a random vertex, x, of A(S∗), determine
whether x is above or below the median level of S∗.
The data structure in Lemma 3 answers these queries
in time O((n/i)2/3(logN)1/3) when the vertex x is on
the n/2− i or n/2 + i level.

Before proving our main theorem, we recall a result of
Dey [7, Theorem 4.2] about the maximum complexity
of a sequence of levels.

Lemma 4. Let L be any set of n lines and let s be
the number of vertices of A(L) that are on levels k, k +
1, . . . , k + j. Then, s ∈ O(nk1/3j2/3).

We are interested in the special case of Lemma 4
where k = n/2− i and j = 2i:

Corollary 2. Let L be any set of n lines. Then, for
any i ∈ {1, . . . , n/2} the maximum total number of ver-
tices of A(L) whose level is in {n/2− i, . . . , n/2 + i} is
O(n4/3i2/3).

Corollary 2 is useful because it gives bounds on the
distribution of the level of a randomly chosen vertex of
A(S∗).

Theorem 3. Given any set, L, of n lines and any
c > 0, there exists a data structure that can test if a
point x is above or below the median level of L. For
any constant, c, this structure can be made to have the
following properties:

1. It can be constructed in O(n log n) expected time
and uses O(n) space;

2. with probability at least 1−n−c, it answers correctly
for all possible queries; and

3. when given a random vertex of A(L) as a query,
the expected query time is O((log n)4/3).

Proof. The data structure is, of course, the data struc-
ture of Lemma 3 with N = nc. Let ni be the number of
vertices of A(L) on levels n/2− i and n/2 + i. Then the
expected query time of this data structure is at most

F (n0, . . . , nn/2) =
1(
n
2

)
n/2∑

i=0

niQ(i) , (2)

where, for sufficiently large n, Q(i) is upper-bounded by

Q(i) ≤
{
βn1/2 if 0 ≤ i ≤ n1/4

β(n/i)2/3(logN)1/3 otherwise.

for some constant β > 0. Our goal, therefore, is
to upper-bound F (n0, . . . , nn/2) subject to Dey’s con-
straints (Lemma 4):

j∑

i=0

ni ≤ γn4/3j2/3

for some constant γ > 0 and all j ∈ {0, . . . , n/2}.
Working in our favour is that Q(i) ≥ Q(i′) for all

i ≤ i′. This implies that, to obtain an upper bound on
F (n0, . . . , nn/2), we can set

j∑

i=0

ni =

{
γn4/3 if j = 0

γn4/3j2/3 otherwise
(3)

for all j ∈ {0, . . . , n/2}. To see why this is so, suppose
we have a sequence S = n0, . . . , nn/2 that satisfies Dey’s

constraints but for which
∑j

i=0 ni < γn4/3j2/3 for some
index j. If j = n/2 then we can obviously increase the
value of nj , still satisfy Dey’s constraints and increase
the value of F (n0, . . . , nj). Otherwise (j ∈ {0, . . . , n/2−
1}), the sequence

S′ = n0, . . . , nj + δ, nj+1 − δ, . . . , nn/2 ,

where ∆ = γn4/3j2/3 − ∑j
i=0 ni, also satisfies Dey’s

constraints. Furthermore,

F (S′)− F (S) = ∆Q(j)−∆Q(j + 1) ≥ 0 ,

so F (S′) ≥ F (S). Repeatedly applying this type of
modification (or using induction) shows that the se-
quence S = n0, . . . , nn/2 that satisifies (3) is a sequence
that maximizes F (S).

Finally, we can bound the sequence that satisfies (3)
by differentiating γn4/3j2/3 with respect to j. This
yields ni ∈ O(n4/3/i1/3) for all i ∈ {1, . . . , n/2}. Plug-
ging this back into (2) yields

F (n0, . . . , nn/2) (4)

≤ 1(
n
2

)

O(n4/3Q(0)) +

n/2∑

i=1

O(n4/3Q(i)/i1/3)

≤ o(1)

+
1(
n
2

)
n1/4∑

i=1

O(n4/3n1/2/i1/3) (5)

+
1(
n
2

)
n/2∑

i=n1/4+1

O(n4/3(n/i)2/3(logN)1/3/i1/3)

(6)

Recall that
∫ n

1
i−1/3 di = 3

2 (n2/3−1). Using this integral

24th Canadian Conference on Computational Geometry, 2012

232

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

to bound the sum in (5) allows us to just squeak by:

(5) =
1(
n
2

)
n1/4∑

i=1

O(n4/3n1/2/i1/3)

=
1(
n
2

)O(n4/3n1/2(n1/4)2/3) (bounding by integral)

= O(1)

We are not so lucky with the sum in (6), which ends up
being harmonic:

(6) =
1(
n
2

)
n/2∑

i=n1/4+1

O(n4/3(n/i)2/3(logN)1/3/i1/3)

=

n/2∑

i=n1/4+1

O((logN)1/3/i)

= O((log n)(logN)1/3) (since
∑n

i=1 1/i = O(log n))

= O((log n)4/3) ,

since N = nc and c is constant. To summarize, the
expected running time of the query algorithm is at most

F (n0, . . . , nn/2) ≤ o(1)+ (5)+(6) = O((log n)4/3) .

4 Estimating Majority Depth

Finally, we return to our application, namely estimating
majority depth.

Theorem 4. Given a set S of n points in R2 and
any constant c > 0, there exists a data structure that
can preprocess S in O(n log n) expected time such that,
for any point q, the data structure can compute, in
O(r(log n)4/3) expected time, a value d′(q, S) such that

Pr

{ |d′(q, S)− d(q, S)|
d(q, S)

≥ ε
}
≤ exp

(
−Ω

(
ε2rp

))
+n−c ,

where d(q, S) is the majority depth of p with respect to
S and p = d(q, S)/

(
n
2

)
is the normalized majority depth

of q.

Proof. The data structure is the one described in The-
orem 3. Let p = d(q, S)/

(
n
2

)
. Select r random vertices

of A(S∗) (by taking random pairs of lines in S∗) and,
for each sample, test if it contributes to d(q, S). This
yields a count r′ ≤ r where

E[r′] = rp .

We then return the value d′(q, S) = (r′/r)
(
n
2

)
, so that

E[d′(q, S)] = d(q, S), as required.

To prove the error bound, we use the fact that r′ is
a binomial(p, r) random variable. Applying Chernoff
Bounds [6] on r′ yields:

Pr{|r′ − rp| ≥ εrp} ≤ exp(−Ω(ε2rp)) .

Finally, the algorithm may fail not because of badly
chosen samples, but rather, because the data structure
of Theorem 3 fails. The probability that this happens is
at most n−c. Therefore, the overall result follows from
the union bound.

5 Conclusions

Although the estimation of majority depth is the origi-
nal motivation for studying this problem, the underly-
ing question of the tradeoffs involved in preprocessing
for testing whether a point is above or below the median
level seems a fundamental question that is still far from
answered. In particular, we have no good answer to the
following question:

Open Problem 1. What is the fastest linear-space data
structure for testing if an arbitrary query point is above
or below the median level of a set of n lines?

To the best of our knowledge, the current state of
the art is partition trees, which can only answer these
queries in O(n1/2) time.

References

[1] G. Aloupis. Geometric measures of data depth. In
R.Liu, R.Serfling, and D.Souvaine, editors, Data Depth:
Robust Multivariate Analysis, Computational Geometry
and Applications, volume 72 of DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science,
pages 147–158. American Mathematical Society, 2006.

[2] G. S. Brodal and R. Jacob. Dynamic planar convex
hull. In FOCS, pages 617–626. IEEE Computer Society,
2002.

[3] T. M. Chan. Remarks on k-level algorithms in the
plane. Manuscript, 1999.

[4] T. M. Chan. Optimal partition trees. Discrete & Com-
putational Geometry, 47(4):661–690, 2012.

[5] D. Chen and P. Morin. Algorithms for bivariate ma-
jority depth. In Proceedings of the 23rd Canadian Con-
ference on Computational Geometry (CCCG’11), pages
425–430, 2011.

[6] H. Chernoff. A measure of the asymptotic efficient of
tests of a hypothesis based on the sum of observations.
Annals of Mathematical Statistics, 23:493–507, 1952.

[7] T. K. Dey. Improved bounds for planar k-sets and re-
lated problems. Discrete & Computational Geometry,
19(3):373–382, 1998.

[8] R. Dyckerhoff, G. Koshevoy, and K. Mosler. Zonoid
data depth: Theory and computation. In A. Prat, edi-
tor, COMPSTAT 1996 - Proceedings in Computational

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

233

24th Canadian Conference on Computational Geometry, 2012

Statistics, pages 235–240. Physica-Verlag, Heidelberg,
August 1996.

[9] H. Edelsbrunner. Algorithms in Combinatorial Geome-
try. Springer-Verlag, Heidelberg, Germany, 1997.

[10] R. Liu. On a notion of data depth based on random
simplices. Annals of Statistics, 18(1):405–414, 1990.

[11] R. Liu and K. Singh. A quality index based on data
depth and multivariate rank tests. Journal of the Amer-
ican Statistical Association, 88(421):252–260, 1993.

[12] J. Matoušek, E. Welzl, and L. Wernisch. Discrepancy
and approximations for bounded VC-dimension. Com-
binatorica, 13:455–466, 1993.

[13] H. Oja. Descriptive statistics for multivariate distribu-
tions. Statistics and Probability Letters, 1(6):327–332,
1983.

[14] K. Singh. A notion of majority depth. Technical report,
Department of Statistics, Rutgers University, 1991.

[15] C. Small. A survey of multidimensional medians. In-
ternational Statistical Review, 58(3):263–277, 1990.

[16] G. Tóth. Point sets with many k-sets. In Symposium
on Computational Geometry, pages 37–42, 2000.

[17] J. W. Tukey. Mathematics and the picturing of data.
In Ralph D. James, editor, Proceedings of the Inter-
national Congress of Mathematicians, volume 2, pages
523–531, Vancouver Canada, August 1974.

24th Canadian Conference on Computational Geometry, 2012

234

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Flexible Crystal Frameworks

Ciprian S. Borcea1∗ Ileana Streinu2∗

Abstract

Building upon and complementing recent results on the
rigidity theory of periodic bar-and-joint frameworks,
this paper studies tetrahedral structures modeled on
specific crystalline materials: quartz, cristobalite and
tridymite. The general theory predicts at least three in-
finitesimal degrees-of-freedom. Here, we investigate the
actual deformations of these structures. We show that
quartz and cristobalite have smooth three-dimensional
configuration spaces, but ideal high tridymite is a singu-
lar configuration with a six-dimensional tangent space.
The topology around this singularity is explicitly de-
scribed.

1 Introduction

Motivated by questions arising in mathematical crys-
tallography and computational materials science, we
present in this paper specific geometric applications of
the general theory of rigidity and flexibility for periodic
frameworks developed in our recent papers [1, 4, 5, 3].

Molecules as mechanical frameworks. At a certain
approximation level, many molecules can be modeled as
mechanical frameworks, with rigid, fixed-length bonds
between particular pairs of atoms and fixed-angles be-
tween particular adjacent bonds. This opens the possi-
bility of using techniques from rigidity theory in molecu-
lar flexibility analysis. Considerations related to frame-
work flexibility appear already in the early 20th century
structural investigations based on X-ray crystallogra-
phy, see e.g. [6, 8, 16]. Geometric models of deforming
frameworks have been used in studying displacive phase
transitions in materials [7].

Rigidity and flexibility of crystalline materials.
Most of the molecular flexibility studies rely on com-
putationally intensive physics-based simulations or sim-
plified, kinematics-based methods [20, 10]. For large
molecules, and especially for crystalline materials, these
approaches are not only prohibitively expensive but also
numerically imprecise. Faster approaches for degree-of-
freedom counting and rigid component calculations are

∗Research of the authors funded by NSF and DARPA. 1.
Department of Mathematics, Rider University, Lawrenceville,
New Jersey, USA. borcea@rider.edu; 2. Computer Science
Department, Smith College, Northampton, Massachusetts, USA.
streinu@cs.smith.edu

known for mechanical frameworks characterized by the-
orems of Maxwell-Laman type. For the infinite, peri-
odic structures relevant to crystallography, an adequate
generic rigidity theoretical formulation has been pro-
posed only recently [1], leading to a combinatorial treat-
ment [4, 5] and efficient algorithms.

Generic and non-generic frameworks. Maxwell-
Laman theorems are rare and difficult to obtain (see
[9, 17] and the references given there), yet they are
the starting point of any research on computationally
tractable rigidity and flexibility studies of mechanical
structures. They provide generic, combinatorial charac-
terizations in graph-theoretical terms, for those struc-
tures which are minimally rigid for almost all possi-
ble geometric realizations. For a measure zero set of
non-generic situations, such a theorem will not hold.
The theory also predicts flexibility and counts infinites-
imal degrees of freedom in generic situations. While
deciding rigidity and flexibility for generic frameworks
is a tractable problem in most of the situations where
Maxwell-Laman theorems have been found (see [14]),
the non-generic cases remain elusive.

Results. In this paper we apply our theory of periodic
bar-and-joint frameworks to tetrahedral crystal struc-
tures modeled on quartz, cristobalite and tridymite.
We obtain topological descriptions of their configura-
tion spaces.

2 Generic rigidity for Periodic frameworks

To put in perspective the present results, we remind
the reader the classical combinatorial characterization
of rigidity, in terms of graph sparsity. Then, we give
a brief overview of our recent theorems, characterizing
generic periodic rigidity in arbitrary dimensions and the
flexibility of frameworks made from vertex-sharing sim-
plices, as well as the algorithmic implications.

Maxwell-Laman sparsity conditions. The theory of
finite frameworks goes back almost 150 years to Maxwell
[15], who identified a sparsity condition to be necessary
for minimal rigidity of bar-and-joint frameworks: in di-
mension d, for any subset of d ≤ n′ ≤ |V | vertices,
the underlying graph (with a node for each joint and an
edge for each bar) should span at most dn′−

(
d+1
2

)
edges,

with equality for the whole set of n = |V | vertices. The
sufficiency of this condition for generic frameworks in di-
mension two was proven over 100 years later (Laman’s

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

235

24th Canadian Conference on Computational Geometry, 2012

Figure 1: Left: A 2D periodic bar-and-joint framework con-
taining smaller rigid components. Right: the same frame-
work, viewed as a body-and-bar framework; the rigid com-
ponents form the bodies, and the remaining bars connect
distinct bodies.

theorem [12]), and is known to fail in higher dimensions.
The problem of completing the combinatorial charac-
terization for bar-and-joint frameworks in arbitrary di-
mensions remains an elusive open question. However,
some restricted classes of finite frameworks have been
shown to have similar Maxwell-Laman counting charac-
terizations: body-and-bar and body-and-hinge frame-
works [18, 19], and panel-and-hinge frameworks [11].

Maxwell-Laman sparsity for periodic frame-
works. The connection pattern of a periodic bar-
and-joint framework determines an infinite graph G =
(V,E). Periodicity, or more precisely d-periodicity
(where d represents the dimension of the ambient space
in which the graph is realized geometrically) requires
a free Abelian automorphism subgroup Γ ⊂ Aut(G) of
rank d. We work under the assumption that the quo-
tient graph G/Γ has a finite number n of vertex orbits
and a finite number m of edge orbits. The problem
of characterizing periodic frameworks is substantially
different from the finite case, and the generic periodic
bar-and-joint frameworks have been characterized in all
dimensions by a Maxwell-sparsity condition on the quo-
tient graph. However, a quotient graph may correspond
to several periodic frameworks, called “liftings”. The
following result gives, therefore, a necessary condition
for rigidity which is also sufficient in almost all the sit-
uations (i.e. except for a measure-zero set of possibili-
ties).

Theorem 1 ([4]) Let (G,Γ) be a d-periodic graph. Let
n and m denote the number of vertices, respectively
edges of the graph G modulo the periodicity group Γ.

If (G,Γ) is minimally rigid, then m = dn +
(
d
2

)
and

the quotient graph G/Γ contains a subgraph with dn− d
edges on the n vertices, which is (dn− d)-sparse.

Conversely, if m = dn +
(
d
2

)
and the quotient graph

G/Γ contains a subgraph with dn−d edges on the n ver-
tices, which is (dn− d)-sparse, then a generic lifting of

the edges yields a minimally rigid d-periodic graph, that
is, a generic quotient equivalent of (G,Γ) is minimally
rigid.

As a consequence, there are efficient (pebble game)
algorithms for deciding generic periodic bar-and-joint
rigidity [13].

As we said, a quotient graph may correspond to sev-
eral periodic frameworks. Distinguishing among them
the truly rigid ones remains a difficult problem. Some-
times, substructures in the infinite graph can be iden-
tified from the outset as being rigid; see Fig. 1 for an
example in 2D. The quotient graph loses this informa-
tion. We overcome this problem if we work with more
specific types of frameworks, such as periodic body-and-
bar, body-and-hinge, body-and-pin, etc. They all ap-
pear as special cases where additional algebraic depen-
dencies are present. Such cases are not guaranteed to
be generic a priori, and even getting a necessary spar-
sity condition (something that was trivial in the finite
case) is not easy. A recent result along these lines is
[5], which covers many situations occurring in molecu-
lar frameworks (body-and-bar, body-and-hinge, mixed
plate-and-bar), but not the vertex-sharing polyhedra of
this paper. Indeed, characterizing generic body-and-pin
structures remains an open question, in both the finite
and periodic case.

We have further proven that:

Theorem 2 ([1]) A periodic framework in Rd consist-
ing in vertex-sharing simplices has at least

(
d
2

)
infinites-

imal degrees-of-freedom (flexes). However, rigid exam-
ples can be constructed.

For the structures studied in this paper, all of which
are vertex-sharing tetrahedra, this theorem implies the
existence of at least 3 infinitesimal flexes. However, the
existence of infinitesimal flexes does not imply a con-
figuration space of dimension three; in fact, in [1] we
construct an explicit rigid example.

With these preliminaries in mind, one can see that our
results (presented next) confirm the predictions of the
generic theory, but do not follow directly from these the-
orems; indeed, they require different proof techniques,
analyzing the entire configuration space (via appropri-
ate parametrizations), rather than just the infinitesimal
behavior.

3 The quartz framework

The ideal quartz structure considered here is built from
congruent regular tetrahedra. Quartz is made from two
types of atoms, oxygen and silicon. Oxygen atoms cor-
respond to the vertices of the tetrahedra. Each oxygen
is shared by two tetrahedra and allows for their relative
rotations. Silicon atoms are placed at the centers of the

24th Canadian Conference on Computational Geometry, 2012

236

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

tetrahedra, and are rigidly attached to the oxygens. We
aim at examining all the geometric configurations of the
periodic framework, without concern for self-collision or
any other prohibition of a physical nature.

Figure 2: A fragment of the tetrahedral framework of
quartz. The periodicity lattice is generated by the four
black vectors, which must maintain a zero sum under
deformation. The full (infinite) framework is obtained
by translating the depicted tetrahedra with all periods
(black arrows).

We rely on the notation described in Figure 2. Equiv-
alence under Euclidean motions is eliminated by assum-
ing the tetrahedron marked A0A1A2A3 as fixed. Since
all edges maintain their length, the positions of the two
tetrahedra which share the vertices A0 and A1 are com-
pletely described by two orthogonal transformations R0,
respectively R1 as follows: R0 fixes A0 and takes Ai to
Bi, i 6= 0, while R1 fixes A1 and takes Aj to Cj , j 6= 1.
Figure 2, by depicting only the ‘visible’ edges, implies
that both R0 and R1 are orientation reversing, that is,
as orthogonal matrices −R0,−R1 ∈ SO(3).

If we denote the edge vectors Ai − A0 by ei, i = 1, 2, 3,
we have:

B3 − C2 = R0e3 − (e1 +R1(e2 − e1))

A3 − C3 = e3 − (e1 +R1(e3 − e1))

B2 −A2 = R0e2 − e2

C0 −B1 = e1 −R1e1 −R0e1

It follows that the dependency condition of a zero sum
for these four generators of the periodicity lattice takes
the form

R1(e1 − e2 − e3)−R0(e1 − e2 − e3) = e1 + e2 − e3 (1)

Under our regularity assumptions, the three vectors
R1(e1−e2−e3), R0(e1−e2−e3) and (e1 +e2−e3) have
the same length and form an equilateral triangle. This
restricts R0(e1 − e2 − e3) to the circle on the sphere of
radius ||e1− e2− e3|| (which corresponde with an angle
of 2π/3 with e1 + e2 − e3). Thus, −R0 ∈ SO(3) is con-
strained to a surface, which is differentiably a two-torus
(S1)2.

For each choice of −R0 on this torus, R1(e1 − e2 − e3)
is determined by (1), hence −R1 is restricted to a circle
S1 in SO(3). We summarize these calculations as:

Theorem 3 The deformation space of the ideal quartz
framework is given by a three dimensional torus (S1)3

minus the degenerate cases when the span of the four
vectors is less than three dimensional.

4 The cristobalite framework

The ‘ideal β cristobalite’ structure is illustrated in Fig-
ures 3 and 4. The periodicity group of the framework
is given by all the translational symmetries of the ideal
crystal framework. As a result, there are n = 4 orbits
of vertices and m = 12 orbits of edges.

Adopting the notations of Figure 3, we may assume
the tetrahedron Os1s2s3 as fixed and parametrize the
possible positions of the other tetrahedon by a rotation
around the origin O. We obtain that:

Theorem 4 The deformation space of the ideal high
cristobalite framework is naturally parametrized by the
open set in SO(3) where the depicted generators remain
linearly independent.

5 The tridymite framework

The tetrahedral framework (G,Γ) of tridymite is de-
picted in Figure 5. We consider the ideal case made of
regular tetrahedra. The quotient graph has |V/Γ| = 8
and |E/Γ| = 24. All deformations can be described by
three orthogonal transformations (matrices) R0, R1, R2

acting with centers at O,O1 and respectively O2. With
O as the origin and the tetrahedron OD1E1O1 assumed
fixed, we denote:

O1 = f0, D1 = f1 and E1 = f2

Then, our orthogonal transformations are determined
by the following relations:

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

237

24th Canadian Conference on Computational Geometry, 2012

Figure 3: The ideal cristobalite framework (aristotype).
The framework is made of vertex sharing regular tetra-
hedra. Cubes are traced only for suggestive purposes
regarding symmetry and periodicity. See also Figure 4.

Figure 4: Deforming the ideal cristobalite framework.
The periodicity lattice is generated by the three vectors
γi = ti − si which vary as the framework deforms.

O2 = R0f0, D2 = R0f1 and E2 = R0f2

A1 = f0 +R1(f1 − f0)

B1 = f0 +R1(f2 − f0)

C1 = f0 −R1f0

Figure 5: The tetrahedral framework of tridymite. The
periodicity lattice is generated by the marked vectors,
subject to the relations (C2−C1) + (D2−D1) = (A2−
A1) and (C2 − C1) + (E2 − E1) = (B2 −B1).

and
A2 = R0f0 +R2R0(f1 − f0)

B2 = R0f0 +R2R0(f2 − f0)

C2 = R0f0 −R2R0f0

As a result, the two linear dependence relations between
the six depicted periods take the form:

(I −R0 −R1 +R2R0)fi = 0, i = 1, 2 (2)

where I denotes the identity. We note that the ideal
high tridymite structure (the aristotype) corresponds
to R0 = −I and R1 = R2 the reflection in the plane
span(f1, f2).

We now describe the deformation space in a neighbor-
hood of this high tridymite structure. We put−R0 = Q,
R1 = Q1 and −R2R0 = Q2, so that (2) becomes:

I +Q = Q1 +Q2 on span(f1, f2) (3)

with Q,−Q1,−Q2 ∈ SO(3). Since the orthogonal
transformations Q,Q1, Q2 are completely determined
by their values on two vectors e1, e2 of a Cartesian frame
with span(e1, e2) = span(f1, f2), we have to solve the
system:

24th Canadian Conference on Computational Geometry, 2012

238

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

ei +Qei = Q1ei +Q2ei i = 1, 2 (4)

where we assume Q ∈ SO(3) given in a neighborhood
of the identity transformation, and look for solutions
Q1, Q2.

This system may be interpreted in terms of spheri-
cal four-bar mechanisms in the following way. All the
vectors implicated in (4) are unit vectors and can be de-
picted as points on the unit sphere S2. For a given Q,
we mark by Mi the midpoint of the spherical geodesic
segment [ei, Qei] and trace the circle with center Mi and
diameter [ei, Qei]. This is illustrated in Figure 6.

M1

e1

M2

Qe2

Qe1 e2

M1

e1

M2

Qe2

Qe1e2

Figure 6: The spherical four-bar mechanism associated
to the system (4).

It is an elementary observation that any solution Q1ei
and Q2ei determines diameters of the corresponding cir-
cles for i = 1, 2, with the two geodesic arcs [Qke1, Qke2],
like [e1, e2] and [Qe1, Qe2], of length π/2. Thus, the two
spherical quadrilaterals with vertices at e1, Qe1, Qe2, e2
and respectively Q1e1, Q2e1, Q2e2, Q1e2 are two con-
figurations of the same four-bar mechanism and more-
over, the distance between the midpoints of the opposite
edges represented by diameters is the same.

It follows from the theory of the spherical four-bar mech-
anism that, for a generic Q near the identity of SO(3),
the abstract configuration space is made of two loops
which correspond by reflecting the corresponding real-
izations. Each loop component has two configurations
with the prescibed distance [M1M2]. Thus, there are
four configurations with the prescribed distance.

We observe that if we replace Q1 by Q2 and Q2 by Q1

in the labeling of the vertices of a realization, the ori-
entation is reversed, hence the configuration belongs to
the other component. Thus, the two obvious solutions
of (4), namely:

Q1ei = ei, Q2ei = Qei

and

Q1ei = Qei, Q2ei = ei, i = 1, 2

correspond to configurations belonging to different loop
components, as do the remaining two, which are also
paired by relabeling. This discussion shows that
all four solutions are obtained from the quadrilat-
eral e1, Qe1, Qe2, e2 and its reflection in the geodesic
[M1,M2], by the two relabelings with Q1 and Q2 possi-
ble in each case.

In Figure 7 we have depicted the quadrilat-
eral e1, Qe1, Qe2, e2 as A1B1B2A2, with reflec-
tion in [M1M2] marked as rA1, rB1, rB2, rA2.
Then,, the solutions (Q1e1, Q1e2, Q2e1, Q2e2) of
the system (4) are the following four solutions:
(A1, A2, B1, B2), (B1, B2, A1, A2), (rA1, rA2, rB1, rB2)
and (rB1, rB2, rA1, rA2).

Figure 7: Spherical four-bar mechanism and reflection
in [M1,M2].

We summarize this result as:

Theorem 5 The deformation space of the tridymite
framework is singular in a neighbourhood of the aristo-
type and can be represented as a ramified covering with
four sheets of a three-dimensional domain. There is a
natural Z2 × Z2 action on this covering which fixes the
aristotype framework.

Indeed, the two involutions, inverting the labeling and
reflecting in [M1,M2], commute and give a Z2 × Z2.
action on the covering. The dimension of the tangent
space at the aristotype framework is computed from the
linear version of (4) and is six.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

239

24th Canadian Conference on Computational Geometry, 2012

6 Conclusions

Periodic (crystalline) materials, either occurring in na-
ture or man-made, have been studied with experimental
tools (such as X-ray crystallography) for over 100 years,
and yet important phenomena related to their flexibil-
ity properties remain largely uncharted. In this paper,
we studied the flexibility of three important families of
periodic structures. These frameworks are flexible, and
descriptions of their configuration spaces were explicitly
given. A version of this paper has been posted on the
arxiv [2].

References

[1] C. S. Borcea and I. Streinu. Periodic frameworks
and flexibility. Proceedings of the Royal Society A 8,
466(2121):2633–2649, September 2010.

[2] C. S. Borcea and I. Streinu. Deformations of crystal
frameworks. arxiv:1110.4661, 2011.

[3] C. S. Borcea and I. Streinu. Frameworks with crystal-
lographic symmetry. arXiv:1110.4662, 2011.

[4] C. S. Borcea and I. Streinu. Minimally rigid periodic
graphs. Bulletin of the London Mathematical Society,
43:1093–1103, 2011. doi:10.1112/blms/bdr044.

[5] C. S. Borcea, I. Streinu, and S. Tanigawa. Periodic
body-and-bar frameworks. In Proc. 28th Symp. Com-
putational Geometry (SoCG’12), to appear, June 2012.

[6] W. L. Bragg and R. E. Gibbs. The structure of α and β
quartz. Proceedings of the Royal Society A: mathemat-
ical, physical and engineering sciences, 109(751):405–
427, 1925.

[7] M. T. Dove. Theory of displacive phase transitions in
minerals. American Mineralogist, 82:213–244, 1997.

[8] R. E. Gibbs. The polymorphism of silicon dioxide and
the structure of tridymite. Proceedings of the Royal
Society A: mathematical, physical and engineering sci-
ences, 113:351–368, 1926.

[9] J. Graver, B. Servatius, and H. Servatius. Combinato-
rial rigidity. Graduate Studies in Mathematics. Amer-
ican Mathematical Society, 1993.

[10] V. Kapko, M. M. J. Treacy, M. F. Thorpe, and S. Guest.
On the collapse of locally isostatic networks. Proceed-
ings of the Royal Society A: mathematical, physical and
engineering sciences, 465:3517–3530, 2009.

[11] N. Katoh and S. Tanigawa. A proof of the molecu-
lar conjecture. Discrete and Computational Geometry,
45(4):647–700, 2011.

[12] G. Laman. On graphs and rigidity of plane skeletal
structures. Journal of Engineering Mathematics, 4:331–
340, 1970.

[13] A. Lee and I. Streinu. Pebble game algorithms and
sparse graphs. Discrete Mathematics, 308(8):1425–
1437, April 2008.

[14] A. Lee, I. Streinu, and L. Theran. Analyzing rigid-
ity with pebble games. In SOCG ’08: Proceedings of
the twenty-fourth annual symposium on Computational
geometry, pages 226–227, New York, NY, USA, 2008.
ACM.

[15] J. C. Maxwell. On the calculation of the equilibrium
and stiffness of frames. Philosophical Magazine, 27:294–
299, 1864.

[16] L. Pauling. The structure of some sodium and calcium
aluminosilicates. Proceedings of the National Academy
of Sciences, 16(7):453–459, 1930.

[17] I. Streinu and L. Theran. Slider-pinning rigidity: a
Maxwell-Laman-type theorem. Discrete and Computa-
tional Geometry, 44(4):812–834, September 2010. Pub-
lished on line, 8 Sep. 2010.

[18] T.-S. Tay. Rigidity of multigraphs I: linking rigid bodies
in n-space. Journal of Combinatorial Theory, Series B,
36:95–112, 1984.

[19] T.-S. Tay. Linking (n−2)-dimensional panels in n-space
II: (n−2, 2)-frameworks and body and hinge structures.
Graphs and Combinatorics, 5:245–273, 1989.

[20] S. A. Wells, M. T. Dove, and M. G. Tucker. Find-
ing best-fit polyhedral rotations with geometric alge-
bra. Journal of Physics Condensed Matter, 14:4567–
4584, May 2002.

24th Canadian Conference on Computational Geometry, 2012

240

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Characterizing Delaunay Graphs via Fixed Point Theorem

Tomomi Matsui∗ Yuichiro Miyamoto†

Abstract

This paper discusses a problem for determining whether
a given plane graph is a Delaunay graph, i.e., whether
it is topologically equivalent to a Delaunay triangula-
tion. There exists a theorem which characterizes De-
launay graphs and yields a polynomial time algorithm
for the problem only by solving a certain linear inequal-
ity system. The theorem was proved by Rivin based on
arguments of hyperbolic geometry. Independently, Hi-
roshima, Miyamoto and Sugihara gave another proof of
the theorem based on primitive arguments on Euclidean
geometry. Unfortunately, the existing proofs of the the-
orem are rather difficult or long. In this paper, we give
a simple proof of the theorem characterizing Delaunay
graphs, which is based on the fixed point theorem.

1 Introduction

The two-dimensional Delaunay triangulation and its
dual, the Voronoi diagram, are fundamental concepts
in computational geometry, and have many practical
applications such as interpolation and mesh genera-
tion [1, 3, 8]. It is also important to recognize De-
launay triangulations. The recognition problem can
be divided into two types: geometric and combinato-
rial. The geometric problem is to judge whether a given
drawing is a Delaunay triangulation. The combinato-
rial problem, which is discussed in this paper, deter-
mines whether a given embedded graph is topologically
equivalent to a Delaunay triangulation. The combina-
torial problem is important not only theoretically but
also practically because it is closely related to the design
of a topologically consistent algorithm for constructing
the Delaunay/Voronoi diagram in finite-precision arith-
metic [7, 11, 12].

Hodgson et al. [6] characterized the convex polyhe-
dra that can be inscribed in a sphere, and constructed a
polynomial time algorithm for judging whether a given
graph is realizable as a convex polyhedron with all the
vertices on a common sphere. On the basis of this char-
acterization, Rivin [9, 10] reduced the recognition prob-
lem on the Delaunay graph to a certain linear program-
ming problem, and thus gave a polynomial time algo-

∗Department of Information and System Engineering, Chuo
University, matsui@ise.chuo-u.ac.jp

†Department of Information and Communication Sciences,
Sophia University, miyamoto@sophia.ac.jp.

rithm. His proof was based on sophisticated arguments
about hyperbolic geometry, and hence is not easy to
understand. Almost the same time Hiroshima et al. in-
dependently found the same algorithm [5]. Their proof
is simple in the sense that it is based on primitive argu-
ments on Euclidean geometry, but the proof is long and
intricate.

In this paper, we give a simple short proof of the
theorem characterizing Delaunay graphs by employing
the fixed point theorem. After making preparations in
Section 2, we give our main result (a simple proof) in
Section 3.

2 Preliminaries

2.1 Delaunay Graph

First, we briefly review the notion of a Delaunay tri-
angulation. Given a set of mutually distinct points
P ⊆ R2, a Delaunay triangulation of P is commonly de-
fined as a triangulation of P satisfying the property that
the circumcircle of each inner cell (triangle) contains no
point of P in its interior. A Delaunay triangulation of P
is also known as the planar dual of the Voronoi diagram
of P . A Delaunay triangulation is called non-degenerate
if and only if it satisfies the conditions that no three
vertices on the outermost cell are collinear, and no four
vertices lie on a common circle that circumscribes an
inner cell.

Next, we give a definition of combinatorial triangu-
lation. Let G be an undirected graph with vertex set
V and edge set E. We assume that G is connected
and plane graph (planar graph embedded in the 2-
dimensional plane) without selfloops and parallel edges.
The outermost cell is unbounded while the other cells,
called inner cells, are bounded. We also assume that all
the inner cells are bounded by exactly three edges. For
each inner cell, we associate a directed 3-cycle which is
obtained from an undirected 3-cycle of G forming the
boundary of the cell by directing edges counterclock-
wise. Let C be the set of all the directed 3-cycles cor-
responding to all the inner cells of G. A combinatorial
triangulation is defined by a triplet (V,E,C). In the
rest of this paper, we write G = (V,E,C) and concen-
trate our attention on the topological structure of G;
we do not care about the actual positions at which the
vertices are placed. When a given undirected graph,
which is defined by vertex set V and edge set E, is

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

241

24th Canadian Conference on Computational Geometry, 2012

2-connected, we say that a combinatorial triangulation
(V,E,C) is 2-connected.

In the following, we introduce some notions related
to a problem for judging whether a given combinatorial
triangulation is obtained from a Delaunay triangulation.
Given a combinatorial triangulation G = (V,E,C), we
seek an injection ψ : V → R2 satisfying that the set
of points {ψ(v) ∈ R2 | v ∈ V } and the set of line seg-
ments between pairs in {{ψ(u), ψ(v)} | {u, v} ∈ E} de-
fine a Delaunay triangulation. A map ψ satisfying the
above conditions is called a Delaunay realization, if it
exists. When a combinatorial triangulation G has a De-
launay realization, we say that G is a Delaunay graph.
In particular, if a corresponding Delaunay triangulation
is non-degenerate, then G is called a non-degenerate De-
launay graph.

2.2 Characterizing Delaunay Graphs

In this subsection, we briefly review an inequality
system which characterizes (non-degenerate) Delau-
nay graphs. Given a combinatorial triangulation
G = (V,E,C), we denote the elements of C by
c0, c1, . . . , c|C|−1. For each cycle ci ∈ C, we introduce
three variables x3i+1, x3i+2, x3i+3 assigned to three ver-
tices in ci. In the rest of this paper, we interpret these
variables as angles in degrees at the corresponding cor-
ner of a triangle defined by cycle ci. So, let us call
these variables angle variables. There are 3|C| angle
variables. We denotes the index set of angle variables
by J := {1, 2, . . . , 3|C|}. For example, a combinatorial
triangulation shown in Figure 1 has nine angle variables
x1, x2, . . . , x9.

..v1.
x1

.
x4

.
x7

.

v2

.

x2

.

x9

.

v3

.

x3

.

x5

.

v4

.

x6

.

x8

.

c0
.

c1

.

c2

Figure 1: Combinatorial triangulation and angle vari-
ables

A vertex of a combinatorial triangulation G is called
an outer vertex if it is on the boundary of the outermost
cell, and an inner vertex otherwise. Similarly, an edge
of G is called an outer edge if it is on the boundary of
the outermost cell, and an inner edge otherwise. In the
rest of this paper, we denote a set of outer vertices and
a set of inner vertices by V outer and V inner respectively.

If a given combinatorial triangulation G = (V,E,C)
is a Delaunay graph, a corresponding vector of angle
variables, defined by a Delaunay realization, satisfies
the following conditions.

C1 For each cycle in C, the sum of the associated three
angle variables is equal to 180.

C2 For each inner vertex, the sum of all the associated
angle variables is equal to 360.

C3 For each outer vertex, the sum of all the associated
angle variables is at most 180.

C4 For each inner edge, the sum of the associated pair
of the facing angle variables (i.e., the angle variables
corresponding to the vertices that are on the same
cycle as, but are not incident to, the inner edge) is
at most 180.

C5 Each angle variable is positive.

For example, if we consider the combinatorial trian-
gulation in Figure 1, the above conditions give the fol-
lowing linear inequality system;

(C1) defined by c0 : x1 + x2 + x3 = 180,
(C1) defined by c1 : x4 + x5 + x6 = 180,
(C1) defined by c2 : x7 + x8 + x9 = 180,
(C2) defined by v1 : x1 + x4 + x7 = 360,
(C3) defined by v2 : x2 + x9 ≤ 180,
(C3) defined by v3 : x3 + x5 ≤ 180,
(C3) defined by v4 : x6 + x8 ≤ 180,
(C4) defined by {v1, v2} : x3 + x8 ≤ 180,
(C4) defined by {v1, v3} : x2 + x6 ≤ 180,
(C4) defined by {v1, v4} : x5 + x9 ≤ 180,
(C5) : x1, x2, . . . , x9 > 0.

Figure 2 gives an example of a Delaunay realization of
the combinatorial triangulation in Figure 1.

..

30

.

30

.

30

.

30

.

30

.

30

. 120.120 .

120

.
v1
.

v2

.

v3

.

v4

Figure 2: Realized Delaunay triangulation.

Unfortunately, the values of the angle variables sat-
isfying all the conditions C1–C5 do not necessarily cor-
respond to a Delaunay triangulation. For example, the

24th Canadian Conference on Computational Geometry, 2012

242

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

combinatorial triangulation in Figure 1 has a vector of
angle variables defined by

x1 = x4 = x7 = 120, x2 = x5 = x8 = 32,

x3 = x6 = x9 = 28,

which satisfies C1–C5, but it does not correspond to
any triangulations. If we try to draw the diagram using
these angle values, we come across an inconsistency as
shown in Figure 3. In order to avoid this inconsistency,
we still need other conditions described below.

..

32

.

32

.

28

.

32

.

28

.

28

. 120.120 .

120

.
v1
.

v2?

.

v3

.

v4

Figure 3: Angle variables satisfying C1–C5.

Let c ∈ C be an inner cell with three vertices
vα, vβ , vγ , and xi, xj , xk be three angle variables cor-
responding to the three vertices, respectively. We say
that xj is cc-facing (meaning “facing counterclockwise”)
around vα and xk is c-facing (meaning “facing clock-
wise”) around vα. In Figure 4, for example, x2, x5, x8

are cc-facing around v1 while x3, x9, x6 are c-facing
around v1.

..v1.
x1

.
x4

.
x7

.

v2

.

x2

.

x9

.

v3

.

x3

.

x5

.

v4

.

x6

.

x8

Figure 4: x3, x6, x9 are c-facing and x2, x5, x8 are
cc-facing around v1.

For any inner vertex v ∈ V inner, let XCC
v ⊆ J be in-

dices of cc-facing angle variables around v, and XC
v ⊆ J

be indices of c-facing angle variables around v. Further-

more, we introduce a function

Fv(x) :=

∏

j∈XCC
v

sinxj

∏

j∈XC
v

sinxj

, (1)

where x ∈ RJ is a vector of angle variables (in degrees).
We only consider angle variables satisfying 0 < xj <
180 (∀j ∈ J), and hence we get 0 < Fv(x) < ∞.

Now we describe a necessary and sufficient condition
that a combinatorial triangulation becomes a Delaunay
graph.

Theorem 1 ([5]) A 2-connected combinatorial trian-
gulation G = (V,E,C) is a Delaunay graph if and only
if the set of conditions C1–C6 is satisfiable, where

C6 Fv(x) = 1 for any inner vertex v ∈ V inner.

It is not so difficult to prove the above theorem. For ex-
ample, Hiroshima, Miyamoto and Sugihara gave a short
and elementary proof in their paper [5].

If we restrict the Delaunay triangulations to non-
degenerate ones, the conditions C3 and C4 are respec-
tively changed in the following way.

C3’ For each outer vertex, the sum of all the associated
angle variables is less than 180.

C4’ For each inner edge, the sum of the associated pair
of the angle values facing the edge is less than 180.

A non-degenerate version of Theorem 1 is as follows.

Theorem 2 ([5]) A 2-connected combinatorial trian-
gulation G = (V,E,C) is a non-degenerate Delaunay
graph if and only if the set of conditions C1, C2, C3’,
C4’, C5 and C6 is satisfiable.

Thus, we get a necessary and sufficient condition for
a combinatorial triangulation to be a (non-degenerate)
Delaunay graph. However, the conditions stated in The-
orems 1 and 2 are not useful for the recognition of a De-
launay graph, because we do not know any finite-step
algorithm for judging the satisfiability of these condi-
tions.

3 Main Result

Now we describe a theorem which yields an efficient
method for recognizing Delaunay graphs. The following
theorem says that when we only need to judge whether
a given combinatorial triangulation is a Delaunay graph
(or not), we can drop condition C6, surprisingly.

Theorem 3 ([5, 9, 10]) A 2-connected combinatorial
triangulation G = (V,E,C) is a Delaunay graph if and
only if the set of conditions C1–C5 is satisfiable.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

243

24th Canadian Conference on Computational Geometry, 2012

We can judge the satisfiability of the set of condi-
tions C1–C5 in finite steps because the conditions C1
through C5 are linear in the variables and the method
for checking their satisfiability has been established us-
ing linear programming (see [5] for detail). Especially,
the obtained linear programming problem satisfies that
all the non-zero coefficients are +1 or −1, and thus it is
solvable in strongly polynomial time [4].

The following theorem deals with the non-degenerate
case.

Theorem 4 ([5, 9, 10]) A 2-connected combinatorial
triangulation G = (V,E,C) is a non-degenerate Delau-
nay graph if and only if the set of conditions C1, C2,
C3’, C4’ and C5 is satisfiable.

We employ the fixed point theorem and give simple
proofs of Theorem 3 and Theorem 4.

Theorem 5 (Fixed Point Theorem [2])
Every continuous map f : Bm → Bm defined on an
m-dimensional closed ball Bm has a fixed point (a point
x ∈ Bm with f(x) = x).

It is well known that we can extend the above theorem
to a continuous map defined on a convex compact set.

Before describing our proof, we give a sketch of an
important procedure, which transforms a feasible solu-
tion of the linear inequality system defined by C1–C5.
Let us recall a vector of angle variables shown in Fig-
ure 3, that satisfies conditions C1–C5, but not C6. Now
we construct a (new) vector by increasing angle vari-
ables c-facing around the inner vertex v1 by α degree,
and decreasing angle variables cc-facing around v1 by
α degree. After this procedure, conditions C1–C4 are
preserved. When we set α = 2, the obtained vector of
angle variables, shown in Figure 2, satisfies conditions
C1–C6.

Now we describe the above procedure precisely. Given
a non-negative vector x ≥ 0 of angle variables satisfy-
ing C1–C4, an inner vertex v and a real number α, we
introduce a vector x(α) defined by

x(α)j =

xj + α, j ∈ XCC
v ,

xj − α, j ∈ XC
v ,

xj , otherwise.
(2)

The following lemma shows some properties of x(α).

Lemma 6 Let x ≥ 0 be a non-negative vector of angle
variables satisfying C1–C4 and x(α) be a vector defined
by (2) w.r.t. an inner vertex v ∈ V inner. For any α ∈ R,
vector x(α) satisfies conditions C1–C4. We define

αmax =max{α ∈ R | x(α) ≥ 0},
αmin = min{α ∈ R | x(α) ≥ 0}.

If αmin < αmax, then Fv(x(α)) : (αmin, αmax) → R is a
continuous monotone increasing function w.r.t. α.

Proof. It is easy to show that x(α) satisfies conditions
C1–C4. The continuity of Fv(x(α)) with respect to α
is obvious. Let C(v) ⊆ C be a set of cycles includ-
ing v. For each cycle c′ ∈ C(v), angle variable xCC

c′

(xC
c′) denotes associated cc-facing (c-facing) angle vari-

able around v. Condition C1, non-negativity of x, and
inequality αmin < αmax imply that 0 < xCC

c′ + xC
c′ ≤

180 (∀c′ ∈ C(v)). We transform the following differen-
tiation and obtain that

d logFv(x(α))

dα

=
∑

j∈XCC
v

d log sin(xj + α)

dα
−

∑

j∈XC
v

d log sin(xj − α)

dα

=
∑

j∈XCC
v

cos(xj + α)

sin(xj + α)
+

∑

j∈XC
v

cos(xj − α)

sin(xj − α)

=
∑

c′∈C(v)

(
cos(xCC

c′ + α)

sin(xCC
c′ + α)

+
cos(xC

c′ − α)

sin(xC
c′ − α)

)

=
∑

c′∈C(v)

sin(xCC
c′ + xC

c′)

sin(xCC
c′ + α) sin(xC

c′ − α)
> 0,

where the last inequality is derived from the facts that
(1) ∀α ∈ (αmin, αmax), ∀c′ ∈ C(v), sin(xCC

c′ +α) sin(xC
c′ −

α) > 0 (2) ∀c′ ∈ C(v), sin(xCC
c′ + xC

c′) ≥ 0, and (3)
∃c′ ∈ C(v), sin(xCC

c′ + xC
c′) > 0 (obtained from C2).

Thus, both logFv(x(α)) and Fv(x(α)) are monotoni-
cally increasing. □

In the following, we show that if there exists a vector
of angle variables satisfying C1–C5, then there also ex-
ists a vector of angle variables satisfying C1–C6 which
is obtained by adopting the above procedure around all
inner vertices simultaneously.

Proof. (Proof of Theorem 3.) From Theorem 1, we
only have to show that we once obtain angle variables
satisfying C1–C5 there is a vector of angle variables sat-
isfying C1–C6.

Let b ∈ RJ be a vector of angle variables satisfying
conditions C1–C5, where J = {1, 2, . . . , 3|C|} is a set of
indices of angle variables. We define a matrix M whose
rows are indexed by J , columns are indexed by the ver-
tex set V , and each entry miv is defined as follows:

miv =

1, angle variable xi is cc-facing around v,
−1, angle variable xi is c-facing around v,

0, otherwise.

Figure 5 shows a matrix M corresponding to Figure 1.
Let M̃ be a column submatrix of M corresponding to

inner vertices V inner. It is easy to see that the vector of
angle variables M̃y +b is obtained from b by increasing
angle variables c-facing around the inner vertex v by
yv, and decrease angle variables cc-facing around v by

24th Canadian Conference on Computational Geometry, 2012

244

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

v1 v2 v3 v4
x1 0 −1 1 0
x2 1 0 −1 0
x3 −1 1 0 0
x4 0 0 −1 1
x5 1 0 0 −1
x6 −1 0 1 0
x7 0 1 0 −1
x8 1 −1 0 0
x9 −1 0 0 1

Figure 5: A matrix M corresponding to Figure 1.

yv, for each inner vertex v ∈ V inner. Lemma 6 directly
implies that for any vector y ∈ RV inner

, a vector of angle
variables M̃y + b also satisfies conditions C1–C4.

We introduce a subset Ω ⊆ RV inner

defined by

Ω :=
{

y ∈ RV inner
∣∣∣ M̃y + b ≥ 0

}
.

Here, we briefly prove the boundedness of Ω by show-
ing that every vector y ∈ Ω satisfies −180|V |1 ≤ y ≤
180|V |1. Let {u, v} be an inner edge of G. Since {u, v}
is an inner edge, there exists an angle bj (in the vector
b) which is both c-facing around u and cc-facing around
v. There also exists an angle bj′ (in vector b) which is
both cc-facing around u and c-facing around v. When
both u and v are inner vertices, every vector y ∈ Ω
satisfies

−180 ≤ −bj′ ≤ yu − yv ≤ bj ≤ 180. (3)

If (u, v) ∈ V inner × V outer, then we have

−180 ≤ −bj′ ≤ yu ≤ bj ≤ 180. (4)

For any inner vertex u, there exists a minimal path Γu

on G connecting u and an outer vertex. From the mini-
mality, Γu consists of inner edges. The telescoping sum
of inequalities (3) and (4) w.r.t. inner edges in Γu gives

−180|V | ≤ yu ≤ 180|V |.

From the above, Ω becomes a compact convex set.
For any pair (y, v) ∈ Ω × V inner, we define following

two values:

αmax(y, v) := max{α ∈ R | y + αev ∈ Ω},
αmin(y, v) := min{α ∈ R | y + αev ∈ Ω},

where ev ∈ {0, 1}V inner

is a unit vector whose entry is
equal to 1 if and only if the corresponding index is equal
to v. (Here we note that both the maximum and the
minimum always exist, because Ω is a bounded closed
set and is nonempty; clearly b ∈ Ω.) Since y ∈ Ω,

inequalities αmin(y, v) ≤ 0 ≤ αmax(y, v) hold. When
αmin(y, v) < αmax(y, v), we have that

lim
α→αmax(y,v)

Fv(y + αev) = +∞,

lim
α→αmin(y,v)

Fv(y + αev) = +0,

and thus Lemma 6 and the intermediate value theo-
rem imply that there exists a unique value α∗ in the
open interval (αmin(y, v), αmax(y, v)) satisfying equality
Fv(y +α∗ev) = 1. Now we introduce a map fv : Ω → Ω
for each v ∈ V inner defined by

fv(y) =

{
y, if αmin(y, v) = αmax(y, v) = 0,
y + α∗ev, if αmin(y, v) < αmax(y, v),

where α∗ is a unique value satisfying Fv(y +α∗ev) = 1.
It is obvious that for each inner vertex v, the corre-
sponding map fv is continuous.

Lastly, we define a map f : Ω → Ω as:

f(y) :=
1

|V inner|
∑

v∈V inner

fv(y),

where f(y) is the gravity center of vectors {fv(y) | v ∈
V inner}. Since fv is continuous for each inner vertex v,
f is also continuous.

Now we apply the fixed point theorem to the contin-
uous map f and obtain a result that there exists a fixed
point y∗ ∈ Ω, i.e., y∗ satisfies f(y∗) = y∗.

Every fixed point y∗ satisfies that

∀v ∈ V inner,
αmin(y∗, v) = αmax(y

∗, v) = 0 or Fv(y∗) = 1.
(5)

Otherwise, there exists at least one inner vertex v′ sat-
isfying αmin(y∗, v′) < αmax(y

∗, v′) and Fv′(y∗) ̸= 1.
Then v′ also satisfies fv′(y∗) ̸= y∗, which implies
f(y∗) ̸= y∗. It is a contradiction.

We have shown that there exists a non-negative vector
of angle variables satisfying C1–C4. Next we discuss
condition C5, which also yields condition C6. In the
following, we show that M̃y∗ + b > 0 for any fixed
point y∗.

When a vertex v satisfies Fv(y∗) = 1, it is obvious
that αmin(y∗, v) < 0 < αmax(y

∗, v). Since y∗ is a fixed
point, property (5) implies that for any v ∈ V inner,

αmin(y∗, v) = 0 if and only if αmax(y
∗, v) = 0.

Put x∗ = M̃y∗+b. If an inner vertex v has a cc-facing
angle variable xj satisfying x∗

j = 0, then αmin(y∗, v) = 0
and thus αmax(y

∗, v) = 0, which implies that v also has
a c-facing angle variable xj′ satisfying x∗

j′ = 0. Simi-
larly, when an inner vertex v has a c-facing angle vari-
able xj satisfying x∗

j = 0, then αmax(y
∗, v) = 0 and

thus αmin(y∗, v) = 0, which implies that v also has a
cc-facing angle variable xj′ satisfying x∗

j′ = 0.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

245

24th Canadian Conference on Computational Geometry, 2012

Let us consider a directed graph H whose incident
matrix is M⊤: i.e., a directed graph obtained from G
by substituting a pair of parallel arcs with opposite di-
rection for each edge in E (see Figure 6). Digraph H
has vertex set V and edge set J , which is an index set of
angle variables. Each angle variable xj corresponds to
an arc in H from u to v where xj is a c-facing variable
around u and cc-facing variable around v.

..v1.

v2

.

v3

.

v4

.

x1

.
x2

.

x3

.

x4

.

x5

.

x6

.

x7

.

x8

.
x9

Figure 6: A directed graph (V, J) corresponding to Fig-
ure 1.

If an arc a of H satisfies that the corresponding angle
variable, denoted by xa, satisfies x∗

a = 0, we say that a
is a critical arc. In the directed graph, if an inner vertex
v has an incoming critical arc, then v also has at least
one outgoing critical arc.

Now we show x∗ > 0. Assume on the contrary that
there exists an angle variable xj satisfying x∗

j = 0.
Then, there exists a critical arc in H. Let A0 be a
set of critical arcs. From the above discussion, a di-
graph defined by (V,A0) has either (Case 1) “a directed
elementary path Γ1 connecting a pair of outer vertices
and passing only inner vertices” or (Case 2) “a directed
elementary cycle Γ2 consisting of inner vertices.”
Case 1. Let χ1 ∈ {0, 1}J be a characteristic vector of
the set of arcs in Γ1. Since Γ1 consists of critical edges,
χ⊤

1 x∗ = 0 hold. Every inner vertex v has an incoming
arc in Γ1 if and only if v has an outgoing arc in Γ1.
Accordingly, the equality χ⊤

1 M̃ = 0 hold. Thus we have
that

0 = χ⊤
1 x∗ = χ⊤

1 (M̃y∗+b) = χ⊤
1 M̃y∗+χ⊤

1 b = χ⊤
1 b > 0.

Contradiction.
Case 2. Let χ2 ∈ {0, 1}J be a characteristic vector of
the set of arcs in Γ2. Since Γ2 consists of inner vertices
and critical edges, both χ⊤

2 M̃ = 0 and χ⊤
2 x∗ = 0 hold.

Thus we have that

0 = χ⊤
2 x∗ = χ⊤

2 (M̃y∗+b) = χ⊤
2 M̃y∗+χ⊤

2 b = χ⊤
2 b > 0.

Contradiction.
Now we have shown that every fixed point y∗ satis-

fies condition C5 and thus every inner vertex v satis-
fies αmin(y∗, v) < 0 < αmax(y

∗, v). From property (5),

every inner vertex v satisfies Fv(y∗) = 1. As a conse-
quence, condition C6 is satisfied. □

A proof of Theorem 4 is almost the same. Actually,
we only have to replace C3 and C4 with C3’ and C4’
respectively in our proofs of Lemma 6 and Theorem 3.

Acknowledgements

We wish to express our thanks to Naoyuki Kamiyama
and Mizuyo Takamatsu for fruitful discussions. We also
thank anonymous reviewers.

References

[1] F. Aurenhammer. Voronoi diagrams - a survey of a
fundamental geometric data structure. ACM Comput-
ing Surveys, 23(3):345–405, 1991.

[2] L. E. Brouwer. Über abbilidungen von mannig-
faltigkeiten. Math. Annalen, 71:97–115, 1912.

[3] H. Edelsbrunner. Algorithms in Combinatorial Geome-
try. Springer-Verlag, Heidelberg, 1987.

[4] E. Tardos. A strongly polynomial algorithm to solve
combinatorial linear programs. Operations Research,
34(2):250–256, 1986.

[5] T. Hiroshima, Y. Miyamoto, and K. Sugihara. Another
proof of polynomial-time recognizability of Delaunay
graphs. IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences, E83-
A:627–638, 2000.

[6] C. D. Hodgson, I. Rivin, and W. D. Smith. A charac-
terization of convex hyperbolic polyhedra and of con-
vex polyhedra inscribed in the sphere. Bulletin of the
American Mathematical Society, 27:246–251, 1991.

[7] Y. Oishi and K. Sugihara. Topology-oriented divide-
and-conquer algorithm for Voronoi diagrams. CVGIP:
Graphical Model and Image Processing, 57(4):303–314,
1995.

[8] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu.
Spatial Tessellations: Concepts and Applications of
Voronoi Diagrams. Wiley and Sons, England, 2nd edi-
tion, 2000.

[9] I. Rivin. Euclidean structures on simplicial surfaces and
hyperbolic volume. Annals of Mathematics, 139:553–
580, 1994.

[10] I. Rivin. A characterization of ideal polyhedra in hy-
perbolic 3-space. Annals of Mathematics, 143:51–70,
1996.

[11] K. Sugihara and M. Iri. Construction of the Voronoi
diagram for “one million” generators in single-precision
arithmetic. Proc. IEEE, 80:1471–1484, 1992.

[12] K. Sugihara and M. Iri. A robust topology-oriented
incremental algorithm for Voronoi diagrams. Int. J.
Comput. Geometry Appl., 4(2):179–228, 1994.

24th Canadian Conference on Computational Geometry, 2012

246

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Lower Bounds for the Number of Small Convex k-Holes∗

Oswin Aichholzer† Ruy Fabila-Monroy‡ Thomas Hackl† Clemens Huemer§ Alexander Pilz†

Birgit Vogtenhuber†

Abstract

Let S be a set of n points in the plane in general po-
sition, that is, no three points of S are on a line. We
consider an Erdős-type question on the least number
hk(n) of convex k-holes in S, and give improved lower
bounds on hk(n), for 3 ≤ k ≤ 5. Specifically, we show

that h3(n) ≥ n2 − 32n
7 + 22

7 , h4(n) ≥ n2

2 − 9n
4 − o(n),

and h5(n) ≥ 3n
4 − o(n).

1 Introduction

Let S be a set of n points in the plane in general po-
sition, that is, no three points of S lie on a common
straight line. A k-hole of S is a simple polygon, P ,
spanned by k points from S, such that no other point
of S is contained in the interior of P . A classical ex-
istence question raised by Erdős [8] is: “What is the
smallest integer h(k) such that any set of h(k) points
in the plane contains at least one convex k-hole?”. Es-
ther Klein observed that every set of 5 points contains
a convex 4-hole, and Harborth [12] showed that ev-
ery set of 10 points determines a convex 5-hole. Both
bounds are tight w.r.t. the cardinality of S. Only in
2007/08 Nicolás [14] and independently Gerken [11]
proved that every sufficiently large point set contains a
convex 6-hole. On the other hand, Horton [13] showed
that there exist arbitrarily large sets which do not con-
tain any convex 7-hole; see [1] for a brief survey.

A generalization of Erdős’ question is: “What is the
least number hk(n) of convex k-holes determined by any
set of n points in the plane?”. In this paper we con-

∗OA and BV supported by the ESF EUROCORES programme
EuroGIGA – CRP ‘ComPoSe’, Austrian Science Fund (FWF):
I648-N18. RFM partially supported by Conacyt of Mexico, grant
153984. TH supported by the Austrian Science Fund (FWF):
P23629-N18 ‘Combinatorial Problems on Geometric Graphs’.
CH is partially supported by projects MTM2009-07242, Gen.
Cat. DGR 2009SGR1040, and ESF EUROCORES programme
EuroGIGA, CRP ComPoSe: MICINN Project EUI-EURC-2011-
4306, for Spain. AP is a recipient of a DOC-fellowship of the
Austrian Academy of Sciences.
†Institute for Software Technology, University of Technology,

Graz, Austria, [oaich|thackl|apilz|bvogt]@ist.tugraz.at
‡Departamento de Matemáticas, Cinvestav, Mexico City, Mex-

ico, ruyfabila@math.cinsvestav.edu.mx
§Departament de Matemàtica Aplicada IV, Uni-

versitat Politècnica de Catalunya, Barcelona, Spain,
clemens.huemer@upc.edu

centrate on this question for 3 ≤ k ≤ 5, that is, the
number of empty triangles (3-holes), convex 4-holes,
and convex 5-holes. We denote by hk(S) the number
of convex k-holes determined by S, and by hk(n) =
min|S|=n hk(S) the number of convex k-holes any set of
n points in general position must have. Throughout this
paper let ldx = log x

log 2 be the binary logarithm. Further-

more, we denote with CH (S) the convex hull of S and
with ∂ CH (S) the boundary of CH (S).

We start in Section 2 by providing improved bounds
on the number of convex 5-holes. In particular, increas-
ing the so far best bound h5(n) ≥ n

2 − O(1) [16] to
h5(n) ≥ 3n

4 − n0.87447 + 1.875. In Section 3 we combine
these results with a technique recently introduced by
Garćıa [9, 10], and improve the currently best bounds
on the number of empty triangles and convex 4-holes,

h3(n) ≥ n2 − 37n
8 + 23

8 and h4(n) ≥ n2

2 − 11n
4 − 9

4
(both in [10]), to h3(n) ≥ n2 − 32n

7 + 22
7 and h4(n) ≥

n2

2 − 9n
4 − 1.2641n0.926 + 199

24 , respectively.

2 Convex 5-holes

The currently best upper bound on the number of con-
vex 5-holes, h5(n) ≤ 1.0207n2 + o(n2) is by Bárány and
Valtr [5], and it is widely conjectured that h5(n) grows
quadratically. Still, to this date not even a super-linear
lower bound is known.

As early as in 1987 Dehnhardt presented a lower
bound of h5(n) ≥ 3b n

12c in his thesis [6]. Unfortunately,
this result, published in German only, remained un-
known to the scientific community until recently. Thus,
the best known lower bound was h5(n) ≥

⌊
n−4
6

⌋
, ob-

tained by Bárány and Károlyi [4]. In the presentation
of [9] this bound was improved to h5(n) ≥ 2

9n − 25
9 .

A slightly better bound h5(n) ≥ 3bn−48 c was presented
in [2], which was then sharpened to h5(n) ≥

⌈
3
7 (n− 11)

⌉

in [3]. The latest and so far best bound of h5(n) ≥
n
2 −O(1) is due to Valtr [16]. In this section we further
improve this bound to h5(n) ≥ 3

4n− o(n).
We start by fine-tuning the proof from [3], show-

ing h5(n) ≥
⌈
3
7 (n− 11)

⌉
, by utilizing the results

h5(10) = 1 [12], h5(11) = 2 [6], and h5(12) ≥ 3 [6]. Al-
though this does not lead to an improved lower bound
of h5(n) for large n, it provides better lower bounds for
small values of n; see Table 1.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

247

24th Canadian Conference on Computational Geometry, 2012

n 10 11 12 13 14 15 16 17 18 19 20..23 24 25 26 27..30 31

h5(n) 1 2 3 3..4 3..6 3..9 ≥ 3 ≥ 4 ≥ 5 ≥ 6 ≥ 6 ≥ 7 ≥ 8 ≥ 9 ≥ 9 ≥ 10

n 32 33 34..37 38 39 40 41..44 45 46 47 48..50 51 52 53 54 55..56

h5(n) ≥ 11 ≥ 12 ≥ 12 ≥ 13 ≥ 14 ≥ 15 ≥ 15 ≥ 16 ≥ 17 ≥ 18 ≥ 18 ≥ 19 ≥ 19 ≥ 20 ≥ 21 ≥ 21

Table 1: The updated bounds on h5(n) for small values of n.

Lemma 1 Every set S of n points in the plane in gen-
eral position with n = 7 · m + 9 + t (for any natu-
ral number m ≥ 0 and t ∈ {1, 2, 3}) contains at least
h5(n) ≥ 3m+ t = 3n−27+4t

7 convex 5-holes.

Proof. Because of h5(10) = 1, h5(11) = 2, and
h5(12) ≥ 3 this is true for m = 0. Obviously h5(n) ≥
h5(n− 1). Hence, h5(n) ≥ 3 for any n ≥ 12.

If there exists a point p ∈ ((∂ CH (S)) ∩ S) that is a
point of a convex 5-hole, then h5(S) ≥ 1+h5(S\{p}) ≥
1 + h5(n− 1). In this case, the lemma is true by induc-
tion, as for t = 1 and m > 0, h5(n−1) = h5(7 ·m+9) ≥
h5(7 · (m− 1) + 9 + 3). (The case t ∈ {2, 3} is trivial.)

Otherwise, each point p ∈ ((∂ CH (S)) ∩ S) is not a
point of a convex 5-hole. For m > 0 choose one such
point p (e.g. the bottom-most one) and partition S\{p}
(in clockwise order around p) into the following succes-
sive disjoint subsets: S0 containing the first 7 points;
S′0 containing the next 4 points; (m − 1) pairs of sub-
sets: Si containing 3 points and S′i containing 4 points
(1 ≤ i ≤ (m − 1)); and the subset Srem containing the
remaining (t+ 4) points. See Figure 1 for a sketch.

p
|S0| = 7

|S ′
0 | =

4

︷ ︸︸ ︷
.

|Srem| = t+ 4

3 4 Si S′
i 3 4

(m− 1) pairs

Figure 1: Partition of S\{p} clockwise around an ex-
treme point p: starting with the pair S0, S

′
0; continuing

with (m−1) pairs of sets Si, S
′
i, for 1 ≤ i ≤ (m−1), with

|Si| = 3 and |S′i| = 4; and ending with the remainder
set Srem.

The subset S0 ∪ S′0 ∪ {p} has cardinality 12 and thus
contains at least 3 convex 5-holes. The same is true for
each subset S′i−1∪Si∪S′i∪{p} (1 ≤ i ≤ (m−1)). Finally,
the subset S′m−1 ∪ Srem ∪ {p} has cardinality (9 + t)
and therefore contains at least t convex 5-holes. Note
that we count every convex 5-hole at most once, as the
considered subsets of 10, 11, and 12 points, respectively,
overlap in at most 4 points. In total this gives at least
3 + (m − 1) · 3 + t = 3 · n−9−t7 + t = 3n−27+4t

7 convex
5-holes. �

Corollary 2 Every set S of 17 points in the plane in
general position contains at least h5(17) ≥ 4 convex
5-holes.

Table 1 shows the bounds on h5(n) obtained by
Lemma 1, for some small values of n. By Harborth [12]
h5(10) = 1, and by Dehnhardt [6] h5(11) = 2 and
h5(12) ≥ 3. The bounds for n = 51 and for 57 ≤
n < 62250 (not shown in the table) are due to h5(n) ≥⌈
n
2

⌉
− 7 from Valtr [16]. The bounds h5(12) ≤ 3,

h5(13) ≤ 4, h5(14) ≤ 6, and h5(15) ≤ 9 are from [3, 17].
In the following theorem we present an improved

lower bound on h5(n) for larger n.

Theorem 3 Every set S of n ≥ 12 points in the plane
in general position contains at least h5(n) ≥ 3n

4 −nld
11
6 +

15
8 = 3n

4 − o(n) convex 5-holes.

Proof. For 12 ≤ n < 17 we count three convex 5-holes
for S. For 17 ≤ n < 24 we can count four convex 5-holes
for S by Corollary 2.

If n ≥ 24 consider an (almost) halving line ` of S
which splits S into SL (|SL| = dn2 e) and SR (|SR| =
bn2 c) and does not contain any point of S. See Figure 2.

SL

SR

`

`′

`′′ S′
S′′

Figure 2: A point set S split by a halving line ` into two
point sets SL, SR ⊂ S. The line `′ cuts off a set S′ ⊆ S,
consisting of 8 points of SL and 4 points of SR. The
line `′′ is parallel to `′ and halves SL ∩ S′.

Furthermore, consider a line `′ that intersects ` and
cuts off a set S′ ⊆ S, consisting of eight points from SL

24th Canadian Conference on Computational Geometry, 2012

248

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

and four points from SR. That this is in fact possible is
folklore, see e.g. Exercise 4.5 (b) in [7]. Let a line `′′ be
parallel to `′ and split S′ ∩ SL into two groups of four
points, and let S′′ ⊂ S′ be the set which is cut off by `′′.
Note that neither `′ nor `′′ contain any points of S.

As |S′| = 12 we have that S′ contains at least three
convex 5-holes. We distinguish two cases.

Case 1: S′ contains at least three convex 5-holes
which are not intersected by `. Then each of these
5-holes contains only points from SL and thus at least
one point above `′′. We count the three convex 5-holes
for the set SL and continue on S\S′′.

Case 2: S′ contains at most two convex 5-holes which
are not intersected by `. Then at least one convex 5-hole
in S′ is intersected by `. We count one convex 5-hole
for the halving line ` and continue on S\S′.

Note that in both cases we cut off at least four points
from SL, but at most four points from SR. Thus,
we can repeat this process until we have processed
all dn2 e points of SL. Let cL be the number of con-
vex 5-holes counted for ` when processing SL. Hence,
Case 2 appeared cL times, and Case 1 appeared at least⌊
1
4 ·
(⌈

n
2

⌉
− 8cL

)⌋
− 1 times. Therefore, the number of

convex 5-holes we counted in SL (i.e., not intersecting `)
is h5(SL) ≥ 3

(⌊
1
4

(⌈
n
2

⌉
− 8cL

)⌋
− 1
)
.

Repeating the same procedure for SR (exchang-
ing the roles of SL and SR), we obtain h5(SR) ≥
3
(⌊

1
4

(⌊
n
2

⌋
− 8cR

)⌋
− 1
)
, where cR is the number of con-

vex 5-holes which we counted for ` when processing SR.
Note that any convex 5-hole intersected by `, which we
counted while processing SL, might have occurred again
when processing SR. Thus, the total number c of convex
5-holes intersected by ` is at least max{cL, cR} ≥ cL+cR

2 .
As h5(S) = h5(SL) + h5(SR) + c, we obtain

h5(S) ≥ 3 ·
(⌊

1

4
·
(⌈n

2

⌉
− 8cL

)⌋
− 1

)

+ 3 ·
(⌊

1

4
·
(⌊n

2

⌋
− 8cR

)⌋
− 1

)
+
cL + cR

2
.

Considering that

⌊⌈
n
2

⌉

4

⌋
+

⌊⌊
n
2

⌋

4

⌋
=

2 ·
⌊ n

2

4

⌋
. . . n is even

⌊ n+1
2

4

⌋
+

⌊ n−1
2

4

⌋
. . . n is odd

is ≥ n
4− 6

4 in both cases, careful transformation gives

h5(S) ≥ 3n

4
− 11 · cL + cR

2
− 21

2
(1)

as a first lower bound for the number of convex 5-holes
in S. Using h5(S) = c + h5(SL) + h5(SR), and the
fact that the (almost) halving line ` splits S such that
|SL| = dn2 e and |SR| = bn2 c, we get h5(S) ≥ cL+cR

2 +

h5(
⌈
n
2

⌉
) + h5(

⌊
n
2

⌋
) ≥ cL+cR

2 + h5(
⌈
n−1
2

⌉
) + h5(

⌈
n−1
2

⌉
),

and hence, a second lower bound for h5(S):

h5(S) ≥ cL + cR
2

+ 2 · h5(

⌈
n− 1

2

⌉
) . (2)

Combining this with the bound (1), we obtain

h5(S) ≥ max

{(
3n

4
− 11 · cL + cR

2
− 21

2

)
,

(
cL + cR

2
+ 2 · h5(

⌈
n− 1

2

⌉
)

)}
.

(3)

Note that the first term in inequality (3) is strictly
monotonically decreasing in cL+cR

2 , while the second
term is strictly monotonically increasing in cL+cR

2 .
Thus, the minimum of the lower bound in (3) is reached
if both bounds are equal.

3n

4
−11 · cL+cR

2
− 21

2
=
cL+cR

2
+2·h5(

⌈
n−1

2

⌉
)

3n

4
− 21

2
−2·h5(

⌈
n−1

2

⌉
) = 12· cL+cR

2

cL+cR
2

=
n

16
− 7

8
− 1

6
·h5(

⌈
n−1

2

⌉
)

Plugging this result for cL+cR
2 into the lower bound (2)

for h5(S), we obtain a lower bound for h5(S) for any
S with n points. Therefore, this also leads to a lower
bound for h5(n).

h5(n) ≥ n

16
− 7

8
− 1

6
·h5(

⌈
n−1

2

⌉
) + 2·h5(

⌈
n−1

2

⌉
)

=
n

16
− 7

8
+

11

6
·h5(

⌈
n−1

2

⌉
) .

(4)

We show by induction that this recursion resolves to
h5(n) ≥ 3n

4 − nld
11
6 + 15

8 , for n ≥ 12. We know that
h5(12), . . . , h5(16) ≥ 3 and h5(17), . . . , h5(23) ≥ 4 (see

first paragraph of this proof). As 3n
4 − nld

11
6 + 15

8 is
monotonically increasing for 12 ≤ n ≤ 23, it is sufficient
to check the induction base for n = 16 and n = 23:
h5(16) ≥ 3 ≥ 2.578 ≥ 3·16

4 − 16ld
11
6 + 15

8 and h5(23) ≥
4 ≥ 3.609 ≥ 3·23

4 − 23ld
11
6 + 15

8 . For n ≥ 24 we insert
the claim into the recursive formula:

h5(n) ≥ n

16
− 7

8
+

11

6
·h5(

⌈
n−1

2

⌉
)

≥ n

16
− 7

8
+

11

6
·
(

3n−1
2

4
−
(
n−1

2

)ld 11
6

+
15

8

)

=
3n

4
+

15

8
− 11

6
· 1

2ld
11
6

· (n− 1)ld
11
6

≥ 3n

4
− nld 11

6 +
15

8
.

The last inequality is true because (n− 1)ld
11
6 < nld

11
6 .

This proves the claim and the theorem as we have:
h5(n) ≥ 3n

4 − n0.87447 + 1.875 = 3n
4 − o(n) . �

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

249

24th Canadian Conference on Computational Geometry, 2012

3 Empty triangles and convex 4-holes

For this section we are going to use some definitions and
notation used in [15, 9, 10]. Let S be a set of n points
in the plane in general position. We need to define a
total order on the points of S. In addition, this order
has to define a line `q through every point q ∈ S, such
that each point r ∈ S is either in the closed halfplane
“below” `q, i.e., q ≥ r, or in the open halfplane “above”
`q, i.e., q < r. In [10] the points of S are sorted in
increasing order of the ordinate y (with the additional
restriction that no two points have equal ordinate). Ob-
serve though, that of course any direction is a valid or-
der for the points of S. Furthermore, observe that also
a cyclic order around some point p ∈ ((∂ CH (S))∩S) is
a valid order for the points of S\{p}, as there exists a
line ` through p, such that all points of S\{p} are in an
open halfplane bounded by `. This will be crucial for
the proof of Lemma 6 where we will order the points of
a set S\{p} around such a point p. Note that, because
of the general position assumption for S, no two points
in S\{p} are equivalent in this order. Anyhow, for sim-
plicity, and apart from the aforementioned exception,
we will use the order along the ordinate of S, as in [10].

Let P be a convex 5-hole spanned by points of S and
let v be the top vertex of P , i.e., the vertex of P with
highest order. We name an empty triangle generated
by P if it is spanned by v and the two vertices of P
that are not adjacent (on the boundary of P) to v.
Let h3|5(S) be the number of such triangles determined
by S, and let h3|5(n) = min|S|=n h3|5(S) be the number
of empty triangles generated by convex 5-holes that ev-
ery set of n points spans at least. Likewise, we name a
convex 4-hole generated by P if it is spanned by all ver-
tices of P except for one of the two vertices of P that
are adjacent (on the boundary of P) to v. Observe that
each convex 5-hole generates two convex 4-holes by this
definition. Let h4|5(S) be the number of such 4-holes
determined by S, and let h4|5(n) = min|S|=n h4|5(S)
be the number of convex 4-holes generated by convex
5-holes that every set of n points spans at least.

Garćıa [10] recently proved that h3(S) = n2 − 5n +
H+4+h3|5(S) ≥ n2−5n+H+4+h3|5(n) and h4(S) =
n2

2 − 7n
2 +H + 3 +h4|5(S) ≥ n2

2 − 7n
2 +H + 3 +h4|5(n),

where H is the number of points of ((∂ CH (S)) ∩ S).
Consequently, this gives h3(n) ≥ n2 − 5n + 7 + h3|5(n)

and h4(n) ≥ n2

2 − 7n
2 + 6 + h4|5(n), as H ≥ 3. Observe

that this implies that h3|5(S) and h4|5(S) (and of course
h3|5(n) and h4|5(n)) do not depend on the chosen order
of the points. As changing the order does not change
the point set, h3(S) and h4(S) are of course indepen-
dent of the order. Furthermore, Garćıa proved that the
number of empty triangles (or convex 4-holes) not gen-
erated by convex 5-holes is an invariant of the point set.
Hence, although the empty triangles and convex 4-holes

generated by convex 5-holes may change with different
orders, their numbers stay the same.

Proving h3|5(n) ≥ 3 ·
⌊
n−4
8

⌋
and h4|5(n) ≥ 6 ·

⌊
n−4
8

⌋
,

Garćıa presented the improved bounds h3(n) ≥ n2 −
37n
8 + 23

8 and h4(n) ≥ n2

2 − 11n
4 − 9

4 . We will improve
these bounds on h3|5(n) and h4|5(n). Showing that for
each convex 5-hole counted in Lemma 1 we may count
one empty triangle generated by convex 5-holes and two
convex 4-holes generated by convex 5-holes will already
give an improved bound for both, h3|5(n) and h4|5(n).
But using a slightly adapted version of the proof from
Theorem 3 will improve the bound on h4|5(n) even fur-
ther. To this end we have to first prove the base case,
i.e., sets of 10, 11, and 12 points.

Having a close look at the example shown in Figure 3,
one can see that as soon as the triangle4 (or the convex
4-hole 3) is generated by more than one convex 5-hole,
there must exist at least one convex 6-hole. We state
this fact in more detail and prove it in the following
lemma. Note that a similar approach and figure has
been used in [10].

Lemma 4 Let S be a set of n ≥ 6 points in the plane
in general position. Let 4 (3) be an empty triangle
(a convex 4-hole) of S. If 4 (3) is generated by at
least two convex 5-holes, D1 and D2, of S, then there
exists at least one convex 6-hole, 71, of S, containing
D1, and one convex 6-hole, 72, of S, containing D2,
where 71 = 72 is possible.

Proof. See Figure 3 (top). Assume that there exists
at least one empty triangle, 4 = 〈pi, pj , pk〉, with pk
being the top vertex, that is generated by two differ-
ent convex 5-holes. Let one of them, D1, be spanned
by the points pi, pj , pL, pk, pR (the points shown as full
dots in the figure). As4 is generated by another convex
5-hole, D2, there must be at least one additional point
in one of the regions Lh, Ll, Rh, and Rl. Otherwise,
the new pentagon would not be empty, not be convex,
or 4 would not be generated by it (recall that pk must
be the highest point). W.l.o.g. assume that there ex-
ists at least one point pnew in Rl. It is easy to see that
in this case there exists a convex 4-hole spanned by the
points pi, pk, pR, p

′
R (p′R = pnew is possible, but not nec-

essary). Together with pj and pL this forms a convex
6-hole which contains D1. Starting the argument with
4 being generated by D2, proves that also D2 is con-
tained in a convex 6-hole.

The argumentation is analogous for a convex 4-hole,
3, that is generated by two different convex 5-holes.
See Figure 3 (bottom). The only difference to the pre-
vious case (with4) is that the additional point pnew can
not exist in either Ll or Rl, depending on which convex
4-hole (either 3 = 〈pi, pj , pL, pk〉 or 3 = 〈pi, pj , pk, pR〉)
is considered. The former situation is depicted in Fig-
ure 3 (bottom). �

24th Canadian Conference on Computational Geometry, 2012

250

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

pk

pi
pj

Lh

Ll

Rh
pR

pL

p′R

pnew

4

Rl

pk

pi
pj

Lh

Ll

Rh
pR

pL

p′R

pnew

♦
Rl

Figure 3: Auxiliary figure for the proof of Lemma 4.

Using Lemma 4 we are able to provide the base cases
10 ≤ n ≤ 12 for h3|5(n) and h4|5(n). The proof is
omitted in this extended abstract.

Lemma 5 Every set of 10, 11, or 12 points in the
plane in general position contains (i) at least 1, 2, and
3, respectively, different empty triangles generated by
convex 5-holes (i.e., h3|5(10) = 1, h3|5(11) = 2, and
h3|5(12) = 3) and (ii) at least 2, 4, and 6, respectively,
different convex 4-holes generated by convex 5-holes
(i.e., h4|5(10) = 2, h4|5(11) = 4, and h4|5(12) = 6).

These base cases allow a lemma similar to Lemma 1.
The proof follows the lines of the proof of Lemma 1 and
is omitted in this extended abstract.

Lemma 6 Every set S of n points in the plane in gen-
eral position with n = 7 · m + 9 + t (for any natu-
ral number m ≥ 0 and t ∈ {1, 2, 3}) contains at least
h3|5(n) ≥ 3n−27+4t

7 empty triangles generated by con-

vex 5-holes and at least h4|5(n) ≥ 2 · (3n−27+4t)
7 convex

4-holes generated by convex 5-holes.

As mentioned above, this lemma already improves the
bounds for h3|5(n) and h4|5(n). We will further improve
the bound for h4|5(n) in Theorem 8. In the following
theorem we state only the bound for h3|5(n).

Theorem 7 Every set S of n ≥ 12 points in the
plane in general position contains at least h3|5(n) ≥
3·
⌊
n−12

7

⌋
+3+f(|Srem|) ≥

⌈
3n−27

7

⌉
empty triangles gen-

erated by convex 5-holes. The point set Srem⊂S is the
remainder set with 0 ≤ |Srem| ≡ (n− 12) mod 7 ≤ 6,
and f(0 . . . 4) = 0, f(5) = 1, and f(6) = 2.

Proof. The first inequality in the bound, h3|5(n) ≥
3 ·
⌊
n−12

7

⌋
+ 3 + f(|Srem|), is simply a reformulation of

the bound in Lemma 6. The second inequality results
from taking the minimum of the first inequality over all
possible values for |Srem|. (This minimum is obtained
by |Srem| = 4.) �

The basic principles of the proof of the following the-
orem are the same as in the proof of Theorem 3. The
main difference is that, for excluding over-counting, a
slightly different counting is needed. The proof is omit-
ted in this extended abstract and we only state the re-
sult.

Theorem 8 Every set S of n ≥ 12 points in the plane
in general position contains at least h4|5(n) ≥ 5n

4 − 383
303 ·

nld
19
10 + 55

24 = 5n
4 − o(n) convex 4-holes generated by

convex 5-holes.

Remark: To use the principles of the proof of The-
orem 3 also for empty triangles generated by convex
5-holes, a very disadvantageous splitting is necessary to
avoid over-counting. This would lead to a bound infe-
rior to the one from Theorem 7.

Recall that Garćıa [10] recently proved h3(S) ≥ n2 −
5n+H+4+h3|5(n) and h4(S) ≥ n2

2 − 7n
2 +H+3+h4|5(n).

Combining these results with Theorem 7 and Theorem 8
we can state the following corollary.

Corollary 9 Every set S of n ≥ 12 points in the
plane in general position and with H points on the
boundary of its convex hull contains at least h3(S) ≥
n2 − 5n + H + 4 +

⌈
3n−27

7

⌉
empty triangles and at

least h4(S) ≥ n2

2 − 9n
4 − 383

303 · nld
19
10 + H + 127

24 con-
vex 4-holes. Consequently, h3(n) ≥ n2 − 32n

7 + 22
7 and

h4(n) ≥ n2

2 − 9n
4 − 1.2641n0.926 + 199

24 .

4 Conclusion

In this paper we improved the lower bounds on the least
number hk(n) of convex k-holes any set of n points con-
tains, for 3 ≤ k ≤ 5. The question whether there exists
a super-linear lower bound for the number of convex
5-holes remains unsettled, though.

Still, we are able to answer two questions that Dehn-
hardt [6] asked in 1987. Already in [3] a set of 12
points containing only three convex 5-holes has been
presented, implying h5(12) = 3. This disproved Dehn-
hardt’s conjecture of h5(12) = 4. Recall that we know
from Garćıa [10], that h3(S) = n2−5n+H+4+h3|5(S)

and h4(S) = n2

2 − 7n
2 +H + 3 + h4|5(S), where h3|5(S)

(h4|5(S)) is the number of empty triangles (convex
4-holes) generated by convex 5-holes in S.

Consider the set S12 with n = 12 points and H = 3,
depicted in Figure 4. It can be easily checked that

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

251

24th Canadian Conference on Computational Geometry, 2012

Figure 4: Set of 12 points with triangular convex hull,
generating the minimal number of 3-holes (94), convex
4-holes (42), and convex 5-holes (3). The coordinates
(x, y) of the 12 points are: (0, 0); (100, 0); (50, 87); (50,
38); (55, 32); (53, 19); (47, 19); (45, 32); (41, 4); (59,
4); (25, 40); (75, 40).

this point set contains only the 3 shown convex 5-holes.
Hence, h3|5(S12) = 3 and h4|5(S12) = 6, as by Lemma 5
h3|5(12) = 3 and h4|5(12) = 6. Inserting into the above
equations, we get h3(S12) = h3(12) = 144−60 + 3 + 4 +
3 = 94 and h4(S12) = h4(12) = 72−42 + 3 + 3 + 6 = 42,
as h3(12) ≥ 94 and h4(12) ≥ 42 (by [6]). Of course,
h3(S12) and h4(S12) can also be derived by counting
all empty triangles and convex 4-holes in S12. This
disproves two conjectures of Dehnhardt in [6], namely
h3(12) = 95 and h4(12) = 44.

Furthermore, his question for a set of n points that
minimizes at least one of h3(n), h4(n), and h5(n), but
not all of them is answered by the set of 12 points
presented in [3], which has only 3 convex 5-holes but
contains (non-minimal) 95 empty triangles and (non-
minimal) 43 convex 4-holes.

Acknowledgments

We thank Alfredo Garćıa for valuable discussions and
an anonymous referee for helpful comments.

References

[1] O. Aichholzer. [Empty] [colored] k-gons - Recent results
on some Erdős-Szekeres type problems. In Proc. XIII
Encuentros de Geometŕıa Computacional ECG2009,
pages 43–52, Zaragoza, Spain, 2009.

[2] O. Aichholzer, T. Hackl, and B. Vogtenhuber. On 5-
holes and 5-gons. In Proc. XIV Encuentros de Ge-
ometŕıa Computacional ECG2011, pages 7–10, Alcalá
de Henares, Spain, 2011.

[3] O. Aichholzer, T. Hackl, and B. Vogtenhuber. On
5-holes and 5-gons. In A. Marquez, P. Ramos, and
J. Urrutia, editors, Special issue: XIV Encuentros de
Geometŕıa Computacional ECG2011, Lecture Notes in

Computer Science (LNCS), page to appear. Springer,
2012.

[4] I. Bárány and G. Károlyi. Problems and results
around the Erdős–Szekeres convex polygon theorem.
In J. Akiyama, M. Kano, and M. Urabe, editors, Dis-
crete and Computational Geometry, volume 2098 of Lec-
ture Notes in Computer Science (LNCS), pages 91–105.
Springer, 2001.

[5] I. Bárány and P. Valtr. Planar point sets with a small
number of empty convex polygons. Studia Scientiarum
Mathematicarum Hungarica, 41(2):243–266, 2004.

[6] K. Dehnhardt. Leere konvexe Vielecke in ebenen Punkt-
mengen. PhD thesis, TU Braunschweig, Germany,
1987. In German.

[7] H. Edelsbrunner. Algorithms in Combinatorial Geome-
try. Springer, 1987.

[8] P. Erdős. Some more problems on elementary geome-
try. Australian Mathematical Society Gazette, 5:52–54,
1978.

[9] A. Garćıa. A note on the number of empty triangles.
In Proc. XIV Encuentros de Geometŕıa Computacional
ECG2011, pages 101–104, Alcalá de Henares, Spain,
2011.

[10] A. Garćıa. A note on the number of empty triangles. In
A. Marquez, P. Ramos, and J. Urrutia, editors, Special
issue: XIV Encuentros de Geometŕıa Computacional
ECG2011, Lecture Notes in Computer Science (LNCS),
page to appear. Springer, 2012.

[11] T. Gerken. Empty convex hexagons in planar point sets.
Discrete and Computational Geometry, 39(1–3):239–
272, 2008.

[12] H. Harborth. Konvexe Fünfecke in ebenen Punktmen-
gen. Elemente der Mathematik, 33:116–118, 1978. In
German.

[13] J. Horton. Sets with no empty convex 7-gons. Canadian
Mathematical Bulletin, 26(4):482–484, 1983.

[14] C. Nicolás. The empty hexagon theorem. Discrete and
Computational Geometry, 38(2):389–397, 2007.

[15] R. Pinchasi, R. Radoičić, and M. Sharir. On empty
convex polygons in a planar point set. J. Comb. Theory
Ser. A, 113:385–419, April 2006.

[16] P. Valtr. On empty pentagons and hexagons in planar
point sets. In Proc. 18th Computing: Australasian The-
ory Symposium CATS2012, pages 47–48, Melbourne,
Australia, 2012.

[17] B. Vogtenhuber. Combinatorial Aspects of [Colored]
Point Sets in the Plane. PhD thesis, Institute for Soft-
ware Technology, Graz University of Technology, Graz,
Austria, 2011.

24th Canadian Conference on Computational Geometry, 2012

252

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

What makes a Tree a Straight Skeleton?∗

Oswin Aichholzer† Howard Cheng‡ Satyan L. Devadoss§ Thomas Hackl† Stefan Huber¶

Brian Li§ Andrej Risteski‖

Abstract

Let G be a cycle-free connected straight-line graph with
predefined edge lengths and fixed order of incident edges
around each vertex. We address the problem of decid-
ing whether there exists a simple polygon P such that
G is the straight skeleton of P . We show that for given
G such a polygon P might not exist, and if it exists it
might not be unique. For the later case we give an ex-
ample with exponentially many suitable polygons. For
small star graphs and caterpillars we show necessary
and sufficient conditions for constructing P .

Considering only the topology of the tree, that is,
ignoring the length of the edges, we show that any tree
whose inner vertices have degree at least 3 is isomorphic
to the straight skeleton of a suitable convex polygon.

1 Introduction

The straight skeleton S(P) of a simple polygon P is a
skeleton structure like the Voronoi diagram, but consists
of straight-line segments only. Its definition is based
on a so-called wavefront propagation process that corre-
sponds to mitered offset curves. Each edge e of P emits
a wavefront that moves with unit speed to the interior
of P . Initially, the wavefront of P consists of parallel
copies of all edges of P . However, during the wavefront
propagation, topological changes occur: An edge event
happens if a wavefront edge shrinks to zero length. A
split event happens if a reflex wavefront vertex meets a

∗A preliminary version of this paper appeared at Eu-
roCG 2012. Research of O. Aichholzer partially supported
by the ESF EUROCORES programme EuroGIGA – Com-
PoSe, Austrian Science Fund (FWF): I 648-N18. T. Hackl
was funded by the Austrian Science Fund (FWF): P23629-
N18. S. Huber was funded by the Austrian Science Fund
(FWF): L367-N15. H. Cheng, S.L. Devadoss, B. Li, and A.
Risteski were funded by NSF grant DMS-0850577.
†Institute for Software Technology, Graz University of Tech-

nology, [oaich|thackl]@ist.tugraz.at
‡University of Arizona, Tucson, AZ 85721,

howardc@email.arizona.edu
§Williams College, Williamstown, MA 01267,

[satyan.devadoss|brian.t.li]@williams.edu
¶Department of Mathematics, Universität Salzburg, Austria,

shuber@cosy.sbg.ac.at
‖Princeton University, Princeton, NJ 08544,

risteski@princeton.edu

ef(e)

Figure 1: The straight skeleton (thin) of a simple poly-
gon (bold) is defined by the propagating wavefront (dot-
ted).

wavefront edge and splits the wavefront into pieces, see
Figure 1. The straight skeleton S(P) is defined as the
set of loci that are traced out by the wavefront vertices
and it partitions P into polygonal faces. Each face f(e)
belongs to a unique edge e of P . Each straight-skeleton
edge belongs to two faces, say f(e1) and f(e2), and lies
on the bisector of e1 and e2.

Straight skeletons have many applications, like auto-
mated roof construction, computation of mitered offset
curves, topology-preserving collapsing of areas in geo-
graphic maps, or solving fold-and-cut problems. See [4]
and Chapter 5.2 in [3] for further information and de-
tailed definitions.

Although straight skeletons were introduced to com-
putational geometry in 1995 by Aichholzer et al. [1],
their roots actually go back to the 19th century. In
textbooks about the construction of roofs (see e.g. [6],
pages 86–122) using the angle bisectors (of the polygon
defined by the ground walls) was suggested to design
roofs where rainwater can run off in a controlled way.
This construction is called Dachausmittlung and became
rather popular. See [5] for related and partially more
involved methods to obtain roofs from the ground plan
of a house. In this book detailed explanations of the
constructions and drawings of the resulting roofs can
be found.

Maybe not surprisingly, none of this early work men-
tions the ambiguity of the non-algorithmic definition of
the construction. It can be shown that using solely bi-
sector graphs does not necessarily lead to a unique roof

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

253

24th Canadian Conference on Computational Geometry, 2012

construction, and actually does not even guarantee a
plane partition of the interior of the defining boundary.
See [1] for a detailed explanation and examples.

An interesting inverse problem was motivated to us
by Lior Pachter and investigations started in [2]: Which
graphs are the straight skeleton of some polygon? In
other words, how can straight skeletons be characterized
among all graphs?

2 Finding straight skeletons of given topology

First of all, the straight skeleton S(P) of a simple poly-
gon is known to be connected and cycle-free. Hence,
we can rephrase our question as follows: which trees T
are realized as straight skeletons of simple polygons? At
first we concentrate on the topological structure of trees
only and ignore their geometry.

Theorem 1 For any tree T , whose inner vertices have
at least degree 3, there exists a feasible (convex) polygon
P such that S(P) possesses the same topology as T .

Note that within convex polygons the straight skele-
ton and the Voronoi diagram are identical. Hence, by
the above theorem, any tree is also isomorphic to the
Voronoi diagram of a suitable convex polygon.

Proof. We first choose any inner vertex v of T to be
the root of T . Then we construct a regular polygon P1

with d(v) sides, where d(v) denotes the degree of v. The
straight skeleton S(P1) is a star graph comprising one
inner node and d(v) incident edges, which correspond
to v and its incident edges in T . It remains to attach
the corresponding subtrees from T to each leaf vertex
of S(P1), if there are any.

In the remainder of the proof we describe an induc-
tive step by which we locally transform a polygon Pi to
Pi+1 in order to attach to a leaf vertex u of S(Pi) a miss-
ing number k = d(u) − 1 of incident edges, where d(u)

u

Pi

s1 s2

u′

Pi+1

e

C

e1 e2 ek

e

Figure 2: The induction step in order to add k edges to
a terminal vertex of S(Pi), with k = 3, by beveling the
corner u of Pi.

denotes the degree of the vertex of T that corresponds
to u. Applying this technique recursively — e.g., in a
breadth-first search fashion starting from v — gives us
finally a polygon Pm, where m denotes the number of
inner nodes of T , whose straight skeleton S(Pm) is topo-
logically equivalent to T by construction. Furthermore,
in our induction step we guarantee that all polygons
P1, . . . , Pm remain convex.

For the induction step, we consider a leaf vertex u in
S(Pi) and we denote by e the incident straight-skeleton
edge of u. As u is a leaf vertex of S(Pi) it is also a poly-
gon vertex of Pi. Hence, e lies on the straight-skeleton
faces f(s1) and f(s2) of the two incident polygon edges
s1 and s2 of u. Since Pi is convex by induction, all faces
of S(Pi) are convex, too. Hence, the projection lines of
the mid point u′ of e onto s1 and s2 are completely con-
tained in f(s1) and f(s2), respectively. Let us consider
the circular arc C that is centered at u′ and tangen-
tial to s1 and s2 such that C forms a round convex cap
of the corner u of Pi, see Figure 2. In the induction
step, we locally bevel the corner u of Pi by any convex
polygonal chain with k ≥ 2 vertices that is tangential
to C. By that the edge e is truncated to u′ and we ob-
tain k additional straight-skeleton edges e1, . . . , ek that
are incident to u′, as desired. The resulting polygon
Pi+1 is again convex and a locally beveled version of Pi.
Note that the remaining straight skeleton of Pi remains
unchanged for Pi+1. �

3 Abstract geometric trees

The original problem motivated by Lior Pachter and for
which investigations started in [2] does not only ask for
a specific topology of S(G), but also asks for certain
geometric requirements that are to be fulfilled by S(P).
In particular, we want to find a polygon P for which (i)
S(P) has a specific topology, (ii) the edges of S(P) have
a specific length and (iii) the cyclic order of incident
edges at vertices of S(P) is given.

To give a more formal problem definition we denote
with abstract geometric graphs the set of combinatorial
graphs, where the length of each edge and the cyclic or-
der of incident edges around every vertex is predefined
(and cannot be altered). Let G be the set of cycle-
free connected abstract geometric graphs. Denote with
E(G) an embedding of G ∈ G in the plane, that is,
the vertices of G are points in R2 and the edges of
G are straight-line segments of the predefined length,
connecting the corresponding points and respecting the
predefined cyclic order of incident edges around each
vertex. Further, denote with PE(G) the polygon result-
ing from connecting the leaves of G (with straight-line
segments) in cyclic order for the embedding E(G). We
call a simple polygon PE(G) suitable if its straight skele-
ton S(PE(G)) = E(G), for the embedding E(G). If there

24th Canadian Conference on Computational Geometry, 2012

254

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Figure 3: Example of a feasible cycle-free connected
abstract geometric graph G (leaves of G are shown as
white dots). Left: Arbitrary embedding E(G) and (non-
simple) polygon PE(G) (dotted). Right: Suitable poly-
gon PE′(G) for a different embedding E′(G), which is
equal to S(PE′(G)). A set of wavefronts of PE′(G) at
different points in time are depicted in gray.

exists a suitable polygon for a graph G ∈ G, we call G
feasible, see Figure 3.

The obvious questions which arise from these defini-
tions are: Which graphs of G are feasible? Are the suit-
able polygons for feasible graphs unique modulo rigid
motions? How can one construct a suitable polygon for
a feasible graph?

3.1 Star graphs

All polygon edges whose straight-skeleton faces con-
tain a common vertex u (of the straight skeleton) have
equal orthogonal distance t to u, because their wave-
front edges reach u at the same time t. That is, the
supporting lines of those polygon edges are tangential
to the circle with center u and radius t. Thus, in this
section we consider a subset of G, the so called star
graphs. A star graph Sn ∈ G, for n ≥ 3 has (n+ 1) ver-
tices, one vertex u with degree n and n leaves v1, . . . , vn
ordered counter-clockwise around u. The length of each
edge uvi, with 1 ≤ i ≤ n, is denoted by li. W.l.o.g. let
l1 = maxi li. Observe that the polygon PE(Sn) is star
shaped and vivi+1 (with vn+k := v1+(k−1) mod n) are its
edges.

Observation 1 If Sn ∈ G is a feasible star graph and
PE(Sn) is a suitable polygon of Sn, then (1) all straight-
skeleton faces are triangles, (2) two consecutive vertices
vi, vi+1 can not both be reflex, (3) li < li±1 for each re-
flex vertex vi of PE(Sn), and (4) all edges of PE(Sn) have
equal orthogonal distance t to u, with t ∈ (0,mini li].

As a given Sn ∈ G is possibly not feasible and a suit-
able polygon may not be known or might not exist, we
define a polyline LSn

(t, A): The vertices v1, . . . , vn+1 of
LSn

(t, A) are the leaves, v1, . . . , vn, of Sn, in the same
order as for Sn, and one additional vertex vn+1 suc-
ceeding vn. The vertices v1, . . . , vn, vn+1 have the cor-
responding distances (predefined in Sn) l1, . . . , ln, l1 to
u. A is an assignment for each vertex whether it should

v2 = vi−1vi

t

u

vn

li
αi

gi−1

v1
≡ vn+1

Figure 4: Construction of LSn
(t, A) (and E(Sn)) for a

given Sn and a fixed distance t and assignment A.

be convex or reflex, as seen from u. As l1 = maxi li,
v1 and vn+1 are always convex (fact (3) in Observa-
tion 1). For the remaining vertices any convex/reflex
assignment, which respects the facts (2) and (3) in Ob-
servation 1, can be considered. The edges of LSn

(t, A)
have equal orthogonal distance t to u. Of course, not all
possible combinations of t and an arbitrary embedding
E(Sn) allow such a polyline, but it is possible to con-
struct LSn(t, A) and E(Sn) simultaneously for a fixed
t ∈ (0,mini li].

For a fixed assignment A and a fixed t ∈ (0,mini li] we
construct LSn

(t, A) (and E(Sn)) in the following way.
Consider the circle C with center u and radius t. Start
with v1 at polar coordinate (l1, 0), with u as origin. For
each vi, i = 2 . . . (n + 1), consider a tangent gi−1 to C
(such that the vertices will be placed counter-clockwise
around the circle) through vi−1. If vi−1 is convex, then
there exist two points with distance li (l1 for vn+1) on
gi−1. If vi is assigned to be reflex, then vi is placed
on the point closer to vi−1, and if vi is assigned to be
convex, then vi is placed on the other point. If vi−1

is reflex, then there exists only one applicable point for
placing vi on gi−1. See Figure 4.

The LSn
(t, A) constructed this way is unique (for

fixed t and A), and may be not simple (e.g. when cir-
cling C many times), simple but not closed (vn+1 6≡ v1),
or simple and closed (vn+1 ≡ v1). In the latter case, the
construction reveals a witness pair (t, A) for the exis-
tence of some E(Sn), a suitable polygon PE(Sn), and
thus the feasibility of Sn.

It is easy to see that for each suitable polygon PE(Sn),
there exists a polyline LSn

(t, A) (just duplicate the ver-
tex v1). Hence, deciding feasibility of Sn is equivalent to
finding an assignment A and a t ∈ (0,mini li] such that
LSn(t, A) is closed and simple. For a polyline LSn(t, A)
and a corresponding embedding E(Sn), we denote with
αi, i = 1 . . . n, the counter-clockwise angle at u, spanned
by uvi and uvi+1. Note that for a suitable polygon
PE(Sn) αi can be defined the same way, with vn+1 ≡ v1.
It is easy to see that the sum of all αi is 2π if and only
if LSn

(t, A) is closed and simple.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

255

24th Canadian Conference on Computational Geometry, 2012

Lemma 2 Let Sn ∈G, distance t ∈ (0,mini li] and as-
signment A be fixed, and let LSn

(t, A) be the resulting
polyline. Then αA(t) :=

∑n
i=1 αi can be expressed as

αA(t) = 2
n∑

i=1
vi convex

arccos
t

li
− 2

n∑

i=1
vi reflex

arccos
t

li
. (1)

Proof. Recall that v1 and vn+1 are convex by the as-
sumption l1 = ln+1 = maxi li. It is easy to see that
αi = arccos t

li
+arccos t

li+1
if vi is convex and vi+1 is con-

vex, αi = arccos t
li
− arccos t

li+1
if vi is convex and vi+1

is reflex, and αi = − arccos t
li

+ arccos t
li+1

if vi is reflex

and vi+1 is convex. If vi is reflex then αi−1 +αi sums up

to
(

arccos t
li−1

+ arccos t
li

)
+
(

arccos t
li

+ arccos t
li+1

)
−

4 arccos t
li

, because vi±1 are both convex (fact (2) in Ob-
servation 1). Thus, summing over all αi results in the
claimed formula. �

We define a suitable polygon to be unique if it is the
only suitable polygon modulo rigid motions. For the
following result we use the first derivative of αA:

α′A(t) = 2

n∑

i=1
vi reflex

1√
l2i − t2

− 2

n∑

i=1
vi convex

1√
l2i − t2

. (2)

Lemma 3 A suitable convex polygon for a star graph
Sn exists if and only if

∑
i arccos mini li

li
≤ π. If a suit-

able convex polygon exists then it is unique.

Proof. As all vertices are assumed to be convex, we
obtain αA(0) = nπ > 2π. Furthermore, we observe
that αA(t) is monotonically decreasing since α′A(t) < 0
for all t ∈ (0,mini li]. Hence, there is a t ∈ (0,mini li]
with α(t) = 2π if and only if αA(mini li) ≤ 2π which is∑
i arccos mini li

li
≤ π. If this is the case the solution is

unique as α(t) is monotonic. �

For n = 3, αA(0) = 3π and αA(mini li) < 2π, and
thus we immediately get the following corollary.

Corollary 4 For every S3 there exists a unique suitable
convex polygon.

Considering star graphs with n = 5, we show in the
following lemma that they are not always feasible, and
that suitable polygons (if they exist) are not always
unique.

Lemma 5 There exist infeasible star graphs, Sn ∈ G.
Further, there exist feasible star graphs for which mul-
tiple suitable polygons exist.

Proof. To prove the first claim consider a star graph
with n = 5, l1 = l2 = l3 = l4 = 1, and l5 = 0.25. There
exist only two possible assignments: either all vertices

convex or all but v5 convex. It is easy to check that for
both assignments

∑
i αi > 2π, for every t ∈ (0,mini li].

To prove the second claim consider a star graph with
n = 5, l1 = l3 = 1, l2 = 0.6, l4 = 0.79, and l5 = 0.75.
Assign all vertices convex, except for v2. Then

∑
i αi

evaluates to 2π for t ≈ 0.537 and t ≈ 0.598. Hence,
there exist (at least) two different suitable polygons for
this star graph. �

Note that for the latter example two suitable polygons
exist that even share the same reflexivity assignment. In
the following we discuss sufficient and necessary condi-
tions for the feasibility of a star graph S4. By Lemma 3
we know in which cases suitable convex polygons exist.
The remaining cases are solved by the following lemma.

Lemma 6 Consider an S4 for which no suitable convex
polygon exists. A suitable non-convex polygon exists if
and only if 1

mini li
<
∑
j=1,lj 6=mini li

1
lj

.

Proof. First of all, if a polyline has two or more re-
flex vertices assigned then αA(t) < 2π, as each positive
summand in Equation (1) is bound by π/2. Hence, we
only need to consider polylines with exactly one reflex
vertex, which implies αA(0) = 2π.

For simplicity, we may reorder vi and li such that l4 =
mini li. We show that for suitable non-convex polygons
v4 needs to be reflex. Assume to the contrary that some
vk, with 1 ≤ k ≤ 3, is reflex. In this case we obtain
that α′A(t) < 0 as 1/

√
l24−t2 dominates 1/

√
l2k−t2 for all

t ∈ [0, l4). But since αA(0) = 2π we see that αA(t) < 2π
for all t ∈ (0,mini li].

Observe that the assumption in the lemma, that no
suitable convex polygon exists, is equivalent to αA(l4) >
2π. Recall that αA(0) = 2π. Hence, if α′A(0) < 0 then
there exists a t ∈ (0, l4) such that αA(t) = 2π, as αA is
continuously differentiable.

Finally, we show that if α′A(0) ≥ 0 then α′A(t) > 0
for all t ∈ (0, l4). Hence, there is no t ∈ (0, l4] such that
αA(t) = 2π. From Equation (2) we get that α′A(t) > 0
is equivalent to

1√
l24 − t2

>
3∑

i=1

1√
l2i − t2

⇔ 1 >
3∑

i=1

√
1− l2i − l24

l2i − t2

The right side of this equivalence is true since

1 ≥
3∑

i=1

√
1− l2i − l24

l2i
>

3∑

i=1

√
1− l2i − l24

l2i − t2
, (3)

where the first inequality is given by α′A(0) ≥ 0 and the
second inequality holds for all t ∈ (0, l4).

To conclude, we have shown that if no suitable convex
polygon exists for some S4, then a suitable non-convex
polygon exists for this S4 if and only if α′(0) < 0, which
is equivalent to 1

mini li
<
∑
j=1,lj 6=mini li

1
lj

, as claimed

in the lemma. �

24th Canadian Conference on Computational Geometry, 2012

256

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

3.2 Caterpillar graphs

The techniques developed in the previous section can be
generalized to so-called caterpillar graphs. A caterpillar
graph G ∈ G is a graph that becomes a path if all its
leaves (and their incident edges) are removed. We call
this path the backbone of G. Figure 3 shows a caterpillar
graph whose backbone comprises three backbone edges.

In general, a caterpillar graph has m backbone ver-
tices, consecutively denoted by v1

0 , . . . , v
m
0 . We denote

the adjacent vertices of a backbone vertex vi0, with ki
incident edges, by vi1, . . . , v

i
ki

, such that viki = vi+1
0 for

1 ≤ i < m. Furthermore, we denote by lij the length of

the edge vi0v
i
j , see Figure 5. Let us consider a polygon P

whose straight skeleton S(P) forms a caterpillar graph.

Observation 2 All edges of P whose straight-skeleton
faces contain the same backbone vertex vi0 have identical
orthogonal distance to vi0.

We denote this orthogonal distance by ri. Hence, the
supporting lines of the corresponding polygon edges are
tangents to the circle of radius ri centered at vi0, see
Figure 5.

Lemma 7 The radii r2, . . . , rm of a suitable polygon
PE(G) for some given caterpillar graph G are determined
by r1 and the predefined edge lengths of G according to
the following recursions, for 1 ≤ i < m:

ri+1 = ri + liki sinβi

βi = βi−1 + (1− ki/2)π+

ki−1∑

j=1

vij 6=vi−1
0

arcsin ri
lij

vij is convex

π − arcsin ri
lij

vij is reflex

For i = 1 we define that β0 = 0 and v1
j 6= v0

0 being true
for all 1 ≤ j < k1.

Proof. Denote with e one of the two edges of PE(G)

whose faces of S(PE(G)) contain the edge vi0v
i+1
0 . The

supporting line of e is tangential to the circles at vi0 and
vi+1

0 . Considering the shaded right-angled triangle in
Figure 5, we obtain ri+1 − ri = liki · sinβi.

Consider the polygon P ′i (bold in Figure 5) which
comprises the edges of PE(G) whose faces of S(PE(G))
contain vi0, trimmed by two additional edges orthogonal
to vi−1

0 vi0 and vi0v
i+1
0 , respectively. P ′i comprises ki+2

vertices (k1+1 for P ′1) and hence, the sum of inner angles
equals kiπ ((k1−1)π for P ′1). On the other hand, we can
express this sum as follows (also for P ′1), which implies
the second recursion:

kiπ = 2π + 2βi−1 − 2βi+

2

ki−1∑

j=1

vij 6=vi−1
0

arcsin ri
lij

vij is convex

π − arcsin ri
lij

vij is reflex
�

vi0

vi+1
0

liki

li1
li2

li3

liki

ri
ri+1

βi

ri+1 − ri

vi1

vi3

π
2
− βi

arcsin ri
li
j

vij

π
2
+ βi

e

P ′
i

Figure 5: A section of a polygon P for which S(P) is a
caterpillar graph.

Corollary 8 The sum of the inner angles of PE(G) with
convexity assignment A is a function

αA(r1) = 2
n∑

j=1

{
arcsin

rvj
lj

vj is convex

π − arcsin
rvj
lj

vj is reflex
, (4)

where rvj denotes the radius of the circle at the backbone
vertex that is adjacent to vj and lj denotes the length of
the incident edge of G.

The previous corollary provides us with a tool in or-
der to find suitable polygons PE(G) for caterpillar graphs
G. We know that for any suitable polygon PE(G) the
identity αA(r1)=(n−2)π must hold. Hence, we can de-
termine all suitable polygons PE(G) as follows: for all
2n possible assignments A we determine all r1 such that
αA(r1)=(n−2)π.

For any such pair (A, r1) we construct a polyline
v1, . . . , vn, vn+1 by a similar method as outlined for star
graphs: shooting rays tangential to circles centered at
the backbone vertices vi0. In order to switch over from
vi0 to vi+1

0 , we consider the previously constructed ray,
which needs to be tangential to the two circles centered
at both, vi0 and vi+1

0 , respectively. As the length of the
edge vi0v

i+1
0 is given, the center vi+1

0 of the next cir-
cle is uniquely determined, cf. Figure 5. If there is any
non-backbone edge with length lij < ri then there is no
suitable polygon for that particular pair (A, r1). For
each candidate polyline we check whether it is closed,
simple and forms a suitable polygon. Note that all suit-
able polygons can be constructed by the above method.

Lemma 9 There is at most a finite number of suitable
polygons PE(G) for a caterpillar graph G.

Proof. As αA is analytic, there are no accumulation
points in the set {r1 : αA(r1) = (n− 2)π}. Otherwise,
αA would be identical to (n − 2)π. In other words,

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

257

24th Canadian Conference on Computational Geometry, 2012

there is only a finite number of possible pairs (A, r1)
that correspond to a suitable polygon. �

Lemma 10 There exists a caterpillar graph with 3m
vertices having 2m−2 suitable polygons.

Proof. We consider a caterpillar graph with m back-
bone vertices, for which the two outer backbone ver-
tices are of degree three and the m− 2 inner backbone
vertices are of degree four. We set the length of the non-
backbone edges to

√
2/4 and the length of the backbone

edge ek = vk0v
k+1
0 to 3/4 · 2k−1. We embed the backbone

as a rectilinear path and at each vk0 , with 1 < k < m, we
either make a left or right turn from ek−1 to ek. This
gives us 2m−2 possible embeddings, see Figure 6. We
now consider the polygon P shown in Figure 6, which
forms a rectilinear hose (a mitered offset curve) around
the embedding of G with thickness 1

2 . It remains to
show that P is not self-overlapping.

For each edge ek we consider the axis-parallel square
Ak ⊇ ek with side length 2k that has vk+1

0 as a mid-
point of one of its sides. By our choice of edge lengths
we observe that Ak−1 ⊆ Ak and Ak−1 and Ak share a
common vertex. We say that a polygon edge belongs to
ei if ei is contained in its straight-skeleton face. Let s
denote a polygon edge that belongs to ek+1. By con-
struction, s cannot overlap with polygon edges belong-
ing to ek. Using an induction-type argument, all poly-
gon edges belonging to ei, with i < k, are contained in
the one axis-parallel half of Ak that does not contain
vk+1

0 . Hence, s does not intersect polygon edges that
belong to e1, . . . , ek. It follows by induction that P is
not self-overlapping. �

A1

Ak−1

ek

ek−1

e1
1

vk0

vk+1
0

ek+1

Ak

P

Figure 6: For the above caterpillar graph an exponential
number of polygons exist by making left or right turns
at backbone vertices.

4 Conclusion

In this work, we considered the inverse problem of com-
puting the straight skeletons of simple polygons. First,
we proved that each tree, whose inner vertices have de-
gree at least 3, can be realized as the straight skeleton
of a convex polygon. The constructive proof also pro-
vides the outline for an algorithm to construct a suitable
polygon.

Next, we considered a more restrictive version of
the original question by predefining the lengths of
the straight-skeleton edges and their circular orders at
straight-skeleton vertices. For star graphs we showed
that there exists a unique suitable convex polygon for
every S3. Further, we derived that for general star
graphs feasibility is neither guaranteed nor unique, and
we gave sufficient and necessary conditions for the ex-
istence of a suitable polygon for all S4. Furthermore,
we gave a simple necessary and sufficient condition that
tells us when a suitable convex polygon exists for a star
graph.

Concerning the more general caterpillar graphs we
provided a basic method for constructing all suitable
polygons and we proved that the number of suitable
polygons is finite. Furthermore, we showed that an
n-vertex caterpillar graph may possess 2n/3−2 suitable
polygons. Finding a tight upper bound on the number
of suitable polygons is an open question. Finally, the
major open questions concern arbitrary trees: How to
decide feasibility? Are there at most finitely many fea-
sible polygons or is there even an entire continuum of
feasible polygons? After all, a partial result is given in
[2]: there are at most 2n − 5 suitable convex polygons
for an arbitrary abstract geometric tree with n leaves.

References

[1] O. Aichholzer, D. Alberts, F. Aurenhammer, and B.
Gärtner. A novel type of skeleton for polygons. Journal
of Universal Computer Science, 1(12):752–761, 1995.

[2] H. Cheng, S.L. Devadoss, B. Li, A. Risteski. Skeletal
rigidity of phylogenetic trees. 2012. arXiv:1203.5782v1
[cs.CG]

[3] S.L. Devadoss, J. O’Rourke. Discrete and Computa-
tional Geometry. Princeton University Press, Princeton
and Oxford, 2011.

[4] S. Huber. Computing straight skeletons and motorcycle
graphs: theory and practice. Shaker Verlag, Aachen,
2012. ISBN 978-3-8440-0938-5.

[5] E. Müller. Lehrbuch der darstellenden Geometrie für
technische Hochschulen. Band 2, Verlag B.G.Teubner,
Leipzig & Berlin, 1916.

[6] G.A.V. Peschka. Kotirte Ebenen und deren Anwendung.
Verlag Buschak & Irrgang, Brünn, 1877.

24th Canadian Conference on Computational Geometry, 2012

258

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

3D Skeletonization as an Optimization Problem

Denis Khromov∗ Leonid Mestetskiy†

Abstract

We present a novel approach to 1D curve-skeletonization
of 3D objects. The skeletonization process is reduced to
a numerical optimization problem. The method pro-
vides a strict way to evaluate and compare various 1D
skeletons of the same 3D object. We describe a particu-
lar implementation of our approach and discuss experi-
ment results.

1 Introduction

A skeleton of a shape is a graph that captures major
topological and metrical properties of the shape. It may
be considered as a 1D thinning of the original shape.
Skeletons are useful in computer vision since it is much
easier to extract a shape’s features from a graph rather
than from its boundary description. The skeleton of a
two-dimensional shape is usually defined as a shape’s
medial axis. The medial axis is the set of all points hav-
ing more than one closest point on the shape’s boundary.
The medial axis of a 2D shape is always a 1D set. Such
a set can be computed efficiently. However, a 3D medial
axis contains 2D sheets and therefore is not a graph.

A curve-skeleton is a 1D skeleton of a 3D shape. It is
known to be an ill-defined object [3]. There is no com-
mon strict definition recognized by a significant number
of papers on curve-skeletons. A curve-skeleton is usually
defined as an object produced by some particular algo-
rithm. Different algorithms produce different skeleton
graphs; those graphs have different properties. Exam-
ples of such algorithms can be found in [3, 11]. There-
fore it is almost impossible to compare different algo-
rithms with each other. It is only possible to evaluate
the computational performance and the visual quality
of different skeletons.

On the other hand, there is an intuitive idea of what
a correct curve-skeleton should be. It is clear that dif-
ferent curve-skeletons of the same 3D object are visually
similar, even if they are defined differently. Our goal is
a mathematical formalization of this intuitive idea.

In this article we present a method to evaluate the
quality of a curve-skeleton. We define a curve-skeleton
as a continuous thinning of the original object. We also
describe the procedure of reconstruction which allows to

∗Moscow State University, denis.v.khromov@gmail.com
†Moscow State University, l.mest@ru.net

produce a 3D shape from a 1D skeleton. The shape pro-
duced from a curve-skeleton is called a silhouette. The
measure of similarity between the original shape and
the skeleton’s silhouette is an evaluation of the skele-
ton’s quality. Thus the problem of skeletonization can
be formulated as a numerical optimization problem. To
construct a skeleton of the object means to find the best
approximation of the object by the skeleton’s silhou-
ette. We describe our implementation of this idea. The
implementation includes the measure of similarity, the
first approximation algorithm, and numerical methods
for the minimization process.

The key feature of our method is the numerical evalu-
ation of the curve-skeleton’s quality. However, our work
shares some common ideas with the recent papers on the
subject. We use Reeb graphs to compute the first ap-
proximation of our skeletons. Reeb graphs are widely
used in topological shape analysis [1, 4, 5, 10, 14]. The
primitives we use to approximate the original object are
very similar to the sphere swept volumes (SSV). There
are papers presenting the usage of SSV for 3D shape
approximation [2, 7]. In [9] a deformable model is used
to describe the object’s shape; the curve-skeleton itself
is obtained from this deformable model. There are very
few methods involving the optimization of a skeleton’s
quality. One example is the paper [12], where an iter-
ative least squares optimization is performed to shrink
the model and obtain its accurate thinned representa-
tion.

2 Definitions

As mentioned above, there are many definitions of a 3D
curve-skeleton. The common idea of these definitions is
that the curve-skeleton is a thinned 1D representation
of the 3D object [3]. It can be formalized in terms of
homotopy.

Let Ω be a connected open set embedded in R3 with
boundary ∂Ω. Let Ω be its closure:

Ω = Ω ∪ ∂Ω. (1)

Let Γ ⊂ Ω be a 3D representation of some graph G such
that every edge of G is mapped onto a smooth curve
γ ∈ R3. We denote the Euclidean distance between
points x, y ∈ R3 by ρ(x, y).

Definition 1 Γ is a curve-skeleton of Ω if there is a

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

259

24th Canadian Conference on Computational Geometry, 2012

continuous function

H : [0; 1]× ∂Ω→ Ω (2)

such that
H(0, x) = x,H(1, ∂Ω) = Γ. (3)

The function
σ(x) ≡ H(1, x) (4)

is called a skeleton mapping.

A skeleton mapping describes the correspondence be-
tween the surface of the object and its skeleton.

One of the advantages of a 2D skeleton is the ability
to recover the original shape from a skeleton. That is
possible due to a distance transform function (DTF).
A DTF defines ”width” of the shape for every skeleton
point. Then the shape is a union of discs: the centers
of these discs are situated on the skeleton branches, and
the radii are defined by the DTF. We need some ana-
logue of a 2D distance transform in order to preserve
the reconstruction possibility for 3D curve-skeletons.

Definition 2 A radial function r is a non-negative
real-valued function defined on a curve-skeleton:

r : Γ→ R, r(x) ≥ 0 ∀x ∈ Γ. (5)

Definition 3 A silhouette of a curve-skeleton Γ with a
radial function r is a set

S(Γ, r) =
⋃

x∈Γ

Br(x)(x), (6)

where Br(x)(x) is a ball with the center in x and the
radius r(x):

Br(x)(x) = {y ∈ R3 : ρ(x, y) ≤ r(x)}. (7)

A single curve with its silhouette is called a fat curve
[8]. Fat curves can be used for an approximation of
tubular objects [6]. An example of a silhouette of a
skeleton is shown in Figure 1.

Figure 1: A 3D graph (left) and its silhouette produced
by some radial function (right).

A silhouette can be considered as a reconstruction of
the original 3D object. Unlike 2D skeletons, a 3D sil-
houette is merely an approximation of Ω. So we need
a numerical measure of similarity between the original
shape Ω and the silhouette S(Γ, r). It is possible to
define it as a distance between two sets in R3 (for ex-
ample, the Hausdorff distance). But this approach may
produce skeletons that do not correspond to the intu-
itive idea of what a correct curve-skeleton is. An ex-
ample is shown in Figure 2. The graph Γ consists of
one parabola, and the radial function r is such that the
silhouette S(Γ, r) looks like a straight tubular object be-
cause of its self-intersection. It can be considered as an
ordinary subset of R3. In that case its curve-skeleton is
expected to look like a single straight line segment, not
a parabola. But the silhouette of the parabola is a per-
fect approximation for this object if we use something
like the Hausdorff distance.

Figure 2: A silhouette of the parabola (red): solid (left)
and wireframe (right).

In this paper we propose the following function.

Definition 4 Let Γ be a curve-skeleton of Ω with a ra-
dial function r. An approximation error of (Γ, r) is a
value

E(Ω,Γ, r) =

∫

x∈S=∂Ω

(
ρ2
(
x, σ(x)

)
−r2

(
σ(x)

))2

dS. (8)

This function takes into account the correspondence
σ between ∂Ω and Γ. It takes small values when the dis-
tance between x ∈ ∂Ω and σ(x) ∈ Γ is close to r

(
σ(x)

)
.

It is satisfied when the skeleton’s curve gives the right
representation of the approximated shape. Thus Equa-
tion 8 gives a mathematical meaning to the intuitive
concept of a 3D curve-skeleton.

3 First Approximation

The main idea of our method is a numerical optimiza-
tion of a curve-skeleton in order to minimize the approx-
imation error given in (8). This approach suggests that

24th Canadian Conference on Computational Geometry, 2012

260

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

there is a first approximation of a curve-skeleton. It
can be constructed by almost any existing skeletoniza-
tion algorithm.

We construct the initial curve-skeleton using Reeb
graphs.

Definition 5 Let f be a continuous function defined on
a compact manifold M . A Reeb graph is a quotient space

Rf = M/ ∼f , (9)

where ∼f is an equivalence relation such that

x ∼f y ⇔ ∃l ⊂ ∂Ω : x, y ∈ l, f(z) ≡ Const ∀z ∈ l, (10)

and l is a connected curve in ∂Ω.

Algorithms based on Reeb graphs are rather effec-
tive. They always produce topologically correct skele-
tons. This is important since it is difficult to change
the topology of a skeleton during the numerical opti-
mization process. Another important advantage of Reeb
graphs is that the skeleton mapping σ is generated ex-
plicitly.

The first approximation is computed in a few steps.
A continuous scalar function

f : ∂Ω→ R (11)

is called a mapping function. The corresponding Reeb
graph Rf is a graph-like space. It describes the topology
of Ω. We need to embed it into R3 in order to generate
a 3D representation of the graph.

The embedding is defined as follows:

Γ =
⋃

l∈L
MEB(l), (12)

σ(x) = MEB(l ∈ L : x ∈ l). (13)

MEB(l) is the center of a minimum enclosing ball cov-
ering the set l. Here minimum enclosing balls play the
same role as maximum inscribed balls do in the defini-
tion of a medial axis.

The appearance of a skeleton is determined by the
mapping function f . In our implementation it is defined
as follows. Let p ∈ ∂Ω be a fixed point called a pole.
The mapping function f(x) equals the geodesic distance
over ∂Ω between x and the pole p. This function does
not depend on the object’s orientation in space. This
is a serious advantage over functions like a height map.
Another benefit of our mapping function is that it has
a low computational complexity.

4 Implementation

In this section we discuss the implementation of our
method for 3D objects represented by polygonal meshes.

Let M be a triangulated closed surface with a set of
vertices V and a set of edges E. We assume that V is
uniform and detailed enough.

To avoid confusion with the mesh and its vertices and
edges, in this section we will use the term ”joint” for a
curve-skeleton vertex and the term ”bone” for an edge.
By J denote the set of joints and by B denote the set
of bones. In our implementation, all bones are straight
line segments and all radial functions are linear. Each
joint

j = (xj , rj), xj ∈ R3, rj ≥ 0 (14)

is defined by 4 real values: the position xj and the value
of the radial function (or radius) rj . Each bone

b = (j1, j2), j1, j2 ∈ J (15)

connecting joints j1 and j2 describes a curve and a radial
function given by equations

γb(t) = txj1 + (1− t)xj2 , (16)

rb(t) = trj1 + (1− t)rj2 , (17)

where t ∈ [0; 1].
The skeleton mapping value for a vertex v ∈ V is

defined by the bone bv = (jv1 , j
v
2) and the parameter tv:

(
jv1 , j

v
2 , tv

)
, (jv1 , j

v
2) ∈ B, tv ∈ [0; 1], (18)

σ(v) = γ(jv1 ,j
v
2)(tv) = tvxjv1 + (1− tv)xjv2 (19)

The computation of this mapping will be explained be-
low.

The integral in (8) is approximated with a sum Ẽ over
all vertices:

Ẽ =
∑

v∈V

(
ρ2
(
v, σ(v)

)
− r2

(
σ(v)

))2

=

=
∑

v∈V

(
ρ2
(
v, tvxjv1 + (1− tv)xjv2

)
−

−
(
tvrjv1 + (1− tv)rjv2

)2)2

.

(20)

4.1 First Approximation

In order to find the first approximation we need to

1. select the pole vertex;

2. compute the mapping function f and its contour
lines;

3. construct the skeleton itself.

The geodesic distance between two vertices v1, v2 ∈ V
is approximated by the length of the shortest chain of
edges from E connecting v1 and v2. The advantage of
this method is that it is rather fast. In some cases it may
produce a rough approximation. However, that is not

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

261

24th Canadian Conference on Computational Geometry, 2012

an issue since we don’t need the exact values of geodesic
distance. The accuracy of this method is enough to
produce contour lines which define an acceptable Reeb
graph.

The pole vertex is computed in three steps:

1. let v1 be a random vertex from V ;

2. let v2 be the vertex farthest from v1;

3. the pole vertex p is the vertex that is the farthest
from v2.

Figure 3: Contour lines of the mapping function.

The set V is divided into contour lines of f . It is
impossible to obtain exact contour line of f because we
work with the discrete set of points V . So the following
algorithm is performed. Let lk ⊂ V be some contour
line. The contour line lk+1 produced on the next step
of the algorithm is a maximum connected subset of V
such that

∃u ∈ lk+1 : (21)

∃v1 ∈ lk (v1, u) ∈ E, (22)

∀v2 ∈ lk+1 f(v2) ≤ f(u). (23)

More then one connected subset satisfying these condi-
tions means that we have reached a joint where a group
of skeleton branches converge: each subset corresponds
to a new branch. Figure 3 demonstrates an example:
contour lines are painted in different colors.

Each contour line corresponds to a skeleton joint
j ∈ J . The position of this joint xj is computed as

a center of the minimum enclosing ball. We use Welzl’s
algorithm to find the MEB [13]. The radius of this ball
is taken for the first approximation of the radial function
value rj .

4.2 Numerical Optimization

This step of the algorithm involves the minimization
of the function (20). This function is a polynomial of
degree 4 with 4|J | variables (since we have |J | joints
and each is defined by 4 scalar variables). It can be
represented in the form of the sum

E(z) =
∑

v∈V

(
(avz + bv)

2 − cv
)2

=

= z4

(∑

v∈V
a4
v

)
+

+z3

(∑

v∈V
4a3
v

)
+

+z2

(∑

v∈V
(6a2

vb
2
v − 2b2vcv)

)
+

+z

(∑

v∈V
(4avb

3
v − 4avbvcv)

)
+

+

(∑

v∈V
(b4v − 2b2vcv + c2v)

)
.

(24)

with respect to each single variable z. For example, for
z = rj

av = tv, bv = (1− tv)rjv2 , cv = ρ2 (v, σ(v)) (25)

if jv1 = j,

av = (1− tv), bv = tvrjv1 , cv = ρ2 (v, σ(v)) (26)

if jv2 = j and
av = bv = cv = 0 (27)

otherwise.
We use a gradient descent to minimize Ẽ . Let Jk

be a 4|J |-dimensional vector describing the set of joints
computed in step k. Then Jk+1 is given by

Jk+1 = Jk − λ∇Ẽ(Jk), (28)

where λ is a solution of the minimization problem

arg min
λ∈R
Ẽ(Jk − λ∇Ẽ(Jk)). (29)

It is a polynomial of degree 4 with respect to only one
variable. Therefore it is very easy to find its minimum
analytically. Ẽ and ∇Ẽ are computed using (24). The
procedure (28) is performed until the condition

|Ẽ(Jk)− Ẽ(Jk+1)| < ε (30)

24th Canadian Conference on Computational Geometry, 2012

262

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

is satisfied, where ε > 0 is a fixed parameter of the
algorithm. In our experiments

ε = 10−3Ẽ(J0), (31)

where J0 is the first approximation. The optimization
process is demonstrated in Figure 4. It shows the first
approximation and two serial iterations of the gradient
descent for the horse model from Figure 3.

(a) First approximation, Ẽ(J0) = 7.96

(b) After one iteration, Ẽ(J1) = 1.64

(c) After two iterations, Ẽ(J2) = 0.84

Figure 4: The curve-skeleton of the horse and its silhou-
ette.

Note that this process may lead to negative radial
functions. Negative values in radii have no physical
meaning. We change the sign of each negative rj since

they are included in Ẽ with the second degree.

5 Experiments and Discussion

Some examples of our algorithm’s work are shown in
Figure 5. The resulting curve-skeletons are demon-
strated with their corresponding silhouettes. These 3D
models are often used in articles on curve-skeletons, so
they are suitable for visual comparison of our skele-
tonization method with other ones.

Figure 5: The results produced by our algorithm: the
skeletons (left) and their silhouettes (right) for various
3D objects.

An object with a full-dimensional medial axis is
shown in Figure 6. It does not have any significant
tubular fragments. Curve-skeletons are not very useful
for objects like this. The resulting silhouette is not a
valuable approximation.

Some desirable properties of a curve-skeleton are
listed in [3]. Our approach guarantees some of them:

• the topological properties (such as homotopic in-
variance) are provided by the usage of Reeb graphs;

• the invariance under isometric transformations is
not always guaranteed by methods based on Reeb

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

263

24th Canadian Conference on Computational Geometry, 2012

Figure 6: An object with a full-dimensional medial axis.

graphs (for example, the mapping function can de-
pend significantly on one of the coordinates), but
in our case this property is satisfied;

• the possibility of reconstruction is a key feature of
our method;

• the skeletons are thin by definition;

• the centeredness is the value that is strictly mea-
sured and optimized with our algorithm.

Some properties are not satisfied:

• robustness is not guaranteed since some images
may produce skeleton branches for visually insignif-
icant protrusions of the shape. These branches
should be considered as noise which can’t be com-
pensated by the minimization of (20);

• smoothness is another property that is provided
neither by Reeb graphs nor by the optimization
process. However, the usage of curves of higher
degrees instead of piecewise linear curves could fix
that problem.

6 Conclusions and Future Work

We have demonstrated an approach to 3D curve-
skeletonization which allows to evaluate skeletons and to
choose the best one among others. This method is im-
plemented. The implementation and experiments prove
the practical utility of the method. Below we list several
open issues for further research.

1. Tuning the skeleton mapping σ during the mini-
mization process. Currently it is fixed, which im-
poses strict requirements on the quality of the first
approximation and its skeleton mapping.

2. Taking mesh edges and faces into account. Cur-
rent algorithm uses vertices only. This means that
skeletons of the detailed meshes are more accurate
than for the low polygon meshes.

References

[1] M. Attene, S. Biasotti, M. Spagnuolo. Shape under-
standing by contour driven retiling. The Visual Com-
puter, 19:2–3, 2003.

[2] M. Bae, J. Kim, Y.J. Kim. User-guided volumetric
approximation using swept sphere volumes for physi-
cally based animation. Computer Animation and Vir-
tual Worlds, 2012.

[3] N.D. Cornea, D. Silver. Curve-skeleton properties, ap-
plications, and algorithms. IEEE Transactions on Vi-
sualization and Computer Graphics, 13:530–548, 2007.

[4] M. Hilaga, Y. Shinagawa, T. Kohmura, T.L. Kunii.
Topology matching for fully automatic similarity esti-
mation of 3D shapes. Proceedings of the 28th annual
conference on Computer graphics and interactive tech-
niques, 203–212, 2001.

[5] R.E. Khoury, J. Vandeborre, M. Daoudi. 3D mesh Reeb
graph computation using commute-time and diffusion
distances. Proc. SPIE 8290, 82900H, 2012.

[6] D. Khromov. Curve-Skeletons based on the fat graph
approximation. Lecture Notes in Computer Science,
Volume 6915/2011, 239–248, 2011.

[7] E. Larsen , S. Gottschalk , M. C. Lin , D. Manocha. Fast
proximity queries with swept sphere volumes. IEEE
International Conference on Robotics and Automation,
3719-3726, 2000.

[8] L.M. Mestetskii. Fatcurves and representation of planar
figures. Computers & Graphics, Volume 24, Issue 1,
February 2000.

[9] A. Sharf, T. Lewiner, A. Shamir, L. Kobbelt. On-the-fly
curve-skeleton computation for 3D shapes. In Proceed-
ings of Comput. Graph. Forum,323-328, 2007.

[10] Y. Shi, R. Lai, S. Krishna, N. Sicotte, I. Dinov, A.W.
Toga. Anisotropic Laplace-Beltrami eigenmaps: bridg-
ing Reeb graphs and skeletons. Computer Vision and
Pattern Recognition Workshop, pp. 1-7, 2008 IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition Workshops, 2008.

[11] K. Siddiqi, S. M. Pizer . Medial Representations: math-
ematics, algorithms and applications. Springer, 2008.

[12] Y. Wang, T. Lee. Curve-Skeleton extraction using it-
erative least squares optimization. IEEE Transactions
on Visualization and Computer Graphics, 14:926–936,
2008.

[13] E. Welzl. Smallest enclosing disks (balls and ellipsoids).
Results and New Trends in Computer Science, 1991.

[14] Y. Xiao, J.P. Siebert, N. Werghi. A discrete Reeb graph
approach for the segmentation of human body scans.
Fourth International Conference on 3-D Digital Imag-
ing and Modeling, 2003.

24th Canadian Conference on Computational Geometry, 2012

264

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Dynamic Computational Topology for Piecewise Linear Curves ∗

Hugh P. Cassidy † Thomas J. Peters‡ Kirk E. Jordan§

Abstract

A piecewise linear (PL) approximation often serves as
the graphics representation for a parametric curve. Al-
gorithms for preserving correct topology for a single
static image are available, but significant challenges re-
main to ensure correct topology when the PL curve is
changing shape during synchronized visualization with
an ongoing simulation, such as a molecule writhing over
time. A tubular neighborhood of the curve is defined to
preserve topology under perturbation, but as the per-
turbed geometry approaches the boundary of that tubu-
lar neighborhood, any required update of the neighbor-
hood should maintain the synchronization. The algo-
rithimic performance of these updates is directly de-
pendent upon the number of approximating edges and
the techniques presented here decrease that data volume
versus previous methods, as shown by a comprehensive
comparative analysis and a representative example.

1 Introduction & Related Work

Molecules undergoing computer simulations are often
represented by parametric curves. The simulation code
describes how points on the curve move under changes
in critical variables such as temperature, pressure and
acidity. For graphics display, PL approximations are in-
voked [11]. The literature on ensuring that a static PL
approximation retains crucial topological characteristics
of the model is relatively well developed for both curves
[14] and surfaces [1, 2, 10]. The more subtle challenge
of maintaining topological fidelity during perturbations
of PL approximations [3] is addressed here, with inno-
vations for efficient update of topological constraints
during visualization that is synchronized to an ongo-
ing molecular simulation. These perturbations are con-
strained within a tubular neighborhood of c, as shown

∗The first author was partially supported by NSF Grant CNS
0923158. The second author was partially supported by NSF
grants CCF 0429477, CNS 0923158 and CMMI 1053077 as well
as by the Joint Study Agreement W1056109 with IBM, an IBM
Faculty Award and two IBM Doctoral Fellowships. All statements
here are the responsibility of the author, not of the National Sci-
ence Foundation nor of IBM.
†Department of Computer Science and Engineering, University

of Connecticut, Storrs CT, hugh.cassidy@engr.uconn.edu
‡Department of Computer Science and Engineering, University

of Connecticut, Storrs CT, tpeters@engr.uconn.edu
§T.J. Watson Research Center, IBM, Cambridge, MA,

kjordan@us.ibm.com

in Figure 1. This tubular neighborhood has a bounding
pipe surface [14] of radius r, which depends upon two
properties of c,

• the mimimal Euclidean distance between points of
c that are distant in arc-length, and

• maximal curvature.

Figure 1: A tubular neighborhood about c.

For polynomial curves, the maximal curvature can be
easily computed and will not be discussed further. Our
attention is devoted to the first value, known as the min-
imum separation distance for c, abbreviated as MSDc.
A double normal is defined to be a line segment which is
normal to c at both end points of the line segment. We
define MSDc to be the minimum length of all double
normal line segments of c. Even for polynomial curves,
the computation of MSDc entails some subtlety. We
show that an approximant of MSDc, denoted as λc can
be computed, within user-specified error bounds, from
a PL approximation of c. More importantly, we provide
a comprehensive comparative analysis and a represen-
tative example to justify our efficient updates of λc, as
the geometry continues to perturb beyond the original
constraints imposed by λc.

For graphics, once a PL curve has been shown to
preserve the topological embedding of the parametric
curve, then perturbations of the PL approximation are
used to generate subsequent graphical images. By obvi-
ous extensions of previous methods [13], the originally
calculated λc serves as a bound to continue to preserve
the desired topological embedding. However, as the lim-
iting value of λc is approached, with a perturbed PL
curve `, then computation of the updated limit can pro-
ceed purely on `.

A concept closely related to these pipe surfaces is the
thickness of a knot [5, 6]. Applications to molecular
modeling [19] and detailed numeric algorithmic devel-
opment [4, 7] have appeared, but these algorithms do
not address the crucial update efficiencies considered
here, even while their definition of doubly-critical self-
distances is the same as MSDc.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

265

24th Canadian Conference on Computational Geometry, 2012

2 Preliminaries

We present the curve and topological definitions that
are central to this work.

2.1 Class of Parametric Curves

As often occurs, this investigation is first restricted to
the class of Bézier curves, as their polynomial repre-
sentation avoids many cumbersome details, while still
supporting theoretical inisights that can easily be gen-
eralized to the wider class of non-uniform rational B-
spline (NURBS) curves. A degree n Bézier curve with
control points, P = {p0, · · · , pn} is given by

c(t) =
n∑

i=0

(
n

i

)
(i− t)n−ipi, t ∈ [0, 1],

where the PL curve formed by consecutively connecting
p0, · · · , pn is called the control polygon of c [18]. A
subdivision algorithm operates on P to generate two PL
curves, each having n+1 vertices, denoted, respectively
as PL and PR, as shown in Figure 2. The union PL∪PR
is also a control polygon for c but lies closer to c than the
original control polygon. This process can be repeated
to obtain a PL graphical approximation that is within
a prescribed distance of the curve c. This is only an
initial static approximation and the focus here is for
methods to ensure that this approximant retains crucial
topological characteristics as it changes over time.

Figure 2: Initial & subdivided control polygons of c.

For ease of exposition1, we assume that the subdivi-
sion parameter is 1/2, so that the fundamental subdivi-
sion operation is to find midpoints of line segments. We
remark that the statement, proof and use of Lemma 1
directly depend upon a subdivision parameter of 1/2.

2.2 Crucial Topological Characteristics

The traditional measure of topological equivalence is
homeomorphism. A homeomorphism is a mapping,
f : X −→ Y , between two subsets X and Y of Rn such
that:

1. f is bijective,

2. f and f−1 are continuous.

1The reader can modify our results for other parameters.

Homeomorphic equivalence does not capture the em-
bedding of a curve within R3. In Figure 3 the right
image is an unknot and the left is a trefoil. These struc-
tures are homeomorphic even though they are embed-
ded differently in R3.

Figure 3: PL knots in R3

We use the stronger equivalence of ambient isotopy to
also preserve embedding of c in R3. The knots in figure
3 are not ambient isotopic. Two subspaces, X and Y ,
of Rn are said to be ambient isotopic if there exists a
continuous function H : Rn × [0, 1] −→ Rn such that

1. H(·, 0) is the identity on Rn,

2. H(X, 1) = Y , and

3. ∀t ∈ [0, 1], H(·, t) is a homeomorphism.

Figure 4: An isotopic deformation of X into Y .

The parameter t can be considered as variable repre-
senting time for application to animation and dynamic
visualization as illustrated in Figure 4.

3 Background and Notation

In this section we state some previously established re-
sults and define notation to be used throughout this
paper. Let c(t) be a Bézier curve with control points
P = {p0, · · · , pn}. The PL approximations presented
will converge to c in both distance and derivative.

3.1 Approximation of c in Distance

Given the polygon generated by P the second centered
difference of pi is given by

∆2pi = pi−1 − 2pi + pi+1.

24th Canadian Conference on Computational Geometry, 2012

266

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

We define ∆2p0 = ∆2pn = 0. The maximal second cen-
tered difference of the polygon generated by P is given
by

‖∆2P‖∞ = max
0≤i≤n

‖∆2pi‖∞.

For a degree n Bézier curve c(t) with control points
P = {p0, · · · , pn}, after m uniform subdivisions the
maximal Hausdorff distance between the control poly-
gon and the curve is given by [17]

(
1

2

)2m

‖∆2P‖∞N∞(n).

Here N∞(n) =
dn/2ebn/2c

2n
. Note that this distance is

actually attained. So subdividing m1 times guarantees
that the PL structure is within a specified tolerance ε
where

m1 =

⌈
−1

2
log2

(
ε

‖∆2P‖∞N∞(n)

)⌉
(1)

3.2 PL Approximation of c in Derivative

Define the derivative operator ∆ on the control points
P as follows [12],

∆P = {∆p0,∆p1, · · · ,∆pn−1}
= n{p1 − p0, p2 − p1, · · · , pn − pn−1}.

The curve generated by the control points ∆P is called
the hodograph or derivative curve of c.

Define L(P, [0, 1]) to be the uniform parameterization
of the control polygon P = {p0, p1, · · · , pn}. So

L(P, [0, 1])

(
j

n

)
= pj

and L(P, [0, 1]) is linear on the intervals
[
j
n ,

j+1
n

]
. For

a Bézier curve c(t) defined on [0, 1] with control points
P = {p0, · · · , pn} the discrete derivative is defined as
[16]

D[c(t)] = L(∆P, [0, 1]).

In other words, the discrete derivative is the uniform pa-
rameterization of the control polygon of the hodograph.

After applying m subdivisions to c(t) 2m

curves are generated with control points{
pm,10 , · · · , pm,1n , pm,20 , · · · , pm,2n , · · · , pm,2

m

0 · · · , pm,2mn

}
.

Subdividing m times divides [0, 1] into the intervals[
k
2m ,

k+1
2m

]
for k = 0, 1, · · · , 2m − 1. Each interval is

associated with a unique subcurve. Now define

P ′ = n
{

∆pk,10 ,∆pk,11 , · · · ,∆pk,1n−1,∆pk,20 , · · · ,∆pm,2
m

n−1

}
.

Now write
P ′ = {p′0, · · · , p′n2i}

The discrete derivative of c(t) after m subdivisions is

Dm[c(t)] = L(P ′, [0, 1]).

For a degree n curve subdivided m times we have [8]

‖Dm[c(t)]− d

dt
c(t)‖∞ ≤

(
1

2

)2m+1

N∞(n−1)n‖∆2(∆P)‖∞.

Subdividing m2 times ensures that we can approxi-
mate the derivative within a specified εd where

m2 =

⌈
−1

2

(
1 + log2

εd
N∞(n− 1)n‖∆2(∆P)‖∞

)⌉
(2)

3.3 Establishing Double Normals

For a Bézier curve c and distinct s, t ∈ [0, 1] define the
quadratic form

〈c(s), c(t)〉D =
[c(s)− c(t)] · c′(s)
‖c(s)− c(t)‖ .

Notice that c(s) and c(t) establish a double normal if
and only if

〈c(s), c(t)〉D = 〈c(t), c(s)〉D = 0.

The subscript D here denotes the fact that we are using
the continuous derivative.

4 Using PL Structure to Calculate MSDc

In the previous section we presented a PL approxima-
tion to a Bézier curve and its derivatives. Also we de-
fined a quadratic form that we can use to test if given
points on the curve form a double normal. The tran-
sition to use of the discrete derivative is established
through the modified quadratic form

〈c(s), c(t)〉d =
[c(s)− c(t)] ·Dm[c(s)]

‖c(s)− c(t)‖ .

The subscript d here indicates that we are using the
discrete derivative.

4.1 Testing for Candidate Double Normals

Assume that the user has provided some ε > 0 and that
we have refined the PL structure with m subdivisions,
so it is within ε

2 of the curve and the derivative is ap-
proximated by the discrete derivative within ε

2 .
Define ~γ ∈ R3 so that Dm[c(s)] = c′(s)+~γ. Note that

‖~γ‖ ≤ ε
2 . Also, notice that if c(s) and c(t) establish a

double normal, i.e. 〈c(s), c(t)〉D = 0, then

〈c(s), c(t)〉d =
[c(s)− c(t)] ·Dm[c(s)]

‖c(s)− c(t)‖

=
[c(s)− c(t)] · [c′(s) + ~γ]

‖c(s)− c(t)‖

=
[c(s)− c(t)] · ~γ
‖c(s)− c(t)‖

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

267

24th Canadian Conference on Computational Geometry, 2012

The Cauchy-Schwarz inequality states that for all vec-
tors x and y of an inner product space it is true that

|〈x, y〉| ≤ ‖x‖‖y‖.

So applying the Cauchy-Schwarz inequality yields

|〈c(s), c(t)〉d| ≤
ε

2

Consider two line segments from the PL representa-
tion of c and calculate the minimum distance between
the segments. Suppose this minimum distance is real-
ized by the line segment with end points L(P, [0, 1])(t0)
and L(P, [0, 1])(s0). Then, if

|〈c(s0), c(t0)〉d| ≤
ε

2
and |〈c(t0), c(s0)〉d| ≤

ε

2

we consider the line to be a good approximation of a
double normal.

4.2 Estimating MSDc

Denote the exact MSDc by σ. There exist distinct
points c(s) and c(t), such that d(c(s), c(t)) = σ. We
compute λc, our estimate for σ as the minimum of the
distance between all pairs of disjoint edges of the ap-
proximating control polygon. There will exist distinct
points p and q from those edges such that d(p, q) = λc.

Lemma 1 Let `0 be the length of the longest edge of
a given control polygon before any subdivision has oc-
cured and `m be the length of the longest edge after m
subdivisions. Then

`m ≤
`0
2m

.

Proof. This follows from the definition of subdivision
with subdivision parameter of 1/2. �

Applying the triangle inequality we see that

σ = d(c(s), c(t)) ≤ d(c(s), p) + d(p, q) + d(q, c(t))

Let L1 be the line segment in the PL approximation
that contains the point p, and L2 be the line segment
passing through c(s) with the same length as L1 so that
L1 and L2 form opposite sides of a rectangle (see figure
5). Let d1 denote the diagonal of the rectangle.

We note that d1 < d21, unless d1 < 1. In the ensuing
analyses, we wish to consider specific numeric bounds on
epsilon, where we will typically assume that ε << `m.
To do so, we will make the further simplifying assump-
tion that `m ≥ 1. Theoretically, the length of each of
the finitely many edges could be divided by `m > 0,
normalizing the measuring scale. Pragmatically, this
ensures that the user can conveniently choose values of
ε and εd that are small relative to 1.

Figure 5: Estimating distance with right triangle

Note that

|L1| = |L2| ≤
`0
2m

and
d(c(s), p) ≤ d1.

Applying the Pythagorean theorem we have

d1 ≤ d21 ≤
(ε

2

)2
+

(
`0
2m

)2

=
ε2

4
+

`20
22m

.

So
d(c(s), p) ≤ ε2

4
+

`20
22m

.

Similarly

d(c(t), q) ≤ ε2

4
+

`20
22m

.

So we have

σ ≤ 2

(
ε2

4
+

`20
22m

)
+ λc

=
ε2

2
+

`20
22m−1

+ λc.

Also,

λc = d(p, q)

≤ d(p, c(s)) + d(c(s), c(t)) + d(c(t), q)

≤ ε2

2
+

`20
22m−1

+ σ

So,

σ ∈ [λc − E, λc + E], where E =
ε2

2
+

`20
22m−1

.

In order to choose a number of subdivisions to mini-
mize E, recall that

(
1

2

)2m

‖∆2P‖∞N∞(n) ≤ ε,

and the fact that ε depends on m. Let δ denote our
maximum error tolerance, and establish E ≤ δ. Let
K = ‖∆2P‖∞N∞(n). Then

(
1

2

)2m

K < ε and E = 2

(
ε2

4
+

`20
22m

)
. So

24th Canadian Conference on Computational Geometry, 2012

268

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

E < 2

(
ε2

4
+
ε`20
K

)
=
ε2

2
+

2ε`20
N∞(n)‖∆2P‖∞

So if we choose ε so that

ε2

2
+

2ε`20
N∞(n)‖∆2P‖∞

≤ δ,

then clearly E ≤ δ. This involves solving the following
quadratic in ε,

(1/2)ε2 +
2`20ε

N∞(n)‖∆2P‖∞
− δ ≤ 0. (3)

Choose half the smallest positive root of this
quadratic to substitute for ε in equation (1).

MSDc Estimation Algorithm

Input: δ, c, εd
0. Calculate m1,m2 and let m = max{m1,m2}.
1. Subdivide m times to get PL approximation of c.

2. Compute d(li, lj), the distances between line
segments in the PL structure, where L(P, [0, 1])(t0)
and L(P, [0, 1])(s0) realize d(li, lj).

3. If |〈c(s0), c(t0)〉d| ≤ εd and |〈c(t0), c(s0)〉d| ≤ εd
then keep as double normal.

4. Take minimum from Step 3. as λc.

Output: λc

Figure 6: Algorithm for estimating MSDc

4.3 Efficient Updates by Data Reduction

The previous approach [15] constructed a PL approxi-
mation of c by uniformly partitioning [0, 1] as

0 = s0 < s1 < · · · < sv−1 < sv = 1,

where

|si+1 − si| < min

{
ε√

3K0

,
sin
(
ε
2

)
µ0

K1

}
.

Here K0 is the maximum value of ‖c′(t)‖∞, K1 is the
maximum value of ‖c′′(t)‖∞ and µ0 is the minimum
value of ‖c′(t)‖∞. The points in the partition are the
end points of the curves resulting from subdivision. The
number of subdivisions required, m̃, is given by m̃ =
max {m̃1, m̃2} where

m̃1 =

⌈
− log2

(
ε√

3K0

)⌉
and

m̃2 =

⌈
− log2

(
sin
(
ε
2

)
µ0

K1

)⌉

Our algorithm will use fewer subdivisions when m < m̃,
given by our comprehensive analysis of 4 cases:
Case 1: m1 < m̃1. This is true if

−1

2
log2

(
ε

‖∆2P‖∞N∞(n)

)
< − log2

(
ε√

3K0

)
+ 1.

In other words if

3K2
0

‖∆2P‖∞N∞(n)ε
>

1

4
(4)

then m1 < m̃1. If there is no restriction on ε then clearly
we can choose ε small enough so (4) holds. Otherwise
(4) will hold unless K0 is small, the degree of the curve is
very large or ‖∆2P‖∞ is large (i.e. the control polygon
has a narrow spike). So for example if ε = 0.01 and the
curve is cubic

3K2
0

‖∆2P‖∞N∞(n)ε
= 300

(
M2

0

‖∆2P‖∞

)
.

So the ratio on the right would need to be less than 1
1200

for the above inequality to be reversed.
Case 2: m2 < m̃2 when

sin
(ε

4

)
µ0

√
n‖∆2(∆P)‖∞N∞(n− 1)
√
εK1

<
√

8

This holds unless K1 is small, µ0 is large, ‖∆2(∆P)‖∞ is
large, or the degree is large. So for a cubic with ε = 0.01

for this inequality to be false
µ0

K1
> 130.6.

Case 3: m1 < m̃2 if

sin
(ε

2

)
µ0

√
‖∆2P‖∞N∞(n)

K1
√
ε

< 2.

This will not hold for large µ0, small K1 or curves of
large degree. Note that ‖∆2P‖∞ is an approximation
of K1.
Case 4: m2 < m̃1 if

N∞(n− 1)‖∆2(∆P)‖∞nε
K2

0

<
8

3
,

which holds unless K0 is small, ‖∆2(∆P)‖∞ is large or
the degree is large. So outside of the circumstances de-
scribed above m < m̃. The analysis suggests avoiding
‘high degree’ curves, as can generally be done in graph-
ics [11]. The other characteristics in the shape of the
curve will be assessed in problem specific contexts. Re-
call, also that the number of approximating segments
is exponential in m and m̃, so that even modest differ-
ences here can have a significant effect on performance
of the topological updating, which depends directly on
the number of approximating segments. This is now
shown with a representative example.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

269

24th Canadian Conference on Computational Geometry, 2012

5 Representative Example

Consider a composite cubic Bézier curve, consisting of
five sub-curves, that forms a trefoil knot (figure 7). The
control points and calculations are given in the extended
version of this paper [9]. Choosing δ = 0.25 and εd =
0.01, gives ε = 0.01, so m = 6. The maximum error is
given by E = 0.0034415. This gives a maximum relative
error of approximately 0.0078. Note that 6 subdivisions
yields 960 line segments. Comparatively the previous
approach involved 10,240 line segments [15].

Figure 7: Composite Bézier Curve

6 Conclusion and Future work

We present theory, accompanied by an illustrative ex-
ample, for efficient updates to constraints for preserv-
ing the topological embedding of curves during dynamic
visualization of molecular simulations. In high perfor-
mance computing applications, an accompanying visu-
alization could have millions of frames, so it also be-
comes important to assess accumulated numerical er-
rors over the total time interval upon realistically chal-
lenging data sets. In principle, the dynamic topological
results presented here for curves should extend to sur-
faces, but practical testing on surface data remains a
future consideration.

References

[1] N. Amenta and M. Bern. Surface reconstruction by
Voronoi filtering. Discrete and Computational Geome-
try, 22:481–504, 1999.

[2] N. Amenta, T. J. Peters, and A. C. Russell. Compu-
tational topology: ambient isotopic approximation of
2-manifolds. Theoretical Computer Science, 305(1-3):3–
15, 2003.

[3] L.-E. Andersson, T. J. Peters, N. F. Stewart, and
S. M. Doney. Polyhedral perturbations that preserve
topological form. Computer Aided Geometric Design,
12(8):785–799, 1995.

[4] T. Ashton, J. Cantarella, M. Piatek, and E. J. Raw-
don. Knot tightening by constrained gradient descent.
Experimental Mathematics, 20(1):57–90, 2011.

[5] J. Cantarella, G. Kuperberg, R. B. Kusner, and J. M.
Sullivan. The second hull of a knotted curve. American
Journal of Mathematics, 125(6):1335 – 1348, 2003.

[6] J. Cantarella, R. B. Kusner, and J. M. Sullivan. On the
minimum ropelength of knots and links. Inventiones
Mathematica, 150(2):257 – 286, 2002.

[7] J. Cantarella, M. Piatek, and E. Rawdon. Visualizing
the tightening of knots. In VIS ’05: Proceedings of the
conference on Visualization ’05, pages 575–582, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[8] H. Cassidy and T.J.Peters. Spline operators for subdi-
vision and differentiation, November 2011. pre-print.

[9] H. Cassidy, T.J.Peters, and K. Jordan. Dynamic
computational topology for piecewise linear curves.
www.engr.uconn.edu/ tpeters/some-pubs.html, June
2012. pre-print.

[10] K. L. Clarkson. Building triangulations using epsilon-
nets. In J. M. Kleinberg, editor, STOC, pages 326–335.
ACM, 2006.

[11] J. Foley, A. van Dam, S. Feiner, and J. Hughes. Com-
puter Graphics: Principles and Practice, second edition.
Addison-Wesley Professional, 1990.

[12] J. Gravesen. De Casteljau’s algorithm revisited. In
Mathematical methods for curves and surfaces, II
(Lillehammer, 1997), Innov. Appl. Math., pages 221–
228. Vanderbilt Univ. Press, Nashville, TN, 1998.

[13] K. E. Jordan, L. E. Miller, E. L. F. Moore, T. J. Pe-
ters, and A. C. Russell. Modeling time and topology for
animation and visualization with examples on paramet-
ric geometry. Theoretical Computer Science, 405:41–49,
2008.

[14] T. Maekawa, N. M. Patrikalakis, T. Sakkalis, and
G. Yu. Analysis and applications of pipe surfaces. Com-
puter Aided Geometric Design, 15:437–458, 1998.

[15] L. Miller, E. Moore, T. Peters, and A. Russell. Topolog-
ical neighborhoods for spline curves : Practice and the-
ory. In P. Hertling et al., editors, Reliable Implementa-
tion of Real Number Algorithms: Theory and Practice,
volume 5045 of LNCS, pages 149–161. Springer, 2008.

[16] G. Morin and R.Goldman. On the smooth convergence
of subdivision and degree elevation for Bézier curves.
Computer Aided Geometric Design, 18:657–666, 2001.

[17] D. Nairn, J. Peters, and D. Lutterkort. Sharp, quan-
titative bounds on the distance between a polynomial
piece and its bézier control polygon. Computer Aided
Geometric Design, 16:613–631, 1999.

[18] L. Piegl and W. Tiller. The NURBS Book. Springer,
2nd edition, 1997.

[19] P. Plunkett, M. Piatek, et al. Total curvature and
total torsion of knotted polymers. Macromolecules,
40(10):38603867, 2007.

24th Canadian Conference on Computational Geometry, 2012

270

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Finding a Lost Treasure in Convex Hull of Points From Known Distances

Bahman Kalantari∗

Abstract

Given a set of points S = {v1, . . . , vn} ⊂ Rm, and
a set of positive numbers ri, i = 1, . . . , n, we wish
to determine if there exists p ∈ Conv(S) such that
d(p, vi) = ri for all i = 1, . . . , n, where d(·, ·) denotes the
Euclidean distance. We refer to this as the ambiguous
convex hull problem. Given ǫ > 0, we describe an al-
gorithm that in O(mnǫ−2 ln ǫ−1) arithmetic operations
computes pǫ ∈ Conv(S) such that one of the three con-
ditions hold; (1): |d(pǫ, vi)− ri| < ǫ, for all i = 1, . . . , n;
(2): d(pǫ, vi) < ri, for all i = 1, . . . , n; (3): d(pǫ, vi) > ri,
for all i = 1, . . . , n. In case of (2), no point p with pre-
scribed distances belongs to Conv(S). In case of (3),
no point p with prescribed distances exists. In case of
(1), we give an estimate on d(pǫ, p). The algorithm is a
variation of the Triangle Algorithm in [8] for the convex
hull decision problem where p is given explicitly.

1 Introduction

The convex hull decision problem is to test if a given
point p ∈ Rm lies in the convex hull of a given set of
points S = {v1, . . . , vn} ⊂ Rm, denoted by Conv(S).
This problem is a very special case of the convex hull
problem, a problem that represents various descriptions
of a polytope that is either specified as the convex hull
of a finite point set or the intersection of a finite num-
ber of halfspaces, see Goodman and O’Rourke [5]. For
more general convex hull problems and corresponding
algorithms see, [5], Clarkson [4], Chan [1], Chazelle [2].

The convex hull decision problem is a fundamental
problem in computational geometry and in linear pro-
gramming (LP). A general LP problem can be formu-
lated as a single LP feasibility problem, see e.g. Chvátal
[3]. Then, given a bound on the norm of the vertices,
a number that can be estimated for integer inputs, the
latter problem in turn can be converted into the convex
hull decision problem. Any LP algorithm can be applied
to solve the convex hull decision problem. It can be ar-
gued that several polynomial-time algorithms for LP are
in fact specifically designed to solve the convex hull de-
cision problem with p = 0. These include, the ellipsoid
algorithm of Khachiyan [11], the projective algorithm
of Karmarkar[9], and the positive semidefinite diagonal

∗Department of Computer Science, Rutgers University,
kalantari@cs.rutgers.edu

matrix scaling algorithm of Khachiyan and Kalantari
[12]. See [6] and also [7].

In a recent article, [8], we offered characterization
theorems and a simple fully polynomial-time approxi-
mation algorithm, called the Triangle Algorithm for the
convex hull decision problem having the following prop-
erties: Given ǫ ∈ (0, 1), in O(mnǫ−2) arithmetic oper-
ations the algorithm computes a point pǫ ∈ Conv(S),
where either d(pǫ, p) ≤ ǫd(p, vj) for some j; or for all
i = 1, . . . , n, d(pǫ, vi) < d(p, vi). The following charac-
terization theorem in [8] plays an important role in the
development and correctness of the Triangle Algorithm.

Theorem 1 Let S = {v1, . . . , vn} ⊂ Rm be a given
set of points and let p ∈ Rm be given. Then exclu-
sively, either p ∈ Conv(S) and for any p′ ∈ Conv(S)
there exists vj ∈ S such that d(p′, vj) ≥ d(p, vj), or
p 6∈ Conv(S) and there exists p′ ∈ Conv(S) such that
d(p′, vi) < d(p, vi), for all i = 1, . . . , n.

Each p′ ∈ Conv(S) that satisfies d(p′, vi) < d(p, vi),
for all i = 1, . . . , n, acts as a witness to the infeasibility
of p. The set Wp of all such witnesses is the intersection
of Conv(S) and open balls Bi of radius d(p, vi) centered
at vi, i = 1, . . . , n and forms a convex open set in the
relative interior of Conv(S). A corollary of Theorem 1
reveals a property of a set of intersecting open balls:

If a set of n open balls in Rm has a common boundary
point p, their intersection is empty, if and only if p lies
in the convex hull of their centers.

This property suggests we can define a geometric
“dual” problem to the convex hull decision problem, the
intersecting open balls problem:

Given a set of n open balls in Rm that are known
to have a common boundary point p, determine if they
have a nonempty intersection.

The Triangle Algorithm in particular is capable of
solving the intersecting open balls problem. It can be
used to solve some other versions of the convex hull
problem, e.g. the irredundancy problem where all the
vertices are to be determined. The Triangle Algorithm
can also be used to solve a linear programming problem
(see [8]) and as such offers an alternative to polynomial-
time algorithms for linear programming, as well as the
simplex method whose randomized version is shown to
run in polynomial-time, see [10]. All known polynomial-
time LP algorithms for integer inputs have operation
complexity that is polynomial in m, n, and the size of

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

271

24th Canadian Conference on Computational Geometry, 2012

encoding of the input data, often denoted by L, see [11].
As approximation schemes, polynomial-time algorithms
for LP have complexity polynomial in the dimension of
the data and ln(ǫ−1). As is well-known, for integral
inputs, by rounding, any approximate solution having
sufficient precision can be turned into an exact solution.
It is likely the Triangle Algorithm performs better than
its worst-case analysis. Its average case or randomized
versions could prove to give much better complexity.
For fixed ǫ it produces approximate solutions in O(mn)
operations.

In this article we consider the ambiguous convex hull
problem. It differs with the convex hull decision prob-
lem in that we do not know p explicitly, but we are
given a set of distances ri, i = 1, . . . , n, presumed to
equal d(p, vi). In particular, the distances may not even
be valid distances of any point p in Conv(S), or in its
complement. Thus there is ambiguity to the problem.
Two scenarios where the ambiguous convex hull prob-
lem applies well are as follows. The first, where we
are given claimed distances of a hidden treasure from
a set of known sites. The second, where we wish to
determine the feasibility of building a site at prescribed
distances in the convex hull of a given set of sites. Anal-
ogous to the Triangle Algorithm itself, the variation
to be described here, called Blindfold Triangle Algo-
rithm, is geometric in nature, simple in description, and
very easy to implement, having worst-case complexity
of O(mnǫ−2 ln ǫ−1) arithmetic operations.

If a subset of m + 1 points in S that are in general
position are identifiable, we can determine the coordi-
nates of p by solving an m×m linear system, see Section
5. Doing so will reduce the problem to the convex hull
decision problem. However, our goal is to avoid solving
such linear systems. Furthermore, as will be seen in the
final section of the article, we wish to argue that, at least
in some cases, solving a linear system corresponds to an
ambiguous convex hull problem. Thus such linear sys-
tems can be solved approximately in O(m2ǫ−2 ln(ǫ−1))
(see Section 6).

While the complexity analysis of the Blindfold Tri-
angle Algorithm is independent of Triangle Algorithm
itself, it makes use of Theorem 1. For the sake of com-
pleteness, we will first give a proof of this theorem,
somewhat different than the proof presented in [8].

2 A Voronoi Diagram-Based Proof of Theorem 1

In this section we present a simple proof of Theorem
1. Suppose p ∈ Conv(S). Let p′ be any point in
Conv(S)−{p}. Consider V (p) = {x ∈ Rm : d(p, x) <
d(p′, x)}, i.e. the Voronoi cell of p with respect to the
two point set {p, p′}. We wish to show V (p) = {x ∈
Rm : d(p, x) ≤ d(p′, x)} intersects S. If not, then S
is a subset of V (p′) = {x ∈ Rm : d(p′, x) < d(p, x)}.

Since V (p′) is convex, it follows that it must contain
Conv(S). This contradicts that p ∈ Conv(S).

Conversely, suppose p 6∈ Conv(S). Let p′ be the point
in Conv(S) that is closest to p. We claim p′ is a witness,
i.e. d(p′, vi) < d(p, vi) for all i. For any vi 6= p′, the
angle ∠pp′vi cannot be acute since otherwise this would
contradict p′ being the closest point of Conv(S) to p.
This implies that d(p′, vi) < d(p, vi). If p′ = vj for
some j, then clearly the inequality is also satisfied for
vj . Hence the proof of the Theorem 1.

Remark This simple proof also implies the separat-
ing hyperplane theorem for the convex hull of a finite
point set. The converse is however not true, that is, the
separating hyperplane theorem does not imply Theo-
rem 1. In this sense Theorem 1 is a stronger separation
theorem. Theorem 1 can also be stated for a polytope
that is described by the intersection of halfspaces. The
proof however would have to rely on a further result:
any point in the polytope can be written as the convex
combination of its vertices.

3 Getting Closer to The Treasure

Given a point p′ ∈ Conv(S), as the current estimate
to the location of p, we wish to compute a new point
p′′ ∈ Conv(S) that reduces the current distance d(p′, p),
referred here as the gap. However, since the location of
p is unknown we must select p′′ in such a way that guar-
antees improvement. The following theorem describes
how this can be achieved.

Theorem 2 Let ǫ > 0 be given. Consider three given
points p, p′, v ∈ Rm satisfying the following conditions:

(i) r′ = d(p′, v) ≥ r = d(p, v).
(ii) δ = d(p′, p) ≥ ǫ.
Let p′′ be the point on the line segment p′v such that

d(p′, p′′) =
ǫ2

2r′ . (1)

Then if d(p′′, p) = δ′, we have

δ′

δ
≤

√
1 − ǫ2

2(r′2 + r2)
. (2)

In particular, if r′ ≤ 2r, then

δ′

δ
≤

√
1 − ǫ2

10r2
. (3)

Proof. Without loss of generality we may assume that
p, p′, v lie in a Euclidean plane, where v = (0, 0),
p′ = (r′, 0) and p = (x, y), see Figure 1. Consider the
concentric circles of radii r and r′ centered at v. Let
q be a point lying on the circle of radius r′, satisfying
d(p′, q) = ǫ. See Figure 1 where one of the two such

24th Canadian Conference on Computational Geometry, 2012

272

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Figure 1: Reduction of δ = d(p′, p) to δ′ = d(p′′, p).

points are shown. Draw the line from q perpendicular
to the line p′v and let p′′ be the base of this line. We
claim that this point coincides with p′′ as defined in (1).
We do so by computing d(p′, p′′) = ǫ′. Let q′ be the
midpoint of the chord qp′. By a property of a circle,
the line vq′ is perpendicular to the line qp′. Consider
the right triangles △qp′p′′ and △q′p′v. They are similar
since they have a common angle, ∠qp′p′′. Therefore, we
have

d(p′, p′′)

d(p′, q)
=

d(p′, q′)

d(v, p′)
. (4)

Substituting, equivalently we have,

ǫ′

ǫ
=

ǫ/2

r′ . (5)

This gives (1). From this, that p = (x, y), and since by
assumption (ii) δ ≥ ǫ, it follows that

x ∈ [−r, ρ], ρ = min{r, r′ − ǫ′}. (6)

Now consider x as a variable ranging in the interval
[−r, ρ]. Since y2 = r2 − x2, the corresponding ratio,
δ′/δ can be written explicitly as a function of x:

δ′

δ
=

√
(r′ − ǫ′ − x)2 + (r2 − x2)

(r′ − x)2 + (r2 − x2)
. (7)

We will compute a bound on the maximum of the above
ratio for x ∈ [−r, ρ]. It is more convenient to consider

f(x) =
(r′ − ǫ′ − x)2 + (r2 − x2)

(r′ − x)2 + (r2 − x2)
. (8)

We will prove that for x ∈ [−r, ρ] we have

f(x) ≤
(

1 − ǫ′r′

r′2 + r2

)
. (9)

We will consider two cases.
Case I. r ≤ r′ − ǫ′. We first claim that in this case

for any x ∈ (0, ρ], we have

f(−x) ≥ f(x). (10)

It is easy to verify that the above is true if and only if

ǫ′x

(
r′(r′ − ǫ′) − r2

)
≥ 0. (11)

This holds true under the given assumption of the case.
Thus it suffices to consider the maximum of f(x) in the
interval [−r, 0]. Differentiating f(x) and simplifying its
numerator, we get

2ǫ′
(

ǫ′r′ − (r′2 − r2)

)
. (12)

This quantity never vanishes unless,

ǫ′ =
(r′2 − r2)

r′ . (13)

It can be shown for this value of ǫ′ both the numerator
and the denominator of f(x) have the same root,

x =
r2 + r′2

2r′ ≥ r, (14)

a value outside of the interval [−r, 0]. Thus, we only
need to compare f(0) and f(−r). In fact since ǫ′ ≤
r′ − r, the quantity in (12) is negative, thus f(x) is
decreasing. Hence the maximum value of f(x) on [−r, ρ]
is

f(−r) =
(r′ + r − ǫ′)2

(r′ + r)2
=

(
1 − ǫ′

r′ + r

)2

. (15)

We claim

f(−r) ≤
(

1 − ǫ′r′

r′2 + r2

)
. (16)

Equivalently, we claim

(
1 − ǫ′r′

r′2 + r2

)
≥

(
1 − ǫ′

r′ + r

)2

=

1 +
ǫ′2

(r′ + r)2
− 2ǫ′

r′ + r
. (17)

Simplifying, this amounts to showing

2

r′ + r
≥ r′

r′2 + r2
+

ǫ′

(r′ + r)2
. (18)

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

273

24th Canadian Conference on Computational Geometry, 2012

It is easy to show that

2r′

(r′ + r)2
≥ r′

r′2 + r2
. (19)

Finally, we can verify the following

2

r′ + r
≥ 2r′

(r′ + r)2
+

ǫ′

(r′ + r)2
. (20)

Thus we have proved (16).
Case II. r > r′ − ǫ′. By our previous statement on a

root of f ′(x) and (14), and since in this case ρ = r′ − ǫ′,
f ′(x) does not vanish on [−r, ρ], so we only need to
bound f(r′ − ǫ′). We claim

f(r′ − ǫ′) = 1 − ǫ′2

r2 − r′2 + 2r′ǫ′ < (1 − ǫ′r′

r′2 + r2
). (21)

This is equivalent to proving

r′

r′2 + r2
<

ǫ′

r2 − r′2 + 2r′ǫ′ . (22)

After simplification this is equivalent to

r′(r2 − r′2) < ǫ′(r2 − r′2). (23)

This is valid. Finally, substituting ǫ′ = ǫ2/2r′, we have
proved (2), and using r′ ≤ 2r in (2) we get (3). �

Corollary 3 Let p, p′, p′′, v be as in Theorem 2 and set
R = max{d(p, vi), i = 1, . . . , n}. If r′ ≤ 2r, we have

δ′ ≤ δ

√
1 − ǫ2

10R2
≤ δ exp

(−ǫ2

20R2

)
. (24)

Proof. The first inequality follows from Theorem 2 and
the definition of R. To prove the next inequality, we use
that 1 + x ≤ exp(x), and set x = −ǫ2/10R2. �

4 The Blindfold Triangle Algorithm

In this section we describe a variation of the Triangle
Algorithm described in [8] for solving the convex hull de-
cision problem. As the Triangle Algorithm itself, given
p′ ∈ Conv(S) − {p}, the algorithm searches for a tri-
angle △pp′vj where vj ∈ S such that d(p′, vj) ≥ rj .
Given such a triangle, the algorithm uses vj as a pivot
point to compute a new iterate p′′ ∈ Conv(S) such that
d(p′′, p) < d(p′, p). It replaces p′′ with p′ and repeats.
Since the coordinates of p are not known, nor do we
know if such prescribed distances correspond to an ac-
tual point, we will need to adjust the Triangle Algorithm
to take conservative, but improving steps while making
use of Theorem 2. For this reason we refer to this ver-
sion as the Blindfold Triangle Algorithm.

The input to the algorithm is a prescribed tolerance
ǫ > 0, and a set of distances ri, i = 1, . . . , n, assumed

to correspond to d(p, vi) for some point p. We assume
to have selected an initial point p′ ∈ Conv(S). The
Blindfold Triangle Algorithm is described as follows.

• Step 1. Pick any p′ ∈ Conv(S) (e.g. p′ =
1
n

∑n
i=1 vi), check if

|d(p′, vi) − ri| ≤ ǫ, ∀i = 1, . . . , n.

If the above holds, stop. We shall refer ro p′ as an
ǫ-approximate solution. Otherwise, go to Step 2.

• Step 2. Check if d(p′, vi) > ri, ∀i = 1, . . . n. If the
above holds, stop. Otherwise, go to Step 3.

• Step 3. Check if there exists vj such that
d(p′, vj) ≥ rj . We shall refer to such vj as the pivot
point. If no such vj exists, then d(p′, vi) < d(p, vi),
for all i = 1, . . . , n. Stop. Otherwise, go to Step 4.

• Step 4. If r′
j = d(p′, vj) ≥ 2rj , then set p′′ = vj .

Replace p′ with p′′, go to Step 1. Otherwise, set p′′

to be the point that takes a step of size ǫ′ = ǫ2/2r′
j

from p′ in the direction of vj . Replace p′ with p′′,
go to Step 1. We refer to p′′ as the iterate.

When p′′ is not equal to vj it is given by

p′′ = αp′ + (1 − α)vj , α = 1 − ǫ′

r′
j

. (25)

Since p′′ is a convex combination of p′ and vj , it will
remain in Conv(S). First, we state a result that char-
acterizes the stopping conditions in the algorithm.

Theorem 4 The algorithm termination is categorized
as follows:

(1): If the algorithm terminates in Step 1, it has de-
termined an ǫ-approximate solution.

(2): If the algorithm terminates in Step 2, no point p
with prescribed distances exists.

(3): If the algorithm terminates in Step 3, no point p
with prescribed distances belongs to Conv(S).

Proof. Part (1) is clear from definition. The proof of
(2) follows from the fact that if such point p existed, by
Theorem 1 it could not belong to Conv(S). Consider
the Voronoi cell V (p′) with respect to the two point
set {p, p′}. Analogous to the proof of Theorem 1 in the
present article we can argue that V (p′) = {x : d(x, p′) ≤
d(x, p)} must necessarily contain a vj , hence d(p′, vj) ≤
d(p, vj). But this contradicts the termination criterion
of Step 2. Part (3), follows from Theorem 1. �

Next we state some basic properties of the algorithm
to be used in its complexity analysis. The proof is omit-
ted as it is straightforward and analogous to that in [8].

24th Canadian Conference on Computational Geometry, 2012

274

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Proposition 5 The algorithm satisfies:
(i) In each iteration the step-size α lies in (0, 1].
(ii) Given an explicit representation of p′ as a convex

combination of vi’s, p′′ can also be explicitly written as
a convex combination of vi’s.

(iii) Each iteration of the algorithm uses at most
O(mn) arithmetic operations and comparisons.

(iv) Each vi can be selected as an iterate p′′ at most
once (see definition of iterate in Step 4).

(v) If the point p exists, and if vj is selected as a pivot
point more than once, then except possibly for its first
selection as an iterate, in any subsequent selection of vj

as a pivot point the iterate p′′ will satisfy d(p, p′′) ≤ rj .

By part (iv) of Proposition 5, the number of iterations
where an element vj ∈ S is selected as an iterate is
at most n. Therefore, except for n iterations, in any
other iteration of the algorithm the inequality r′ ≤ 2r
holds and thus inequality (3) in Theorem 2 holds so that
(24) in Corollary 3 applies. The analysis of complexity
of the Blindfold Triangle Algorithm will make repeated
use of (24). For the sake of simplicity in the forgoing
complexity analysis we will exclude the occurrence of
exceptional iterations where r′ > 2r so that we assume
(24) applies in every iteration.

Theorem 6 Assume p is in Conv(S). Pick p0 ∈
Conv(S) − {p}, let δ0 = d(p0, p) ≥ ǫ. Set R =
max{d(p, vi), i = 1, . . . , n}. Then the algorithm com-
putes an ǫ-approximate solution in a finite number of
iterations kǫ satisfying,

kǫ =

⌈
20R2

ǫ2
ln

(
δ0

ǫ

)⌉
= O

(
ǫ−2 ln(

1

ǫ
)

)
.

Proof. From Corollary 3, given p′ ∈ Conv(S) in an
iteration, if the algorithm gets to compute p′′, then if p
with prescribed distances exists, we must have d(p, p′) >
ǫ. Otherwise, from the triangle inequality we would
have

|d(p′, vi) − d(p, vi)| ≤ ǫ, ∀i = 1, . . . , n.

Thus, Corollary 3 applies and from its repeated appli-
cation we have

δk ≤ δk−1 exp

(
− ǫ2

20R2

)
≤ · · · ≤ δ0 exp

(
− k

ǫ2

20R2

)
.

In order to satisfy δk ≤ ǫ, it suffices to solve for the
smallest k = kǫ satisfying

δ0 exp

(
− k

ǫ2

20R2

)
≤ ǫ.

This gives the claimed kǫ. �

Remark. In each iteration we can continue to use the
same pivot point vj so long as d(p′, vj) ≥ rj , making the
search for a pivot as efficient as possible.

5 Estimation of the Gap

Suppose we have computed a point p′ in the convex
hull of a subset of m + 1 points in S, forming a full-
dimensional simplex in Rm. Without loss of generality
assume these points are v0, . . . , vm. Thus p′ can be writ-
ten as a convex combination of these points in a unique
fashion. Also, the set of vectors vi − v0, i = 1, . . . , m
forms a linearly independent set in Rm. We wish to
represent p and p′ in terms of v0, . . . , vm and use it to
estimate the gap d(p, p′), given the following

d(vi, p) = ri, d(vi, p
′) = r′

i, i = 0, . . . , m, (26)

|ri − r′
i| ≤ ǫ, i = 0, . . . , m. (27)

Squaring the equations in (26), subtracting the first
from the remaining m equations gives,

d2(vi, p) − d2(v0, p) = r2
i − r2

0 , i = 1, . . . , m, (28)

d2(vi, p
′) − d2(v0, p

′) = r′2
i − r′2

0 , i = 1, . . . , m. (29)

Equivalently, for i = 1, . . . , m this gives

(v0 − vi)
T p = γi, (v0 − vi)

T p′ = γ′
i, (30)

where for i = 1, . . . , m we have

γi =
1

2

(
r2
i − r2

0 − d2(vi, 0) + d2(v0, 0)
)
,

γ′
i =

1

2

(
r′2
i − r′2

0 − d2(vi, 0) + d2(v0, 0)
)
. (31)

Let W be the m × m matrix whose i-th row is

vT
0 − vT

i , i = 1, . . . , m.

Let γ = (γ1, . . . , γm)T , and γ′ = (γ′
1, . . . , γ

′
m)T . Then

we have
Wp = γ, Wp′ = γ′.

This implies

p − p′ = W−1(γ − γ′).

From (27), and assuming ∆ is the diameter of Conv(S),
we have

|r2
i − r′2

i | ≤ ǫ(ri + r′
i) ≤ 2ǫ∆, i = 0, . . . , m.

Thus for i = 1, . . . , m we have

|γi − γ′
i| ≤ 1

2

(
|r2

i − r′2
i | + |r′2

0 − r′2
0 |

)
≤ 2ǫ∆.

Hence we conclude

d(γ, γ′) ≤ 2
√

m∆ǫ,

implying the following bound on the gap

d(p, p′) ≤ ‖W−1‖2
√

m∆ǫ, (32)

where ‖ · ‖ denotes the 2-norm of a matrix.
Remark. When the data is integral, there exists an

ǫ∗ such that if d(p, p′) ≤ ǫ∗, p also lies in the convex hull
of v0, . . . , vm. This follows from the usual LP sensitivity.
Thus, the algorithm can correctly solve the ambiguous
convex hull problem when viewed as a decision problem.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

275

24th Canadian Conference on Computational Geometry, 2012

6 Solving a Linear System as an Ambiguous Convex
Hull Problem

Theorem 7 Consider a linear system Ax = b, where
A is an m × m invertible matrix. Let p be the solution
to the equation. Assume we are given v0 ∈ Rm and
r0 such that d(p, v0) = r0. Let e = (1, . . . , 1)T ∈ Rm,
let vi be the i-th row of the matrix V = evT

0 − A, and
let ri = d(vi, p), i = 1, . . . , m. Then p is the unique
solution to the set of equations

d(vi, p) = ri, i = 0, . . . , m.

Moreover, for i = 1, . . . , m we have,

r2
i = 2bi + r2

0 + d2(vi, 0) − d2(v0, 0).

In particular, if p ∈ Conv{v0, . . . , vm}, the Blindfold
Triangle Algorithm can give an ǫ-approximate solution
to Ax = b in O(m2ǫ−2 ln(ǫ−1)) arithmetic operations.

Proof. From the relationship between A, V, v0, b, p, the
definition of W and γ in (31) we have

Ap = b = Wp = (evT
0 − V)p =

1

2
γ.

This completes the proof. �

Theorem 7 suggests interesting computational pos-
sibilities in using the Blindfold Triangle Algorithm to
solve a linear system, given that the distance of the solu-
tion to a single point is known, e.g. given the Euclidean
norm of the solution as is the case when A is an or-
thogonal matrix. Such an approach would compute an
approximate solution faster than the traditional method
of computing LU factorization.

7 Remarks

In this article we have presented a variation of the
Triangle Algorithm for the convex hull decision prob-
lem, called the Blindfold Triangle Algorithm. It tries
to determine if there exists a point p in the convex
hull of a given set of points S, knowing only a set of
distances, presumably corresponding to the points in
S. In contrast with the Triangle Algorithm it takes
smaller steps because it does not know the coordinates
of p, nor does it know if such a point exists. Despite the
conservative steps it is only slower than the Triangle
Algorithm by a factor of ln(ǫ−1). This could also mean
that the Triangle Algorithm itself should have a better
complexity (see [8]). An interesting application of the
Blindfold Triangle Algorithm is in solving certain linear
systems (e.g. orthogonal coefficient matrix), offering a
new approach for solving this problem (see Theorem
7). We are optimistic that both the Triangle Algorithm
as well as the Blindfold Triangle Algorithm will offer

alternative algorithms for the convex hull decision
problem, its variations, linear programming, and more.
These algorithms suggest new lines of research in
several different areas. We hope to carry out some
computational testing as well as pursue theoretical and
practical applications of the results.

Acknowledgements. I am grateful to three anony-
mous reviewers for a very careful reading of this article
and for their helpful comments and suggestions that re-
sulted in improvements. I also thank Iraj Kalantari for a
discussion on the use of a bisecting hyperplane to prove
Theorem 1, resulting in a simpler geometric proof than
the one given in [8]. As suggested by a reviewer, it is
also possible to give a direct proof Theorem 1, removing
the embedded contradiction.

References

[1] T. M. Chan. Output-sensitive results on convex hulls,
extreme points, and related problems. Discrete Comput.
Geom., 16(4):369–387, 1996.

[2] B. Chazelle. An optimal convex hull algorithm in any
fixed dimension. Discrete Comput. Geom., 10:377–409,
1993.

[3] V. Chvátal. Linear Programming. W.H. Freeman and
Company, New York, 1983.

[4] K.L. Clarkson. More output-sensitive geometric algo-
rithm. In Proceedings of the 35th Annual IEEE Sym-
posium on Foundations of Computer Science, 695–702,
1994.

[5] J. E. Goodman, J. O’Rourke (Editors). Handbook of
Discrete and Computational Geometry, 2nd Edition
(Discrete Mathematics and Its Applications), Chapman
& Hall Boca Raton, 2004.

[6] Y. Jin and B. Kalantari. A procedure of Chvátal for
testing feasibility in linear programming and matrix
scaling. Linear Algebra and its Applications, 416:795–
798, 2006.

[7] B. Kalantari. Canonical problems for quadratic pro-
gramming and projective methods for their solution.
Contemporary Mathematics, 114:243–263, 1990.

[8] B. Kalantari. A characterization theorem and an al-
gorithm for a convex hull problem. arXiv:1204.1873v1,
2012.

[9] N. Karmarkar. A new polynomial time algorithm for
linear programming, Combinatorica, 4:373-395, 1984.

[10] J. A. Kelner and D. A. Spielman. A randomized
polynomial-time simplex algorithm for linear program-
ming. Proceedings of the 38th Annual ACM Symposium
on Theory of Computing, 2006.

[11] L. G. Khachiyan. A polynomial algorithm in linear pro-
gramming. Doklady Akademia Nauk SSSR, 1093–1096,
1979.

[12] L. Khachiyan and B. Kalantari. Diagonal matrix scaling
and linear programming. SIAM J. Optim., 4:668–672,
1992.

24th Canadian Conference on Computational Geometry, 2012

276

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Optimal Average Case Strategy for Looking around a Corner

Reza Dorrigiv ∗ Alejandro López-Ortiz † Selim Tawfik †

Abstract

A robot is free to move in a non-convex polygonal re-
gion, starting against an edge on the boundary. Ahead
of the robot at one unit of distance is a corner, i.e. a
reflex vertex (see Figure 1). The angle θ is unknown
to the robot. The robot’s task is to look at the region
around the corner, which it initially cannot see.

We let ϕ = π − θ. If ϕ ≥ π/2, the robot is best off
moving straight to the vertex. However, if ϕ is close to
0, much shorter paths exist, making this solution sub-
optimal. Therefore we ask: What is the best path for
the robot to follow?

In this paper, we look into the problem of finding
an optimal average-case strategy under a homogeneous
probability distribution for ϕ. The average-case perfor-
mance of a strategy is measured by its average cost, de-
fined as the expected value of the strategy’s competitive
function. Given a value for ϕ, the competitive function
of a strategy gives the ratio of the distance the robot
travels to look around the corner (as prescribed by the
strategy) to the shortest distance it must travel to do
so.

We give strong evidence that an optimal average-case
strategy exists and achieves an average cost of ∼ 1.189.

1 Introduction

The corner exploration problem was first examined by
Icking, Klein and Ma in [7]. The authors measure the
performance of a strategy by its competitive factor, de-
fined as the maximum value attained by its compet-
itive function (lower is better). Under this measure,
they show there exists an optimal strategy character-
ized as the solution of a certain differential equation.
This strategy’s competitive function is in fact identi-
cally equal to a constant c ≈ 1.21218. Thus both its
competitive factor and its average cost are equal to c.
Although this strategy’s competitive factor is optimal,
strategies with better average costs exist.

The problem of finding an optimal average-case strat-
egy reduces to that of finding a curve which minimizes
an integral giving the average cost. The appropriate

∗Faculty of Computer Science, Dalhousie University, Halifax,
NS, B3H 4R2, Canada, email: rdorrigiv@cs.dal.ca

†David Cheriton School of Computer Science, Univer-
sity of Waterloo, Waterloo, ON, N2L 3G1, Canada, email:
{alopez-o,stawfik}@uwaterloo.ca

tool for handling such problems is the calculus of vari-
ations, on which we state a couple of useful theorems
in the appendix. This said, formal proofs of some of
our results would require complex techniques from that
field. For the problem at hand, we obtain near optimal
results using discretizations of the instance.

After giving discretizations of the problem, we ap-
ply some techniques from the calculus of variations to
produce a strong candidate for an optimal average-case
strategy. The average cost of this strategy is ∼ 1.189.
This is better than the average cost of the strategy de-
scribed in [7], which is ∼ 1.21218 as we noted earlier.
However, we should state that the competitive factor of
our strategy is worse: ∼ 1.3136 for ours vs. ∼ 1.21218
for [7].

Unfortunately, we do not have a closed-form for our
strategy, so we propose a closed-form approximation
whose average cost exceeds ours by less than 0.202%.

2 Competitive Strategies

2.1 Preliminaries

We need some of the early definitions and results in [7],
which we reproduce here.

Figure 1: The robot’s predicament.

We start by introducing a coordinate system with the
origin located at the corner, and with the robot’s start-
ing position, W , one unit away from the origin. We let
ϕ be the angle between the invisible wall and the pro-

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

277

24th Canadian Conference on Computational Geometry, 2012

longation of the visible wall, M(π). The distance from
W to M(ϕ) is denoted by a(ϕ). We observe that

a (ϕ) =

{
sin(ϕ) : ϕ < π

2

1 : ϕ ≥ π
2

(1)

A strategy is a curve which starts at the point W and
finishes on the prolongation of the visible wall, M(π).
For any possible value of ϕ, there is a point on such a
curve from which the other wall is visible, the intersec-
tion of the curve with M(ϕ).

We let AS(ϕ) be the length of the path described by
strategy S between W and the first point of intersection
with M(ϕ). The competitive function, fS(ϕ), of S is the
ratio of AS(ϕ) to a(ϕ) and its competitive factor, cS , is
the supremum of the values taken by fS(ϕ) in (0, π].

fS(ϕ) =
AS(ϕ)

a(ϕ)
, cS = sup

ϕ∈(0,π]

fS(ϕ)

We say that S is competitive if cS < ∞. If a strategy
reaches M(ϕ′) for the first time, turns back and meets
M(ϕ′) again, this part of the path may be cut off and
replaced by a radial line segment, giving a better strat-
egy. Strategies with radial line segments can then be
approximated arbitrarily closely by strategies that can
be described in polar coordinates.

Definition 1 ([7]) A curve S = (ϕ, s(ϕ)), where s is
defined on [0, π], is called a strategy for the corner prob-
lem if the following holds.

(i) s is a continuous function on an interval [0, σ],
where σ ≤ π.

(ii) On the open interval (0, σ), s is piecewise continu-
ously differentiable and s′(0) exists (possibly ±∞).

(iii) s is rectifiable, i.e. s has finite arc length.1

(iv) s(0) = 1.

(v) If s(σ) �= 0 then σ = π.

The last property says that the strategy must end some-
where on M(π), possibly the corner. By agreeing that
s(ϕ) = 0 for σ < ϕ ≤ π, we can regard s(ϕ) as defined
on all of [0, π].

Lemma 1 ([7]) Let S = (ϕ, s(ϕ)) be a strategy. Then
S is competitive iff |s′(0)| < ∞. The estimation

cS ≥
√

s′2(0) + 1

holds for the competitive factor.

1This criterion is not listed in [7], but it is assumed. Since
s′(σ) is not known to exist, it is necessary to require this.

Thus competitive strategies are piecewise continuously
differentiable in [0, π). Using the formula for arc length
in polar coordinates, we have

AS(ϕ) =

∫ ϕ

0

√
s2(t) + s′2(t) dt (2)

By the fundamental theorem of calculus, A′
S(ϕ) =√

s2(ϕ) + s′2(ϕ) on [0, π), and so AS is continuous
therein. Since s is rectifiable, AS(π) < ∞ so that AS is
bounded on [0, π]. By L’Hôpital’s rule,

lim
ϕ→0

fS(ϕ) = lim
ϕ→0

√
s2(ϕ) + s′2(ϕ)

cos(ϕ)

=
√

s′2(0) + 1

Defining fS(0) :=
√

s′2(0) + 1, fS is continuous on [0, π)
and bounded on [0, π]. In particular, fS is integrable on
[0, π] (this is given by Lebesgue’s criterion for Riemann-
integrability, see [1] pp. 171).

2.2 The Objective

We are interested in finding a competitive strategy S
which minimizes the average value taken by fS(ϕ) in
the interval [0, π]. More precisely, we wish to minimize
the expected value of the ratio of the distance traveled
before the corner is seen over the shortest path to the
line of sight:

E[fS] =
1

π

∫ π

0

fS(ϕ) dϕ

=
1

π

∫ π

0

∫ ϕ

0

√
s2(t) + s′2(t)

a(ϕ)
dt dϕ (3)

which we define as the average cost of fS . Since fS

is integrable on [0, π], the above integral exists and is
finite.

Observation 1 If S = (ϕ, s(ϕ)) is an optimal strategy,
then s is non-increasing on [0, π]. Indeed, the robot is
always better off staying at the same radial distance from
the corner than getting farther from it.

3 A Discretization

As a first attempt to gain insight into the problem, we
look at a discretization of it. To this end, we start by
partitioning the interval [0, π] into n equal subintervals
(for simplicity, we choose n to be even), so that we get
partition points x0, . . . , xn with x0 = 0, xn = π and
xi+1 − xi = π

n for i = 0, . . . , n − 1. Putting θ = π
n ,

we will assume that the angle ϕ in the original problem
can only take values in {k θ : 1 ≤ k ≤ n} with equal
probability 1

n .

24th Canadian Conference on Computational Geometry, 2012

278

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Figure 2: Robot’s path in the discretization.

For non-negative values y0, . . . , yn, let P (y0, . . . , yn) de-
note the polygonal path which joins the polar points
(x0, y0), . . . , (xn, yn) in that order. The problem is then
to find values for y0, . . . , yn which minimize the aver-
age cost incurred by the strategy P (y0, . . . , yn). The
requirement that the robot starts one unit away from
the origin is worked in by demanding that y0 = 1.
Let Li(y0, . . . , yn) denote the ith segment of the path
P (y0, . . . , yn). The law of cosines gives us

|Li(y0, . . . , yn)|2 = y2
i−1 + y2

i − 2 cos(θ)yi−1yi

= (yi−1 − cos(θ)yi)
2 + sin2(θ)y2

i

And so |Li(y0, . . . , yn)| may be expressed as the norm
of a vector

‖(yi−1 − cos(θ)yi, sin(θ)yi)‖ (4)

Notice that the expression above is convex in the ar-
guments y0, . . . , yn. For 1 ≤ k ≤ n, the robot travels
a distance of

∑k
i=1 |Li(y0, . . . , yn)| before it reaches the

ray kθ. Remembering (1), we see that the competitive
function, fS takes on values according to

fS(kθ) =
k∑

i=1

|Li(y0, . . . , yn)|
sin(kθ)

if 1 ≤ k ≤ n
2 and

fS(kθ) =

k∑

i=1

|Li(y0, . . . , yn)|

if n
2 + 1 ≤ k ≤ n. The average cost of the strategy

P (y0, . . . , yn) is thus given by

1

n

n
2∑

k=1

k∑

i=1

|Li(y0, . . . , yn)|
sin(kθ)

+

1

n

n∑

k= n
2 +1

k∑

i=1

|Li(y0, . . . , yn)|

Now, the convexity of (4) gives us the convexity of the
above expression and so the problem at hand is actually
a convex program. Using a numerical solver 2, we are
able to find solutions for n = 100, plotted below:

−0.5 −0.4 −0.3 −0.2 −0.1 0
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Figure 3: Optimal discrete strategy for n = 100.

This plot suggests that an optimal continuous strategy
exists. The solutions for n = 1000 and n = 5000 further
support this hypothesis. Note that the solution does not
reach the corner as is the case with the strategy found in
[7]. Instead, it continually approaches the corner until
it reaches the ray π, at a distance of ∼ 0.067 from the
corner.

Observation 2 This discretization method suggests
that if H = (ϕ, h(ϕ)) is an optimal continuous strat-
egy, then h is differentiable at π and h′(π) = 0. To see
this, consider yn in relation to yn−1: once the robot has
reached the ray (n−1) θ, it is best off heading to the ray
n θ = π in the shortest possible path, which is the line
segment perpendicular to n θ. Thus yn = cos(θ) yn−1

and we expect the difference quotient

yn − yn−1

θ
=

(cos(θ) − 1)

θ
yn−1

to converge to h′(π) as θ approaches 0, if it converges
at all. Since

lim
θ→0

(cos(θ) − 1)

θ
= 0

2We used CVX, a package for specifying and solving convex
programs [6].

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

279

24th Canadian Conference on Computational Geometry, 2012

and 0 ≤ yn−1 ≤ 1, we would have h′(π) = 0. It is actu-
ally possible to prove this rigorously with the techniques
of the calculus of variations. An argument along similar
lines, by considering yn and yn−1 in relation to yn−2,
gives h′′(π) = ∞.

4 A Continuous Solution

Our discretization has given us good evidence that an
optimal continuous strategy exists. We now explore this
possibility with more appropriate tools coming from the
calculus of variations. First however We start by consid-
ering yet another discretization which will reinforce our
evidence. We also derive an expression for the average
cost E in the form of a single integral.

Next, we apply the techniques of the calculus of varia-
tions to the problem of minimizing E. Namely, we solve
the Euler-Lagrange equation associated with E. In gen-
eral, proving that a given solution to the Euler-Lagrange
equation is a minimizer for a variational problem is diffi-
cult and attempting to do so would lead us too far deep
into the theory of the calculus of variations. Instead, we
will be content with the near perfect match we observe
between our candidate solution and the discrete optimal
average-case solutions.

4.1 The Average Cost as a Single Integral

In view of (3), the expression for the average cost is

E[fS] =
1

π

∫ π

0

fS(ϕ) dϕ

=
1

π

∫ π

0

∫ ϕ

0

√
s(t)2 + s′2(t)

a(ϕ)
dt dϕ (5)

Before continuing, we define a function b:

b (ϕ) =

{
ln

(
1−cos(ϕ)

sin(ϕ)

)
: ϕ < π

2

ϕ − π
2 : ϕ ≥ π

2

(6)

Note that b(ϕ) is continuous and that b′(ϕ) = 1
a(ϕ) on

(0, π], i.e. b is an antiderivative for the reciprocal of a.
Using Fubini’s theorem (see [3] pp. 64) we may change
the order of integration in (5):

1

π

∫ π

0

∫ π

t

√
s(t)2 + s′2(t)

a(ϕ)
dϕ dt

Finally, invoking the fundamental theorem of calculus,
this gives

E[fS] =

∫ π

0

√
s(t)2 + s′2(t)

(
π
2 − b(t)

)

π
dt (7)

4.1.1 Another Discretization

The above derivation suggests we try to approximate
the average cost E by a Riemann sum. Suppose S =
(ϕ, s(ϕ)) is an optimal strategy. Choosing an n > 0
sufficiently large, we let θ = π

n and ϕi = i θ. We ap-
proximate s′(ϕi) by the Newton quotient

s(ϕi+1) − s(ϕi)

θ

Putting yi = s(ϕi), we make an approximation for
E[fS]:

1

π

n−1∑

i=0

√
y2

i +

(
yi+1 − yi

θ

)2 (π

2
− b(ϕi)

)
θ (8)

Naturally, we look for values y0, . . . , yn which will mini-
mize (8). Fortunately, this problem is once again convex
and in fact computationally easier than the one before.
Using a numerical solver, we are able to increase n to
100000, the result is shown below together with our pre-
vious discretization:

−0.5 −0.4 −0.3 −0.2 −0.1 0
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

1st discrete solution, n = 100
2nd discrete solution, n = 100000

Figure 4: Optimal solutions for two types of discretiza-
tions

Notice the two solutions almost agree everywhere they
are both defined. The value of (8) in this case is ∼
1.1892.

4.2 An Optimal Strategy

If we regard E as a functional acting on functions de-
fined in [0, π] and piecewise continuously differentiable
in [0, π), our goal is to find such a function h, subject to
h(0) = 1 and h(x) ≥ 0 for x ∈ [a, b], that minimizes E.
In general, proving the existence of a continuous min-
imizer for variational problems such as this one is not
an easy task. Instead, we will take the corroborating
results from the first and second discretization as proof

24th Canadian Conference on Computational Geometry, 2012

280

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

one exists, and that its average cost should be close to
1.1892. The discretizations suggest we look for such a
minimizer with h(π) > 0. Before proceeding, we ver-
ify that we may apply the techniques of the calculus of
variations:

Lemma 2 Suppose h minimizes (7) and h(π) > 0.
Then h is C2 on (0, π).

Proof. As we have observed, h is non-increasing on
[0, π], thus h(t) > 0 for all t ∈ [0, π]. If we define

F (x, y, z) =
1

π

√
y2 + z2

(π

2
− b(x)

)

then

E(h) =

∫ π

0

F (t, h(t), h′(t)) dt

Now we have

∂2F

∂z2
(t, h(t), h′(t)) =

1

2π

(π − 2b(t))2

(h(t)2 + h′(t)2)
3
2

which remains non-zero in (0, π). By the criterion for
the regularity of minimizers, h is C2 in (0, π). �
As shown in the appendix, the above lemma ensures
h satisfies the Euler-Lagrange equation associated with
(7) in (0, π). Although too long to produce here, this
equation may be expressed in the explicit form

h′′ = G(t, h, h′)

so long as h(t) > 0 and 0 < t < π. Thus if we know the
values for, say, h(π

2) and h′(π
2), then we can determine

h by the Existence-Uniqueness Theorem for ordinary
differential equations. With this mind, we use the dis-
cretization results for n = 100000 to estimate values for
h(π

2) and h′(π
2). The resulting solution to the Euler-

Lagrange equation associated with (7) is plotted below
alongside the optimal discrete solution for n = 100.

−0.5 −0.4 −0.3 −0.2 −0.1 0
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

1st discrete solution, n =100
Continuous solution

Figure 5: Optimal discrete solution together with opti-
mal continuous solution

The very close match between the continuous solution
and the discrete one gives us strong evidence that we
have indeed found an optimal strategy. The average
cost of this strategy is ∼ 1.189. Its competitive factor
is ∼ 1.3136.

5 Conclusion

Our results give us strong evidence that we have found
an optimal average case strategy. It achieves an average
cost of ∼ 1.189. Although we do not have a closed-form
expression for this strategy, a good approximation is
given by

1 + 7 θ

35 + 21 θ + 22 θ2

which has an average cost of ∼ 1.1914, which exceeds
the presumed optimal average cost by less than 0.202%.

References

[1] T. M. Apostol. Mathematical Analysis. Addison Wesley,
1974.

[2] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[3] J. C. Burkill. The Lesbesgue Integral. Cambridge Uni-
versity Press, 1951.

[4] J. C. Butcher. Numerical Methods for Ordinary Differ-
ential Equations. Wiley, 2008.

[5] M. Grant and S. Boyd. Graph implementations for
nonsmooth convex programs. In V. Blondel, S. Boyd,
and H. Kimura, editors, Recent Advances in Learning
and Control, Lecture Notes in Control and Information
Sciences, pages 95–110. Springer-Verlag Limited, 2008.
http://stanford.edu/~boyd/graph_dcp.html.

[6] M. Grant and S. Boyd. CVX: Matlab software for
disciplined convex programming, version 1.21. http:

//cvxr.com/cvx, Apr. 2011.

[7] C. Icking, R. Klein, and L. Ma. How to look around a
corner. In Proceedings of the 5th Canadian Conference
on Computational Geometry, pages 443–448, Waterloo,
Ontario, 1993.

[8] J. Jost and X. Li-Jost. Calculus of Variations. Cam-
bridge University Press, 1998.

[9] M. Mesterton-Gibbons. A Primer on the Calculus
of Variations and Optimal Control Theory. American
Mathematical Society, 2009.

6 Appendix: The Calculus of Variations

Our analysis requires us to minimize expressions of the
form

J [r] =

∫ b

a

F (x, r(x), r′(x)) dx (9)

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

281

24th Canadian Conference on Computational Geometry, 2012

where F : (a, b)×R2 → [0, ∞) is a given function of class
C2 in (a, b)×Ω where Ω is an open region in R2. J is the
objective function, otherwise known as a functional. The
goal is to find a minimizing function r : [a, b] → R over
the class of admissible functions. For us, these are the
functions that are piecewise continuously differentiable
in (a, b) with (r(x), r′(x)) ∈ Ω for all x where r′(x) is
defined, and moreover satisfy some boundary condition
r(a) = α for some α ∈ R.

Suppose for now that r is such a minimizer. Assume
furthermore that r is in fact C2 in (a, b). It can be
shown that

∂F

∂r
(x, r(x), r′(x))− d

dx

(
∂F

∂r′ (x, r(x), r′(x))

)
= 0 (10)

holds everywhere in (a, b) (see [8] for example). Equa-
tion (10) is known as the Euler-Lagrange equation. It
is a second order differential equation in r and must be
satisfied by any r which minimizes J subject to the con-
ditions we have imposed. It is important to note that
simply satisfying (10) is not enough to guarantee that
r is a minimizer: the condition is necessary, but not
sufficient.

In the above, we have assumed minimizers for (9)
are of class C2 in (a, b). The following result gives us
conditions on F under which this is justified.

Proposition 3 Regularity of Minimizers Let r be
a piecewise continuously differentiable minimizer for
the above problem, and let F be as in (9). If
∂2F
∂r′2 (x, r(x), r′(x)) does not vanish anywhere in (a, b),
then r is C2 in (a, b).

A proof of this statement goes along the same lines as
Theorem 1.2.3 and 1.2.3 in [8]. Note that because r is
piecewise continuously differentiable, the above implies
it is C1 in [a, b].

24th Canadian Conference on Computational Geometry, 2012

282

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Computational Geometry in Air Traffic Management

Joseph S. B. Mitchell∗

The next generation of air transportation system will have to use technology to be able to cope with the ever
increasing demand for flights. Several challenging optimization problems arise in trying to maximize efficiency while
maintaining safe operation in air traffic management (ATM). Constraints and issues unique to air transportation
arise in the ATM domain, including weather hazards, turbulence, no-fly zones, and three-dimensional routing. The
challenge is substantially compounded when the constraints vary in time and are not known with certainty, as is
the case with weather hazards. Human oversight is provided by air traffic controllers, who are responsible for safe
operation within a portion of airspace known as a sector.

In this talk we discuss algorithmic methods that can be used in modeling and solving air traffic management
problems, including routing of traffic flows, airspace configuration into load-balanced sectors, and capacity estimation
in the face of dynamic and uncertain constraints and demands. We highlight several open problems of interest to
computational geometers.

This research has been supported by grants from the National Science Foundation (CCF-0729019, CCF-1018388),
NASA Ames, and Metron Aviation. The talk is based on collaborative work with many, including Anthony D. Andre,
Dominick Andrisani, Estie Arkin, Amitabh Basu, Jit-Tat Chen, Nathan Downs, Moein Ganji, Robert Hoffman, Rafal
Kicinger, Joondong Kim, Victor Klimenko, Irina Kostitsyna, Shubh Krishna, Jimmy Krozel, Changkil Lee, Tenny
Lindholm, Tim Myers, Anne Pääkkö, Steve Penny, Valentin Polishchuk, Joseph Prete, Girishkumar Sabhnani, Robert
Sharman, Philip J. Smith, Amy L. Spencer, Ali Tafazzoli, Gregory Wong, Shang Yang, Arash Yousefi, Jingyu Zou.

∗Stony Brook University, joseph.mitchell@stonybrook.edu

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

283

24th Canadian Conference on Computational Geometry, 2012

284

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Competitive Routing on a Bounded-Degree Plane Spanner

Prosenjit Bose∗ Rolf Fagerberg§ André van Renssen∗ Sander Verdonschot∗

Abstract

We show that it is possible to route locally and com-
petitively on two bounded-degree plane 6-spanners, one
with maximum degree 12 and the other with maximum
degree 9. Both spanners are subgraphs of the empty
equilateral triangle Delaunay triangulation. First, in a
weak routing model where the only information stored
at each vertex is its neighbourhood, we show how to find
a path between any two vertices of a 6-spanner of max-
imum degree 12, such that the path has length at most
95/
√

3 times the straight-line distance between the ver-
tices. In a slightly stronger model, where in addition to
the neighbourhood of each vertex, we store O(1) addi-
tional information, we show how to find a path that has
length at most 15/

√
3 times the Euclidean distance both

in a 6-spanner of maximum degree 12 and a 6-spanner
of maximum degree 9.

1 Introduction

A t-spanner of a weighted graph G is a connected sub-
graph H with the property that for all pairs of vertices,
the weight of the shortest path between the vertices in
H is at most t times the weight of the shortest path in
G, for some fixed constant t ≥ 1. The constant t is re-
ferred to as the spanning ratio. The graph G is referred
to as the underlying graph. In our setting, the underly-
ing graph is the complete graph on a set of n points in
the plane and the weight of an edge is the Euclidean dis-
tance between its endpoints (see [9] for a comprehensive
overview of spanners).

In communication networks, in addition to being a
constant spanner, a desirable property is the ability to
route messages on the network such that the total dis-
tance travelled by the message is at most a constant
times the spanning ratio. Inability to route effectively
defeats the purpose of building a spanner in the first
place. Network routing strategies such as Dijkstra’s
algorithm [7] require knowledge of the whole network
topology to compute a short route. In many settings,

∗School of Computer Science, Carleton University. Research
supported in part by NSERC. Email: jit@scs.carleton.ca,

andre@cg.scs.carleton.ca, sander@cg.scs.carleton.ca.
§Department of Mathematics and Computer Science, Univer-

sity of Southern Denmark. Email: rolf@imada.sdu.dk. Partially
supported by the Danish Council for Independent Research, Nat-
ural Sciences.

this assumption is impractical. As such, we focus on lo-
cal routing strategies (see [8] for a discussion of various
models wrt. local routing). In a local routing strategy,
the decision to forward a message depends on informa-
tion stored at the node where the message currently
resides, location of the source, location of the destina-
tion and the contents of a small memory. Typically, the
information stored at a node is the set of direct neigh-
bours.

Formally, an algorithm A is a k-memory routing al-
gorithm, if the vertex to which a message is forwarded
from the current vertex s is a function of s, t, N(s), and
M , where t is the destination vertex, N(s) is the set
of direct neighbours of s and M is a memory of size k,
stored with the message. For our purposes, we consider
a unit of memory to consist of a log2 n bit integer or
a point in R2. Our model also assumes that the only
information stored at each vertex of the graph is N(s).
The algorithm A is d-competitive provided that the to-
tal distance travelled by the message is not more than d
times the Euclidean distance between source and desti-
nation. We refer to the constant d as the routing ratio.

We present the first competitive k-memory routing
algorithm to route on a bounded-degree plane spanner.
Our algorithm routes on a 6-spanner with maximum
degree 12, which is a subgraph of the empty equilateral
triangle Delaunay triangulation [4]. We then present
another competitive k-memory routing algorithm that
routes on a subgraph with maximum degree 9. How-
ever, for this algorithm, we need to slightly enhance our
model by storing a constant number of bits and points
at each vertex (in addition to the neighbourhood of the
vertex) to help guide the routing process.

2 Graphs

The empty equilateral triangle Delaunay triangulation
was one of the first plane graphs that was shown to be
a spanner [6]. It is internally triangulated and has a
spanning ratio of 2. Recently, Bonichon et al. showed
that it is equivalent to the half-θ6-graph [2] and that it
contains a bounded-degree spanner as a subgraph [3].
In this section, we describe the construction of the half-
θ6-graph and two of its bounded-degree subgraphs.

Given a set P of points in the plane, we consider
each point v ∈ P and partition the plane into 6 cones
with apex v, each defined by two rays at consecutive
multiples of π/3 radians from the positive x-axis. We

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

285

24th Canadian Conference on Computational Geometry, 2012

label the cones C1, C0, C2, C1, C0 and C2, in counter-
clockwise order around v, starting from the positive x-
axis (see Figure 1a). The cones C0, C1 and C2 are called
positive, while the others are called negative.

C0

C1C2

C1

C0

C2

v

v

a) b)

Figure 1: a) The cones around a vertex v. b) The con-
struction of the half-θ6-graph. In each positive cone, v
connects to the vertex with the closest projection on the
bisector of that cone.

To build the half-θ6-graph, we consider each vertex v
and add an edge between v and the ‘closest’ vertex in
each of its positive cones. However, instead of using the
Euclidean distance, we measure distance by projecting
each vertex onto the bisector of the cone. We call the
vertex in this cone whose projection is closest to v the
closest vertex and connect it to v with an edge (see
Figure 1b). For simplicity, we assume that no two points
lie on a line parallel to a cone boundary.

Given two points a and b such that b lies in a positive
cone of a, we define their canonical triangle Tab to be
the triangle bounded by the cone of a that contains b
and the line through b perpendicular to the bisector of
that cone. For example, the shaded region in Figure 1b
is the canonical triangle of v and its closest vertex. The
construction of the half-θ6-graph can alternatively be
described as adding an edge between two vertices if and
only if their canonical triangle is empty. This property
will play an important role in our proofs.

Each vertex in the half-θ6-graph has at most one in-
cident edge in each positive cone, but it can have an un-
bounded number of incident edges in its negative cones.
We describe two transformations that allow us to bound
the total degree of each vertex. The transformations are
adapted from Bonichon et al. [3].

The first transformation discards all edges in each
negative cone, except for three: the first and last edges
in clockwise order around the vertex and the edge to the
closest vertex (see Figure 2a). This results in a subgraph
with maximum degree 12, which we call G12.

To reduce the degree even further, we note that since
the half-θ6-graph is internally triangulated, consecutive
neighbours of v within a negative cone are connected
by edges. We call the path formed by these edges the

va) b) v

Figure 2: The construction forG12 (a) andG9 (b). Solid
edges are kept, while dotted edges are discarded if no
other vertex wants to keep them.

canonical path. So instead of keeping three edges per
negative cone, we keep only the edge to the closest ver-
tex, but force the edges of the canonical path to be kept
as well (see Figure 2b). We call the resulting graph G9.
Since the half-θ6-graph is planar, both subgraphs are
planar as well. In a previous paper [5], we showed that
G9 is a 6-spanner with maximum degree 9. We give
an adapted version of the proof for the spanning ratio
below.

Theorem 1 G9 is a 3-spanner of the half-θ6-graph.

Proof. We show that for every edge (s, v) in the half-
θ6-graph, there is a path of length at most 3 · |sv| in
G9. This path consists of the edge to the closest vertex,
followed by the edges on the canonical path between the
closest vertex and v. We will refer to it as the approxi-
mation path.

s

v

v0

v1

a

b

c

d

m1 m2

Figure 3: The approximation path.

Let v0 be the closest vertex and let v1, . . . , vk = v
be the other vertices on the approximation path. We
assume without loss of generality that s lies in C0 of v
and that v lies to the right of v0. We shoot rays parallel
to the boundaries of C0 from each vertex. Let mi be
the intersection of the right ray of vi−1 and the left ray
of vi (see Figure 3). Let a and b be the intersections of
the left boundary of C0 of s with the left rays of v and
v0, respectively, and let c be the intersection of this left
boundary with the horizontal line through v. Finally,
let d be the intersection of the right ray of v0 and the left
ray of v. We can bound the length of the approximation

24th Canadian Conference on Computational Geometry, 2012

286

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

path as follows:

|sv0|+
k∑

i=1

|vi−1vi|

≤ |sb|+ |bv0|+
k∑

i=1

|vi−1mi|+
k∑

i=1

|mivi|

= |sb|+ |bv0|+ |ab|+ |dv| {by projection}
= |sb|+ |ab|+ |av|
≤ |sc|+ 2 · |cv|

The last inequality follows from the fact that v0 is
the closest vertex to s. Let α be ∠csv. Some basic
trigonometry gives us that |sc| = 2√

3
· sin

(
α+ π

3

)
· |sv|

and |cv| = 2√
3
· sin(α) · |sv|. Thus the approximation

path is at most 2√
3
·
(
sin
(
α+ π

3

)
+ 2 sin(α)

)
times as

long as (s, v). Since this function is increasing in [0, π3],
the maximum is achieved for α = π/3, where it is 3.
Therefore every edge of the half-θ6-graph can be ap-
proximated by a path that is at most 3 times as long
and the theorem follows. �

Note that the part of the approximation path that
lies on the canonical path has length at most 2 · |cv| =
4√
3
·sin(α) · |sv|. This function is also increasing in [0, π3]

and its maximal value is 2, so the total length of this
part is at most 2 · |sv|.

Since the half-θ6-graph is a 2-spanner, this shows that
G9 is a 6-spanner. Bonichon et al. [3] also showed that
all edges on the canonical path are either first or last in
their respective negative cones, making G9 a subgraph
of G12. Hence G12 is a 6-spanner as well.

3 Routing on G12

We now turn our attention to finding a competitive path
from a current vertex s to a given destination t in G12.
In a previous paper, we showed that it is possible to
route competitively on the half-θ6-graph [4].

Theorem 2 ([4], Corollary 4.1) Let u and w be two
vertices with w in a positive cone of u. There exists a
0-memory routing algorithm on the half-θ6-graph with
routing ratio

i) 2 when routing from u to w,

ii) 5/
√

3 = 2.886 . . . when routing from w to u.

and this is best possible for deterministic local routing
schemes.

Next we present a slightly modified version of the
routing algorithm for the half-θ6-graph. The difference
lies in the fact that the original algorithm does not keep
state. However, the same proofs can be used to show

t

sa b

X1
X2

X0

C1

C0

C2

a) b)

t

s

C1 C2

v

l1
l2

Figure 4: a) The points and regions involved in negative
routing. b) The projected length of an edge.

that the stateful version in this paper finds a path with
the same routing ratio.

Before we can describe the actual algorithm, we need
a few definitions. We assume without loss of generality
that t lies in C0 or C0 of s. If t lies in C0, the cones
around s split Tts into three regions, which we call X0,
X1 and X2, as shown in Figure 4a. Formally, let X0 =
C0∩Tts, X1 = C1∩Tts and X2 = C2∩Tts. Further, we
let a be the corner of Tts that is on the boundary of C1

and b the corner on the boundary of C2. For brevity,
we use “an edge in X0” to denote an edge incident to s
with the other endpoint in X0.

We also need the concept of the projected length of an
edge onto a neighbouring cone. For an edge (s, v) in C0,
the neighbouring cones of s are C1 and C2. Let ~e1 and
~e2 be unit vectors parallel to the boundary of C0 with
C1 and C2, respectively. Since ~e1 and ~e2 are linearly
independent, the vector ~sv can be uniquely written as
l1 · ~e1 + l2 · ~e2. We define the projected length of (s, v)
on C1 as l1 and on C2 as l2 (see Figure 4b).

Our algorithm distinguishes three cases and keeps
track of a preferred side, which is one of the positive
cones, or undefined. The preferred side is stored as state
in the message. If t lies in a positive cone of s, we are in
case A. If t lies in a negative cone of s and no preferred
side has been set yet, we are in case B. If t lies in a
negative cone of s and a preferred side has been set, we
are in case C. The algorithm works as follows on the
half-θ6-graph.

• In case A, follow the unique edge in the positive
cone containing t.

• In case B, if there are edges in X0, follow an ar-
bitrary one. Otherwise, if there is an edge in the
smaller of X1 and X2, follow that edge. Otherwise,
follow the edge in the larger of X1 and X2 and set
the other as the preferred side. At least one of these
edges must exist [4].

• In case C, if there are edges in X0, follow the one
with the largest projected distance on the preferred
side. Otherwise, follow the edge in the positive cone
that is not on the preferred side. Again, at least one
of these edges must exist [4].

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

287

24th Canadian Conference on Computational Geometry, 2012

This algorithm constructs a path between two vertices
in the half-θ6-graph. To approximate this path in G12

and G9, we simulate each step of the algorithm. Note
that we can decide which case we are in based solely
on the coordinates of s and t and whether the preferred
side has been set. The following five headlines refer
to original steps of the algorithm on the half-θ6-graph,
and the text after a headline describes how to simulate
that step in G12. We discuss modifications for G9 in
Section 4.

Follow an edge (s, v) in a positive cone. If the edge
is still there, we simply follow it. If it is not, the edge
was removed because s is on the canonical path of v
and it is not the closest, first or last vertex on the path.
Since G12 is a supergraph of G9, we know that all of the
edges of the canonical path are kept and every vertex on
the path originally had an edge to v in the same positive
cone. Therefore it suffices to search the canonical path
for any vertex with an edge in this positive cone and
follow this edge. Since the edges connecting v to the
first and last vertices on the path are always kept, the
edge we find in this way must lead to v.

This method is guaranteed to reach v, but we want
to find a competitive path to v. Therefore we will use
exponential search along the canonical path: we start
by following the shorter of the two edges of the canoni-
cal path incident to s. If the endpoint of this edge does
not have an edge in our positive cone, we return to s
and travel twice the length of the first edge in the other
direction. We keep returning to s and doubling the max-
imum travel distance until we find a vertex x that does
have an edge in our positive cone. If x is not the clos-
est to v, by the triangle inequality, following its edge to
v is shorter than continuing our search until we reach
the closest and following its edge. So for the purpose of
bounding the distance travelled, we can assume that x
is closest to v. Let d be the distance between s and x
along the canonical path. By using exponential search
to find x, we travel at most 9 times this distance [1] and
afterwards we follow (s, x). From the spanning proof,
we know that d ≤ 2 · |sv| and d + |xv| ≤ 3 · |sv|. Thus
the total length of our path is at most 9 · d + |xv| =
8 · d+ (d+ |xv|) ≤ 16 · |sv|+ 3 · |sv| = 19 · |sv|.

Determine if there are edges in X0. In the regular
half-θ6-graph we can look at all our neighbours and see if
any of them lie in X0. However, in G12, these edges may
have been removed. Fortunately, we can still determine
if they existed in the original half-θ6-graph. To do this,
we look at the first and last vertex along the canonical
path in this cone. If these vertices do not exist, s did not
have any incoming edges in this cone, so there can be no
edges in X0. If first and last are the same vertex, this
was the only incoming edge to s from this cone, so we

simply check if its endpoint lies in X0. The interesting
case is when first and last exist and are distinct. If either
of them lies in X0, we have our answer, so assume that
both lie outside of X0. Since they cannot have t in their
positive cone, they must lie in one of two regions, which
we call S1 and S2 (see Figure 5a).

t

s

X1
X2

X0

a) b)

t

s

S1 S2

v

a

Figure 5: a) Possible regions for the first and last vertex.
b) A vertex v in X1.

If both first and last lie in the same region (say S1),
there can be no edge in X0, since any vertex on the
canonical path between them in X0 would lie in C0 of
the last vertex. This would prevent the last vertex from
having an edge to s, which is a contradiction.

On the other hand, if first lies in S1 and last in S2,
both X1 and X2 have to be empty, since s was the
closest vertex to both. Thus if there are no vertices in
X0 (different from t and s), t must have an edge to s,
which gives us an edge in X0. On the other hand, if
there are vertices in X0, the same holds for the topmost
vertex in X0, so in either case there must be an edge
in X0. This shows that we can check whether there
was an edge in X0 in the half-θ6-graph using only the
coordinates of the first and last vertex.

Follow an arbitrary edge in X0. If the half-θ6-graph
has edges in X0, we simulate following an arbitrary one
of these by first following the edge to the closest vertex
in the negative cone. If this vertex is in X0, we are done.
Otherwise, we follow the canonical path in the direction
ofX0 and stop once we are inside. This traverses exactly
the approximation path of the edge, and hence travels
a distance at most 3 times the length of the edge.

Determine if there is an edge in X1 or X2. Since
these regions are symmetric, we will consider only the
case for X1. It is contained in a positive cone of s, so
it contains at most one edge incident to s. If the edge
is still there, we can simply test whether it is in X1 or
not. However, if s does not have a neighbour in this
cone, we need to find out whether it used to have one
in the original half-θ6-graph and if so, whether it was
in X1. Since this step is only needed in case B after we

24th Canadian Conference on Computational Geometry, 2012

288

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

determine that there are no edges in X0, we can use this
information to guide our search. Specifically, we know
that if we find an edge, we should follow it.

Therefore we simply attempt to follow the edge in
this cone. If there is a vertex v in X1 and the edge
(s, v) was removed (see Figure 5b), we must encounter
the closest vertex after travelling at most 2 · |sv| along
the canonical path. Since all edges in X1 have length at
most |as|, we use exponential search, travelling at most
2 · |as| from s. Once we explored both sides of the path
to a distance of 2 · |as| without encountering a vertex
with an edge in the correct positive cone, we return to
s and conclude that there was no edge in X1. If we do
find such a vertex, we test whether its edge leads into
X1 and follow it if it does. If the edge does not lead into
X1, either the edge of s in C1 had its endpoint outside
of X1, or s did not have an edge in C1. Either way, we
return to s and conclude that there was no edge in X1.

If there was an edge in X1, we travelled the same
distance as if we were simply following the edge: at most
19 · |sv|. If we return to s unsuccessfully, we travelled
at most 20 · |as|: 9 times 2 · |as| during the exponential
search and 2 · |as| to return to s.

Follow the edge in X0 with the largest projected dis-
tance on the preferred side. In the half-θ6-graph, we
have sufficient information about our neighbours to sim-
ply compute their projected distances. However, a lot
of these edges might have been removed in the construc-
tion of G12. To help find the correct edge, we first prove
the following property.

t

s

v

R0

R1

R2

R3

Figure 6: Situation around the first vertex in X0.

Lemma 3 In the half-θ6-graph, the first or last edge in
X0 in counter-clockwise order around s has the largest
projected distance on the preferred side.

Proof. We consider only the case where the preferred
side is C1. The case for C2 is analogous. Let v be the
endpoint of the first edge in X0 in counter-clockwise or-
der around s. The lines through v parallel to the bound-
aries of C0 partition X0 into four regions. In counter-
clockwise order, starting at the top, we call these R0,
R1, R2 and R3 (see Figure 6). Now let us consider the
possible locations of other vertices on the canonical path
in this negative cone of s.

Since v has an edge to s, R0 must be empty. There
can also be no neighbours of s in R1, as these would
have come before v in the counter-clockwise ordering
around s. Finally, for vertices in R2, v will always be
closer than s, so there can be no neighbours of s in R2

either. Thus all other vertices of the canonical path
must either be outside X0 or in R3. Since the projected
distance of (s, v) is at least as large as the projected
distance to any vertex in R3, (s, v) has the largest pro-
jected distance among all edges in X0. �

To follow this edge, we first follow the edge to the
closest vertex. If this lands us in X0, we then follow the
canonical path towards the preferred side and stop at
the last vertex on the canonical path that is in X0. If
the closest is not in X0, we follow the canonical path
towards X0 and stop at the first or last vertex in X0,
depending on which side of X0 we started on. This fol-
lows the approximation path of the edge, so the distance
travelled is at most 3 times the length of the edge.

Routing ratio. This shows that we can simulate the
routing algorithm on G12. Note that in contrast to
the routing algorithm on the half-θ6-graph, we main-
tain state in the message. We need to store not only
the preferred side, but also information for the expo-
nential search, including distance travelled. The exact
routing ratios are as follows.

Theorem 4 Let u and w be two vertices with w in a
positive cone of u. There exists an O(1)-memory routing
algorithm on G12 with routing ratio

i) 19 · 2 = 38 when routing from u to w,

ii) 19 · 5/
√

3 = 54.848 . . . when routing from w to u.

Proof. As shown above, we can simulate every edge fol-
lowed by the algorithm by travelling at most 19 times
the length of the edge. The only additional cost is in-
curred in case B, when we try to follow an edge in the
smaller of X1 and X2, but this edge does not exist. In
this case, we travel an additional 20 · |as|, where a is
the corner closest to s. Fortunately, this can happen at
most once during the execution of the algorithm, as it
prompts the transition to case C, after which the algo-
rithm never returns to case B. Looking at the original
proof for the routing ratio [4], we observe that in the
transition from case B to C, there is 2 · |as| of unused
potential. Since we are trying to show a routing ratio
of 19 times the original, we can charge the additional
20 · |as| to the 38 · |as| of unused potential. �

4 Routing on G9

In this section, we explain how to modify the described
simulation strategies so that they work for G9, where

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

289

24th Canadian Conference on Computational Geometry, 2012

the first and last edges are not guaranteed to be present.
We discuss only those steps that rely on the presence of
these edges.

Follow an edge (s, v) in a positive cone. Because the
first and last edges are not always kept, we cannot guar-
antee that the first vertex we reach with an edge in this
positive cone is still part of the same canonical path.
Therefore our original exponential search solution does
not work. Instead, we need to store one bit of infor-
mation at s, namely in which direction we have to fol-
low the canonical path to reach the closest vertex to v.
Knowing this, we just follow the canonical path in this
direction until we reach a vertex with an edge in this
positive cone. This vertex must be the closest, so it
gives us precisely the approximation path and therefore
we travel at most 3 · |sv|.

Determine if there are edges in X0. In G12, this test
was based on the coordinates of the endpoints of the
first and last edge. Since these might be missing in G9,
we store the coordinates of these vertices at s. This
allows us to perform the check without increasing the
distance travelled.

Determine if there is an edge in X1 or X2. As in
the positive routing simulation, we now know where to
go to find the closest. Therefore we simply follow the
canonical path in this direction from s and stop when
we reach a vertex with an edge in the correct positive
cone, or when we have travelled 2 · |as|. If there is an
edge, we follow exactly the approximation path, giving
us 3 times the length of the edge. If there is no edge,
we travel 2 · |as| back and forth, for a total of 4 · |as|.

Routing Ratio. Since the other simulation strategies
do not rely on the presence of the first or last edges, we
can now analyze the routing ratio obtained on G9.

Theorem 5 Let u and w be two vertices with w in a
positive cone of u. By storing O(1) additional informa-
tion at each vertex, there exists an O(1)-memory routing
algorithm on G12 and G9 with routing ratio

i) 3 · 2 = 6 when routing from u to w,

ii) 3 · 5/
√

3 = 8.660 . . . when routing from w to u.

Proof. The simulation strategy for G12 followed the
approximation path for each edge, except when follow-
ing an edge in a positive cone. Since our new strategy
follows the approximation path there as well, our new
routing ratio is only 3 times the one for the half-θ6-
graph. Note that this is still sufficient to charge the
additional 4 · |sa| travelled to the transition from case
B to C. Since G9 is a subgraph of G12, this strategy
works on G12 as well. �

5 Conclusion

We presented two competitive O(1)-memory routing al-
gorithms for bounded-degree subgraphs of the half-θ6-
graph. To the best of our knowledge, these are the
first competitive routing algorithms on bounded-degree
plane spanners. The first strategy works on G12 and
achieves a routing ratio of 19 times the routing ratio on
the half-θ6-graph. The second algorithm works on G9

as well as G12 and reduces the routing ratio to 3 times
the original. However, it achieves this only by storing
information at vertices. Note that this routing ratio is
optimal for the positive case, as the spanning ratio of 6
is tight for both graphs.

An interesting open problem is whether the routing
ratio for the negative case can be improved, or if, as
for the half-θ6-graph, we can find a matching lower
bound. And is it possible to improve the routing ra-
tio on G12 without storing information at the vertices?
Or does there exist a 0-memory routing algorithm for
these graphs? It would also be interesting to see if there
are other bounded-degree plane spanners that are eas-
ier to route on or allow better routing ratios. For ex-
ample, a slight modification transforms G9 into a plane
6-spanner with maximum degree 6 [3]. Is it possible to
route competitively on that graph as well?

References

[1] R. A. Baeza-Yates, J. C. Culberson, and G. J. E. Rawl-
ins. Searching in the plane. Information and Computa-
tion, 106(2):234–252, 1993.

[2] N. Bonichon, C. Gavoille, N. Hanusse, and D. Ilcinkas.
Connections between theta-graphs, Delaunay triangula-
tions, and orthogonal surfaces. In WG, pages 266–278,
2010.

[3] N. Bonichon, C. Gavoille, N. Hanusse, and L. Perkovic.
Plane spanners of maximum degree six. In ICALP (1),
pages 19–30, 2010.

[4] P. Bose, R. Fagerberg, A. van Renssen, and S. Verdon-
schot. Competitive routing in the half-θ6-graph. In
SODA, pages 1319–1328, 2012.

[5] P. Bose, R. Fagerberg, A. van Renssen, and S. Verdon-
schot. On plane constrained bounded-degree spanners.
In LATIN, pages 85–96, 2012.

[6] P. Chew. There are planar graphs almost as good as
the complete graph. Journal of Computer and System
Sciences, 39(2):205–219, 1989.

[7] E. W. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik, 1:269–271, 1959.

[8] X. Li. Wireless Ad Hoc and Sensor Networks. Cambridge
University Press, 2008.

[9] G. Narasimhan and M. Smid. Geometric Spanner Net-
works. Cambridge University Press, 2007.

24th Canadian Conference on Computational Geometry, 2012

290

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Optimal Bounds on Theta-Graphs: More is not Always Better

Prosenjit Bose∗ Jean-Lou De Carufel∗ Pat Morin∗ André van Renssen∗ Sander Verdonschot∗

Abstract

We present tight upper and lower bounds on the span-
ning ratio of a large family of θ-graphs. We show that θ-
graphs with 4k+2 cones (k ≥ 1 and integer) have a span-
ning ratio of 1 + 2 sin(θ/2), where θ is 2π/(4k + 2). We
also show that θ-graphs with 4k + 4 cones have span-
ning ratio at least 1 + 2 tan(θ/2) + 2 tan2(θ/2), where θ
is 2π/(4k + 4). This is somewhat surprising since, for
equal values of k, the spanning ratio of θ-graphs with
4k+4 cones is greater than that of θ-graphs with 4k+2
cones, showing that increasing the number of cones can
make the spanning ratio worse.

1 Introduction

In a weighted graph G, let the distance δG(u, v) between
two vertices u and v be the length of the shortest path
between u and v in G. A subgraph H of G is a t-spanner
of G if for all pairs of vertices u and v, δH(u, v) ≤ t ·
δG(u, v), t ≥ 1. The spanning ratio of H is the smallest
t for which H is a t-spanner. The graph G is referred
to as the underlying graph.

We consider the situation where the underlying graph
G is a straightline embedding of the complete graph
on a set of n points in the plane denoted by Kn, with
the weight of an edge (u, v) being the Euclidean dis-
tance |uv| between u and v. A spanner of such a graph
is called a geometric spanner. We look at a specific type
of geometric spanner: θ-graphs.

Introduced independently by Clarkson [4] and
Keil [5], θ-graphs are constructed as follows (a more
precise definition follows in the next section): for each
vertex u, we partition the plane into m disjoint cones
with apex u, each having aperture θ = 2π/m. When
m cones are used, we denote the resulting θ-graph as
θm. The θ-graph is constructed by, for each cone with
apex u, connecting u to the vertex v whose projection
along the bisector of the cone is closest. Ruppert and
Seidel [6] showed that the spanning ratio of these graphs
is at most 1/(1 − 2 sin(θ/2)), when θ < π/3, i.e. there
are at least seven cones.

∗School of Computer Science, Carleton University. Re-
search supported in part by FQRNT and NSERC. Email:
jit@scs.carleton.ca, jdecaruf@cg.scs.carleton.ca,

morin@scs.carleton.ca, andre@cg.scs.carleton.ca,

sander@cg.scs.carleton.ca.

Recently, Bonichon et al. [1] showed that the θ6-
graph has spanning ratio 2. This was done by divid-
ing the cones into two sets, positive and negative cones,
such that each positive cone is adjacent to two neg-
ative cones and vice versa. It was shown that when
edges are added only in the positive cones, in which
case the graph is called the half-θ6-graph, the result-
ing graph is equivalent to the TD-Delaunay triangu-
lation (the Delaunay triangulation where the empty re-
gion is an equilateral triangle) whose spanning ratio is 2
as shown by Chew [3]. An alternative, inductive proof
of the spanning ratio of the θ6-graph was presented by
Bose et al. [2].

Tight bounds on spanning ratios are notoriously hard
to obtain. The standard Delaunay triangulation (where
the empty region is a circle) is a good example. It has
been studied for over 20 years and the upper and lower
bounds still do not match. Also, even though it was
introduced about 25 years ago, the spanning ratio of the
θ6-graph has only recently been shown to be finite and
tight, making it the first and, until now, only θ-graph
for which tight bounds are known.

In this paper, we generalize the results from
Bose et al. [2]. We look at two families of θ-graphs:
the θ(4k+2)-graph and the θ(4k+4)-graph, where k is an
integer and at least 1. We show that the θ(4k+2)-graph
has a tight spanning ratio of 1 + 2 sin(θ/2) and that the
θ(4k+4)-graph has a strictly larger spanning ratio of at
least 1 + 2 tan(θ/2) + 2 tan2(θ/2), for their respective
values of θ.

2 Preliminaries

Let a cone C be the region in the plane between two rays
originating from the same point (referred to as the apex
of the cone). When constructing a θm-graph, for each
vertex u of Kn consider the rays originating from u with
the angle between consecutive rays being θ = 2π/m.
Each pair of consecutive rays defines a cone. The cones
are oriented such that the bisector of some cone coin-
cides with the vertical line through u.

The θm-graph is constructed as follows: for each cone
C of each vertex u, add an edge from u to the closest
vertex in that cone, where distance is measured along
the bisector of the cone. More formally, we add an edge
between two vertices u and v if v ∈ C and for all vertices
w ∈ C (v 6= w), |uv′| ≤ |uw′|, where v′ and w′ denote

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

291

24th Canadian Conference on Computational Geometry, 2012

the orthogonal projection of v and w on the bisector of
C.

For ease of exposition, we only consider point sets in
general position: no two vertices lie on a line parallel to
one of the rays that define the cones and no two vertices
lie on a line perpendicular to the bisector of one of the
cones. This implies that each vertex adds at most one
edge per cone to the graph.

Given a vertex w in cone C of vertex u, we define the
canonical triangle Tuw to be the triangle defined by the
borders of C and the line through w perpendicular to
the bisector of C. We use m to denote the midpoint of
the side of Tuw opposite u and α to denote the unsigned
angle between uw and um. See Figure 1. Note that for
any pair of vertices u and w, there exist two canonical
triangles: Tuw and Twu.

w

u

m

α

Figure 1: The canonical triangle Tuw

3 Spanning Ratio of the θ(4k+2)-Graph

In this section, we give matching upper and lower
bounds on the spanning ratio of the θ(4k+2)-graph, for
any integer k ≥ 1. The proof is a generalization of the
proof given by Bose et al. [2]. We first show that the
θ(4k+2)-graph has a very nice geometric property:

Lemma 1 Any line perpendicular to the bisector of a
cone is parallel to the boundary of some cone.

Proof. The angle between the bisector of a cone and
the boundary of that cone is θ/2 and the angle between
the bisector and the line perpendicular to this bisector
is π/2 = ((2k + 1)/2) · θ. Thus the angle between the
line perpendicular to the bisector and the boundary of
the cone is 2π − θ/2 − ((2k + 1)/2) · θ = k · θ. Since a
cone boundary is placed at every multiple of θ, the line
perpendicular to the bisector is parallel to the boundary
of some cone. �

This property implicitly helps when bounding the
spanning ratio of the θ(4k+2)-graph. However, before

deriving this bound, we first prove a useful geometric
lemma.

Lemma 2 Given a convex quadrilateral abcd such that
no three of its vertices lie on a line, ∠abc = ∠adc,
∠bad ≤ ∠bcd, and ∠bad ≤ 2 · ∠bac. It holds that
|ad|+ |dc| ≤ |ab|+ |bc|.

Proof. Since ∠bad ≤ 2 · ∠bac, the bisector of ∠bad
intersects bc. Let x be this intersection. Let y be the
intersection of ad and the line through x, parallel to cd.
Since ∠bad ≤ ∠bcd, the line through d parallel to bc
intersects xy. Let z be this intersection. See Figure 2.
These definitions imply that |zd| = |xc| and |zx| = |dc|.

a

b

d

c

x

y

z

β
β

γ
γ

Figure 2: Quadrilateral abcd

Since ∠bax = ∠yax and ∠abx = ∠adc = ∠ayx, we
have that ∠bxa = ∠yxa. Since ax is part of both trian-
gle abx and triangle ayx, the law of sines implies that
|ab| = |ay| and |bx| = |yx|. We now rewrite |ad| + |dc|
and |ab|+ |bc|:

|ad|+ |dc| = |ay|+ |yd|+ |dc|
= |ay|+ |yd|+ |zx|

|ab|+ |bc| = |ab|+ |bx|+ |xc|
= |ay|+ |yx|+ |xc|
= |ay|+ |yz|+ |zx|+ |zd|

Therefore |ad| + |dc| ≤ |ab| + |bc| if and only if
|yd| ≤ |yz| + |zd|, which follows from the triangle in-
equality. �

Theorem 3 Let u and w be two vertices in the plane.
Let m be the midpoint of the side of Tuw opposite u and
let α be the unsigned angle between uw and um. There
exists a path in the θ(4k+2)-graph of length at most

((
1 + sin

(
θ
2

)

cos
(
θ
2

)
)
· cosα+ sinα

)
· |uw|.

Proof. We prove the theorem by induction on the area
of Tuw (formally, induction on the rank, when ordered

24th Canadian Conference on Computational Geometry, 2012

292

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

by area, of the canonical triangles for all pairs of ver-
tices). Let a and b be the upper left and right corners of
Tuw, let p and q be the intersections of Tuw and the lower
boundaries of the uppermost cones of w that intersect
Tuw, and let x and y be the left and right intersections
of Tuw and the boundaries of the cone of w that contains
u. See Figure 3.

u

wa b

x

y
p

q
m

Figure 3: The canonical triangle Tuw with a, b, p, q, x,
and y being the various intersections of its sides

Our inductive hypothesis is the following, where
δ(u,w) denotes the length of the shortest path from u
to w in the θ(4k+2)-graph:

• If axw is empty, then δ(u,w) ≤ |ub|+ |bw|.

• If byw is empty, then δ(u,w) ≤ |ua|+ |aw|.

• If neither axw nor byw is empty, then
δ(u,w) ≤ max{|ua|+ |aw|, |ub|+ |bw|}.

We first show that this induction hypothesis implies
the theorem. Basic trigonometry gives us the follow-
ing equalities: |um| = |uw| · cosα, |mw| = |uw| · sinα,
|am| = |bm| = |uw| · cosα · tan(θ/2), and |ua| = |ub| =
|uw| · cosα/ cos(θ/2). Thus the induction hypothesis
gives that δ(u,w) is at most |ua| + |am| + |mw| =
|uw| · (((1 + sin(θ/2))/ cos(θ/2)) · cosα+ sinα).

Base case: Tuw has rank 1. Since the triangle is
a smallest triangle, w is the closest vertex to u in that
cone. Hence the edge (u,w) is part of the θ(4k+2)-graph,
and δ(u,w) = |uw|. From the triangle inequality, we
have |uw| ≤ min{|ua|+ |aw|, |ub|+ |bw|}, so the induc-
tion hypothesis holds.

Induction step: We assume that the induction hy-
pothesis holds for all pairs of vertices with canonical
triangles of rank up to i. Let Tuw be a canonical trian-
gle of rank i+ 1.

If (u,w) is an edge in the θ(4k+2)-graph, the induc-
tion hypothesis follows by the same argument as in
the base case. If there is no edge between u and w,
let v be the vertex closest to u in the cone of u that
contains w, and let a′ and b′ be the upper left and

right corners of Tuv. See Figure 4. By definition,
δ(u,w) ≤ |uv|+ δ(v, w), and by the triangle inequality,
|uv| ≤ min{|ua′|+ |a′v|, |ub′|+ |b′v|}.

(a) (b) (c)

u

wa b

x

y
p

c d

v

y′

x′

a′ b′

u

wa b

x

p

u

wa b

x

p

a′ v

c

d

a′′

z

a′
a′′

b′′ y
′′v

Figure 4: The three cases: (a) v lies in uxwy, (b) v lies
in xpw, (c) v lies in paw

We perform a case analysis based on the location of v:
(a) v lies in uxwy, (b) v lies in xpw, (c) v lies in paw,
(d) v lies in yqw, and (e) v lies in qbw. Case (d) is anal-
ogous to Case (b) and Case (e) is analogous to Case (c),
so we only discuss the first three cases.

Case (a): Vertex v lies in uxwy. Let c and d be the
upper left and right corners of Tvw, and let x′ and y′ be
the left and right intersections of Tvw and the bound-
aries of the cone of w that contains v. See Figure 4a.
Since Tvw has smaller area than Tuw, we apply the in-
ductive hypothesis on Tvw. Our task is to prove all three
statements of the inductive hypothesis for Tuw.

1. If axw is empty, then cx′w is also empty, so by
induction δ(v, w) ≤ |vd| + |dw|. Since v, d, b, and
b′ form a parallelogram, we have:

δ(u,w) ≤ |uv|+ δ(v, w)

≤ |ub′|+ |b′v|+ |vd|+ |dw|
= |ub|+ |bw|,

which proves the first statement of the induction
hypothesis.

2. If byw is empty, an analogous argument proves the
second statement of the induction hypothesis.

3. If neither axw nor byw is empty, by induction we
have δ(v, w) ≤ max{|vc| + |cw|, |vd| + |dw|}. As-
sume, without loss of generality, that the maximum
of the right hand side is attained by its second ar-
gument |vd| + |dw| (the other case is analogous).

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

293

24th Canadian Conference on Computational Geometry, 2012

Since vertices v, d, b, and b′ form a parallelogram,
we have that:

δ(u,w) ≤ |uv|+ δ(v, w)

≤ |ub′|+ |b′v|+ |vd|+ |dw|
≤ |ub|+ |bw|
≤ max{|ua|+ |aw|, |ub|+ |bw|},

which proves the third statement of the induction
hypothesis.

Case (b): Vertex v lies in xpw. Since v lies in
axw, the first statement in the induction hypothesis
for Tuw is vacuously true. It remains to prove the
second and third statement in the induction hypoth-
esis. Let c and d be the upper and lower right cor-
ners of Tvw, and let a′′ be the intersection of aw and
the line through v, parallel to ua. See Figure 4b.
Since Tvw is smaller than Tuw, by induction we have
δ(v, w) ≤ max{|vc|+ |cw|, |vd|+ |dw|}. We perform a
case analysis based on this: (i) δ(v, w) ≤ |vd|+ |dw|,
(ii) δ(v, w) ≤ |vc|+ |cw|.

Case (i): Since ∠va′′w and ∠vdw are both the angle
between the boundary of a cone and the line perpen-
dicular to the bisector of that cone, we have ∠va′′w =
∠vdw = k ·θ. Also, we have that ∠a′′vd ≤ ∠a′′wd, since
∠a′′vd ≤ k · θ and

∠a′′wd = 2π − ∠va′′w − ∠vdw − ∠a′′vd
≥ (4k + 2) · θ − 3k · θ
= (k + 2) · θ

Furthermore, since ∠a′′vw > ∠a′′vc ≥ θ and
∠a′′vd = ∠a′′vc+ θ ≤ 2 ·∠a′′vc, we have that ∠a′′vd <
2 · ∠a′′vw.

Hence we can apply Lemma 2 to quadrilateral va′′wd,
which gives us that |vd| + |dw| ≤ |va′′| + |a′′w|. Since
|uv| ≤ |ua′|+ |a′v| and v, a′′, a, and a′ form a parallel-
ogram, we have that δ(u,w) ≤ |ua|+ |aw|, proving the
second and third statement in the induction hypothesis
for Tuw.

Case (ii): Let z be the lower corner of Twv. Since
vcwz form a parallelogram, we know that |vc|+ |cw| =
|wz|+ |zv|. We now look at quadrilateral wzva′′. Anal-
ogous to Case (i), we have that ∠wzv = ∠wa′′v = k · θ,
∠a′′wz ≤ ∠a′′vz, and ∠a′′wz < 2 · ∠a′′wv. Hence we
can apply Lemma 2 to quadrilateral wzva′′, which gives
us that |wz|+ |zv| ≤ |va′′|+ |a′′w|, proving the second
and third statement in the induction hypothesis for Tuw.

Case (c): Vertex v lies in paw. Since v lies in axw,
the first statement in the induction hypothesis for Tuw
is vacuously true. It remains to prove the second and
third statement in the induction hypothesis. Let a′′ and
b′′ be the upper and lower left corners of Twv, and let
y′′ be the intersection of Twv and the lower boundary of
the cone of v that contains w. See Figure 4c. Note that

y′′ is also the right intersection of Tuv and Twv. Since
v is the closest vertex to u, Tuv is empty. Hence, b′′y′′v
is empty. Since Twv is smaller than Tuw, we can apply
induction on it. As b′′y′′v is empty, the first statement of
the induction hypothesis for Twv gives δ(v, w) ≤ |va′′|+
|a′′w|. Since |uv| ≤ |ua′| + |a′v| and v, a′′, a, and a′

form a parallelogram, we have that δ(u,w) ≤ |ua|+|aw|,
proving the second and third statement in the induction
hypothesis for Tuw. �

Since ((1 + sin(θ/2))/ cos(θ/2)) · cosα + sinα is in-
creasing for α ∈ [0, θ/2], for θ ≤ π/3, it is maximized
when α = θ/2, and we obtain the following corollary:

Corollary 4 The θ(4k+2)-graph is a
(
1 + 2 · sin

(
θ
2

))
-

spanner of Kn.

The upper bounds given in Theorem 3 and Corol-
lary 4 are tight, as shown in Figure 5: we place a ver-
tex v arbitrarily close to the upper corner of Tuw that
is furthest from w. Likewise, we place a vertex v′ arbi-
trarily close to the lower corner of Twu that is furthest
from u. Both shortest paths between u and w visit ei-
ther v or v′, so the path length is arbitrarily close to
(((1 + sin(θ/2))/ cos(θ/2)) · cosα+ sinα) · |uw|, showing
that the upper bounds are tight.

w

u

v

v′

Figure 5: The lower bound for the θ(4k+2)-graph

4 Spanning Ratio of the θ(4k+4)-Graph

The θ(4k+2)-graph has the nice property that any line
perpendicular to the bisector of a cone is parallel to the
boundary of a cone (Lemma 1). As a result of this, if u,
v, and w are vertices with v in one of the upper corners
of Tuw, then Twv is completely contained in Tuw. The
θ(4k+4)-graph does not have this property. In this sec-
tion, we show how to exploit this to construct a lower
bound for the θ(4k+4)-graph whose spanning ratio ex-
ceeds the worst case spanning ratio of the θ(4k+2)-graph.

Theorem 5 The worst case spanning ratio of the
θ(4k+4)-graph is at least 1 + 2 tan

(
θ
2

)
+ 2 tan2

(
θ
2

)
.

24th Canadian Conference on Computational Geometry, 2012

294

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

(a) (b)

w

u

v1

v2

w

u

v1
w

u

v1

v2

v3

(c)

Figure 6: The construction of the lower bound for the θ(4k+4)-graph

Proof. We construct the lower bound example by ex-
tending the shortest path between two vertices u and
w in three steps. We describe only how to extend one
of the shortest paths between these vertices. To extend
all shortest paths, the same modification is performed
in each of the analogous cases, as shown in Figure 6.

First, we ensure that there is no edge between u and
w by placing a vertex v1 in the upper corner of Tuw
that is furthest from w. See Figure 6a. Next, we place
a vertex v2 in the corner of Tv1w that lies in the same
cone of u as w and v1. See Figure 6b. Finally, we place a
vertex v3 in the intersection of Tv2w and Twv2 to ensure
that there is no edge between v2 and w. See Figure 6c.
Note that we cannot place v3 in the lower right corner
of Tv2w since this would cause an edge between u and
v3 to be added, creating a shortcut to w.

One of the shortest paths in the resulting graph visits
u, v1, v2, v3, and w. Thus, to obtain a lower bound for
the θ(4k+4)-graph, we compute the length of this path.

Let m be the midpoint of the side of Tuw opposite u.
By construction, we have that ∠v1um = ∠wum =
∠v2v1w = ∠v3v2w = ∠v3wv2 = θ/2. See Figure 7.
We can express the various line segments as follows:

|uv1| = |uw|

|v1w| = 2 sin

(
θ

2

)
· |uw|

|v1v2| = 2 tan

(
θ

2

)
· |uw|

|v2w| = 2 sin

(
θ

2

)
tan

(
θ

2

)
· |uw|

|v2v3| = |v3w| = tan2

(
θ

2

)
· |uw|

w

u

v1

v2

v3

m

Figure 7: The lower bound for the θ(4k+4)-graph

Hence, the total length of the shortest path is |uv1|+
|v1v2|+ |v2v3|+ |v3w| = (1 + 2 tan(θ/2) + 2 tan2(θ/2)) ·
|uw|. �

Finally, we show that increasing the number of cones
of a θ-graph by 2 from 4k + 2 to 4k + 4 increases the
worst case spanning ratio.

Theorem 6 The worst case spanning ratio of the
θ(4k+4)-graph is greater than that of the θ(4k+2)-graph,
for any integer k ≥ 1.

Proof. Recall that the worst case spanning ratio of
the θ(4k+2)-graph is 1 + 2 sin(π/(4k + 2)) and that of
the θ(4k+4)-graph is at least 1 + 2 tan(π/(4k + 4)) +
2 tan2(π/(4k + 4)). To prove the theorem, it suffices to

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

295

24th Canadian Conference on Computational Geometry, 2012

show that tan(π/(4k+ 4)) + tan2(π/(4k+ 4)) is greater
than sin(π/(4k + 2)), for any integer k ≥ 1.

For x ∈ (0, π/6], it holds that sinx < x, tanx > x,
and tan2 x > x2. Since k ≥ 1, both π/(4k + 2) and
π/(4k+ 4) are in the range (0, π/6]. Therefore, we have
that:

sin

(
π

4k + 2

)
<

π

4k + 2

<
π

4k + 4
+

(
π

4k + 4

)2

< tan

(
π

4k + 4

)
+ tan2

(
π

4k + 4

)
,

as required. �

5 Conclusion

We showed that the θ(4k+2)-graph has a tight span-
ning ratio of 1 + 2 sin(θ/2). This is the first time tight
spanning ratios have been found for a large family of
θ-graphs. Previously, the only θ-graph for which tight
bounds were known was the θ6-graph.

Furthermore, we showed that the θ(4k+4)-graph has a
spanning ratio of at least 1 + 2 tan(θ/2) + 2 tan2(θ/2).
This result is somewhat surprising since, for equal values
of k, the worst case spanning ratio of the θ(4k+4)-graph
is greater than that of the θ(4k+2)-graph, showing that
increasing the number of cones can make the spanning
ratio worse.

There remain a number of open problems, such as
finding lower bounds for the θ(4k+3)-graph and the
θ(4k+5)-graph, and finding tight spanning ratios of the
θ(4k+3), θ(4k+4), and θ(4k+5)-graphs. The best known
upper bound for these graphs is 1/(1−2 sin(θ/2)). Fur-
thermore, for the θ4 and θ5-graphs, neither upper nor
lower bounds are known.

References

[1] N. Bonichon, C. Gavoille, N. Hanusse, and D. Ilcinkas.
Connections between theta-graphs, Delaunay triangula-
tions, and orthogonal surfaces. In Proceedings of the 36th
International Conference on Graph Theoretic Concepts
in Computer Science (WG 2010), pages 266–278, 2010.

[2] P. Bose, R. Fagerberg, A. van Renssen, and S. Verdon-
schot. Competitive routing in the half-θ6-graph. In Pro-
ceedings of the 23rd ACM-SIAM Symposium on Discrete
Algorithms (SODA 2012), pages 1319–1328, 2012.

[3] P. Chew. There are planar graphs almost as good as
the complete graph. Journal of Computer and System
Sciences, 39(2):205–219, 1989.

[4] K. Clarkson. Approximation algorithms for shortest
path motion planning. In Proceedings of the 19th An-
nual ACM Symposium on Theory of Computing (STOC
1987), pages 56–65, 1987.

[5] J. Keil. Approximating the complete Euclidean graph.
In Proceedings of the 1st Scandinavian Workshop on Al-
gorithm Theory (SWAT 1988), pages 208–213, 1988.

[6] J. Ruppert and R. Seidel. Approximating the d-
dimensional complete Euclidean graph. In Proceedings
of the 3rd Canadian Conference on Computational Ge-
ometry (CCCG 1991), pages 207–210, 1991.

24th Canadian Conference on Computational Geometry, 2012

296

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Near-Linear-Time Deterministic Plane Steiner Spanners
and TSP Approximation for Well-Spaced Point Sets

Glencora Borradaile∗ David Eppstein†

Abstract

We describe an algorithm that takes as input n points
in the plane and a parameter ε, and produces as out-
put an embedded planar graph having the given points
as a subset of its vertices in which the graph distances
are a (1 + ε)-approximation to the geometric distances
between the given points. For point sets in which the
Delaunay triangulation has bounded sharpest angle, our
algorithm’s output has O(n) vertices, its weight is O(1)
times the minimum spanning tree weight, and the algo-
rithm’s running time is bounded by O(n

√
log log n). We

use this result in a similarly fast deterministic approxi-
mation scheme for the traveling salesperson problem.

1 Introduction

A spanner of a set of points in a geometric space [13] is
a sparse graph having those points as its vertices, and
with its edge lengths equal to the geometric distance
between the endpoints, such that the graph distance
between any two points accurately approximates their
geometric distance. More precisely, the dilation of a
spanner is the smallest number δ for which the graph
distance of every pair of points is at most δ times their
geometric distance. It has long been known that very
good spanners exist: for every constant ε > 0 and con-
stant dimension d, it is possible to find a spanner for
every set of n points in O(n log n) time such that the
dilation of the spanner is at most 1 + ε, its weight is
at most a constant times the weight of the minimum
spanning tree, and its degree is constant [4].

A spanner is plane if no two of its edges (represented
as planar line segments) intersect except at their shared
endpoints [10]. Plane spanners with bounded dilation
are known; for instance, the Delaunay triangulation is
a spanner in this sense [9]. However, it is not possible
for these spanners to have dilation arbitrarily close to
one. For instance, for four points at the corners of a
square, any plane graph must avoid one of the diago-

∗School of Electrical Engineering and Computer Science, Ore-
gon State University. Supported in part by the National Science
Foundation under grant CCF-0963921.
†Department of Computer Science, University of California,

Irvine. Supported in part by the National Science Foundation
under grant 0830403, and by the Office of Naval Research under
MURI grant N00014-08-1-1015.

nals and have dilation at least
√

2. However, the addi-
tion of Steiner points allows smaller dilation for pairs of
original points. For instance, the plane graph formed by
overlaying all possible line segments between pairs of in-
put points has dilation exactly one, although its Θ(n4)
combinatorial complexity is high. Less trivially, in the
pinwheel tiling, a certain aperiodic tiling of the plane,
any two vertices of the tiling at geometric distance D
from each other have graph distance D+ o(D) [18]. We
define a plane Steiner δ-spanner for a set of points to
be a graph that contains the points as a subset of its
vertices, is embedded with straight line edges and no
crossings in the plane, and achieves dilation δ for pairs
of points in the original point set. We do not require
pairs of points that are not both original to be connected
by short paths.

Arikati et al. [2] show how to construct a plane Steiner
spanner in O(n log n) time, but do not bound the to-
tal weight of the graph. Of course, spanners may also
be constructed by forming an arrangement of line seg-
ments [12] representing the edges of a nonplanar span-
ner graph; this planarization does not change the span-
ner’s weight, but may add a large number of edges and
vertices. A paper of Klein [15] on graph spanners pro-
vides an alternative basis for plane Steiner spanner con-
struction. Generalizing a previous result of Althöfer
et al. [1], Klein shows that any n-vertex planar graph
with a specified subset of vertices may be thinned to
provide a planar Steiner (1 + ε)-spanner for the graph
distances on the specified subset, with weight O(1/ε4)
times the weight of the minimum Steiner tree of the
subset, in time O((n log n)/ε). Klein combined this re-
sult with methods from another paper [16] to provide a
polynomial time approximation scheme for the traveling
salesperson problem in weighted planar graphs. Using
Klein’s method to reduce the weight of the geometric
spanner formed by the arrangement of all line segments
connecting pairs of a given point set would lead to a low
weight plane (1 + ε) Steiner spanner for the point set,
but again with a large number of vertices and edges.
Ideally, we would prefer plane Steiner spanners that not
only have low weight, but also have a linear number of
edges and vertices.

Small and low-weight plane Steiner spanners in turn
could be used with Klein’s planar graph algorithms to
derive a deterministic polynomial time approximation

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

297

24th Canadian Conference on Computational Geometry, 2012

scheme for the Euclidean TSP. The previous randomly
shifted quadtree approximation scheme of Arora [3]
and guillotine subdivision approximation scheme of
Mitchell [17] have runtimes that are polynomial for fixed
ε but with an exponent depending on ε; in contrast,
Klein’s method takes time linear in the spanner size
for any fixed ε. However, combining Klein’s method
with the nonlinear-size Steiner spanners described above
would not improve on a different deterministic TSP ap-
proximation scheme announced by Rao and Smith [19].
Their method is based on banyans, a generalized type
of spanner that must accurately approximate all Steiner
trees, and it takes O(n log n) time for any fixed ε and
any fixed dimension, although its details do not appear
to have been published yet.

These past results raise several questions. Are
banyans necessary for fast TSP approximation, or is it
possible to make do with more vanilla forms of span-
ners? How quickly may low-weight plane Steiner span-
ners be constructed, and how quickly may the TSP be
approximated? And how few vertices are necessary in a
plane Steiner spanner?

In this work we provide some partial answers, for pla-
nar point sets that are well-spaced in the sense that
their Delaunay triangulation avoids sharp angles. We
show that, when both ε and the sharpest angle in the
Delaunay triangulation are bounded by fixed constants,
then there exist plane Steiner (1+ε)-spanners with O(n)
vertices whose weight is O(1) times the minimum span-
ning tree weight (with a near-linear dependence on ε,
improving the quartic dependence in Klein’s construc-
tion). The dependence on ε and the sharpest angle is
given in Theorem 8. Our spanners may be constructed
in linear time given the Delaunay triangulation, or (by
combining a fast Delaunay triangulation algorithm of
Buchin and Mulzer [11] with fast integer sorting algo-
rithms [14]) in time O(n

√
log log n) for points with in-

teger coordinates. Combining these spanners with the
methods from Klein [16] leads to near-linear-time TSP
approximation for the same class of point sets.

2 Delaunay triangulations without sharp angles

The Delaunay triangulation DT of a set S of points
(called sites) is a triangulation in which the circumcircle
of each triangle does not contain any sites in its inte-
rior. For points in general position (no four cocircular)
the Delaunay triangulation is uniquely defined and its
sharpest angle α is at least as large as the sharpest angle
in any other triangulation. As we show in this section,
Delaunay triangulations that do not have any triangles
with sharp angles have two key properties: their total
weight w(DT) is small relative to the weight w(MST)
of the minimum spanning tree, and every point in the
plane is covered by only a few circumcircles.

Lemma 1

w(DT) = fw(α)w(MST) where fw(α) =
1 + cosα

1− cosα
.

Proof. The proof follows closely that of Lemma 3.1 of
Klein [15]. Let T be the MST. (Recall T ⊆ DT.) Let
H0 be the non-self-crossing Euler tour of T . We consider
the edges of DT \ T in a leaf-to-root order with respect
to the dual tree T ∗: e1, e2, . . . , ek. e1 makes a triangle
with edges a1 and b1 of H0. Recursively define Hi as the
tour resulting from removing ai and bi from Hi−1 and
adding ei: w(Hi) = w(Hi−1) + w(ei)− w(ai)− w(bi).

Since the α is the smallest angle of triangle eiaibi
and ei is longest when w(ai) = w(bi), we get w(ei) ≤
(w(ai) + w(bi)) cosα.

Combining, we get:
w(Hi) ≤ w(Hi−1) + (1− 1/ cosα)w(ei).
Summing:
w(Hk) ≤ w(H0) + (1− 1/ cosα)

∑
i w(ei).

By rearranging and using the facts w(Hk) ≥ 0 and
w(H0) = 2w(MST), the lemma follows. �

Lemma 2 The number of Delaunay circumdisks whose
interiors contain a given point in the plane is at most

fe(α) = 2π/α. (1)

Proof. The lemma trivially holds for points that are
sites. Let x be a non-site point in the plane. Then
the Delaunay triangles whose circumcircles contain x
are exactly the ones that get removed from the Delau-
nay triangulation if we add x to S and re-triangulate.
Therefore, the number of Delaunay circumcircles that
contain x is the same as the degree of x in the Delaunay
triangulation, DTx of S ∪ {x}.

Let d be the degree of x in DTx. Then, one of the
triangles, xqr, in DTx incident to x has an angle at x
of at most 2π/d. Edge qr must be a side of a triangle
qrs in DT replacing triangle xqr, because after the re-
moval of x, line segment qr is still a chord of the empty
circle that circumscribed xqr; however, triangle qrs has
a circumcircle that extends at least as far from qr on
the side of the triangle as the circumcircle of xqr, and
therefore angle qsr is at least as sharp as angle qxr. So
it must be that 2π/d > α or d < 2π/α, proving the
lemma. �

3 Portals for chords

As we now show, it is possible to space a set of portals
along an edge of a Delaunay triangulation in such a way
that any chord of a Delaunay circumcircle must pass
close to one of the portals, relative to the chord length.

Lemma 3 Let AD be a chord of a circle O, let B and C
be points interior to segment AD, and let EF be another

24th Canadian Conference on Computational Geometry, 2012

298

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

A B
X

Y

C
D

E

F

Figure 1: Figure for Lemma 3

chord of O, crossing AD between B and C. Then the
distance from chord EF to the nearer of the two points
B and C is at most |EF | · |BC|/2 min(|AB|, |CD|).
Proof. The points of the lemma are illustrated in Fig-
ure 1. We assume without loss of generality that F is on
the side of AD that contains the center of O, as drawn in
the figure; let Y be the point of O farthest from X, lying
on the line throughX and the center ofO. Note that the
distance from line EF to the closer ofB and C is at most
min(|BX|, |CX|) ≤ |BC|/2, so it remains to prove that
|EF | ≥ min(|AB|, |CD|). But if F lies on the arc be-
tween A and Y , then |EF | ≥ |FX| ≥ |AB|, and if F lies
on the arc between Y and D then |EF | ≥ |FX| ≥ |CD|.
In either case the result follows. �

Lemma 4 Let s be a line segment in the plane, and let
ε > 0. Then there exists a set Ps,ε of O(1

ε log 1
ε) points

on s with the property that, for every circle O for which
s is a chord, and for every chord t of O that crosses s,
t passes within distance ε|t| of a point in Ps,ε.

Proof. Our set Ps,ε includes both endpoints of s and its
midpoint. In the subset of s from one endpoint p0 to the
midpoint, we add a sequence of points pi, where p1 is at
distance O(ε2s) from p0 with a constant of proportion-
ality to be determined later and where for each i > 1, pi
is at distance ε d(p0, pi−1) from pi. Because the distance
from p0 increases by a (1 + ε) factor at each step, the
set formed in this way contains O(1

ε log 1
ε) points.

If chord t crosses s between some two points pi and
pi+1 for i ≥ 1, or between the last of these points and
the midpoint of s, then Lemma 3 ensures that the nearer
of these two points is within distance ε|t| of the chord.

Otherwise, t crosses s between p0 and p1. Let r be the
radius of O, necessarily at least |s|/2, and suppose that
t passes within distance δr of p0. Because of the choice
of p1, δ = O(ε2). By the Pythagorean theorem, |t| ≥
r
√

2δ − δ2 = Ω(|r|
√
δ), and combining this information

with the definition of δ shows that t is within distance
O(
√
δ|t|) = O(ε|t|) of p0. By choosing the constant of

proportionality in the placement of p1 appropriately we
can ensure that this distance is at most ε|t|. �

We call the points in Ps,ε portals.

4 Spanning the portals within each triangle

Within each triangle of the Delaunay triangulation, we
will use a plane Steiner spanner that connects the por-
tals that lie on the triangle edges. For this special case,
we use a construction that generalizes to an arbitrary
set P of points on the boundary of an arbitrary planar
convex set K. Given a range of angles θ±δ, we say that
a path is (θ ± δ)-angle-bounded if it is piecewise linear
and each linear segment remains within this range of
angles, and we say that a point p on the boundary of K
is (θ± δ)-extreme if there does not exist a (θ± δ)-angle-
bounded path from p to a point interior to K.

Lemma 5 Every (θ± δ)-angle-bounded path has length
1 +O(δ2) times the distance between its endpoints.

Proof. The most extreme case is a path that follows
two sides of an isosceles triangle having the endpoints
of the path as base, for which the length is the length
of the base multiplied by 1/ cos δ = 1 +O(δ2). �

Lemma 6 Let P be a set of n points on the boundary of
a convex set K with perimeter `, let θ be an angle, and
let δ > 0 be a positive number. Then in time O(n log n)
we can construct a set S of O(n) line segments within
K, with total length O((` log n)/δ), with the property
that for every point p in P there exists a (θ ± δ)-angle-
bounded path in S from p to a (θ ± δ)-extreme point
of K.

Proof. We consider the points of P in an order we will
later define; for each such point p that is not itself (θ±δ)-
extreme, we extend two line segments with angles θ− δ
and θ+δ until reaching either an extreme point of K or
one of the previously constructed line segments. Thus, a
(θ±δ)-angle-bounded path from p may be found by fol-
lowing either of these two line segments, and continuing
to follow each line segment hit in turn by the previ-
ous line segment on the path, until reaching an extreme
point.

The non-extreme points of P , because K is convex,
form a contiguous sequence along the boundary of K.
We extend segments from the two endpoints of this se-
quence, then from its median, and then finally we con-
tinue recursively in the two subsequences to the left and
right of the median, as shown in Figure 2.

The segments from the first two points of P contribute
a total length of ` to S. For each subsequent point p,
the length of each added segment is at most proportional
to 1/δ times the length of the part of the boundary of
K that extends from p to the most recently previously
considered point in the same direction. Because of the
ordering of the points, each point along the boundary is

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

299

24th Canadian Conference on Computational Geometry, 2012

Figure 2: Figure for Lemma 6

charged in this way for O(log n) segments, so adding this
quantity over all points, the total length of the segments
is O((` log n)/δ) as claimed. We may construct S in
O(n log n) time by using binary search to determine the
endpoint on K of each segment. �

Lemma 7 Let P be a set of n points on the boundary of
a convex set K with perimeter `, and let ε > 0 be a pos-
itive number. Then in time O(n2/ε) we can construct
a plane Steiner (1 + ε)-spanner for P , with all spanner
edges in K, with O(n2/ε) edges and vertices, and with
total length O((` log n)/ε).

Proof. We choose δ = O(
√
ε) (with a constant of pro-

portionality determined later), partition the circle into
O(1/δ) arcs of angle 2δ, let θi be the angle at the center
of the ith arc, and apply Lemma 6 to each of the arcs
θi ± δ. We overlay the resulting system of O(n/δ) line
segments; when two line segments from different arcs
both have the same angle and starting point, we choose
the longer of the two to use in the overlay. The result-
ing arrangement of line segments has O(n2/ε) edges and
vertices and total length O((` log n)/ε) as required, and
can be constructed in time O(n2/ε) using standard line
segment arrangement construction algorithms [12].

To see that this is a spanner, we must show that every
pair (p, q) of points in P may be connected by a short
path. Let θ be the angle formed by the segment from
p to q, choose i such that θ + δ ≤ θi ≤ θ + 3δ, and
use Lemma 6 to find a (θi ± δ)-angle-bounded path pp′

in the spanner from p to a (θi ± δ)-extreme point p′.
Because of the angle bound, p′ must be clockwise of q.
Similarly, we may choose θj within O(δ) of π + θ, and
find a (θj ± δ)-angle-bounded path qq′ to a (θj ± δ)-
extreme point q′ that is counterclockwise of p. These
two paths (depicted in Figure 3) must cross at at least
one point x, and the combination of the path from p to x
and from x to q lies within the spanner and is (θ±O(δ))-
angle-bounded. By Lemma 5, this path has length at
most 1+O(δ2) times the distance between its endpoints,
and by choosing the constant of proportionality in the
definition of δ appropriately we can cause this factor to
be at most 1 + ε. �

p

qṕ

q´

Figure 3: Figure for Lemma 7

5 Spanner construction

We now have all the pieces for our overall spanner con-
struction.

Theorem 8 Let P be a planar point set whose
Delaunay triangulation is given and has sharpest
angle α, and let ε > 0 be given. Then in
time O(n log2(1/(αε))/(α2ε3)) we can construct
a plane Steiner (1 + ε)-spanner for P with
O(n log2(1/(αε))/(α2ε3)) vertices and edges, and
with total length O(w(MST) log(1/(αε))/(α2ε)).

Proof. We apply Lemma 3 to place portals along the
edges of the triangulation, such that each chord s of
a Delaunay circle passes within distance O(αε|s|) of a
portal on each Delaunay edge that it crosses. We then
apply Lemma 7 within each Delaunay triangle to con-
struct a 1+O(ε)-spanner for the portals on the boundary
of that triangle.

The construction time is bounded by the time to
construct the spanners within each triangle. Since
there are O(log(1/(αε))/(αε)) portals on each triangle,
the time to construct the spanner for a single triangle
is O(log2(1/(αε))/(α2ε3)) and the total time over the
whole graph is O(n log2(1/(αε))/(α2ε3)). This bound
also applies to the number of vertices and edges in the
constructed spanner. By Lemma 1, the total perimeter
of the Delaunay triangles is O(w(MST)/α2), and com-
bining this bound with the length bound of Lemma 7
gives total length O(w(MST) log(1/(αε))/(α2ε)) for the
spanner edges.

To show that this is a spanner, we must find a short
path between any two of the input points p and q. By
Lemma 3, the line segment pq passes within distance
O(αε|s|) of a portal on every Delaunay edge that it
crosses, where s is the chord of one of the Delaunay cir-
cles for the crossed edge. By Lemma 2, the total length
of all of these chords is O(|pq|/α), so we may replace
pq by a polygonal path that contains a portal on each
crossed Delaunay edge, expanding the total length by a

24th Canadian Conference on Computational Geometry, 2012

300

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

factor of at most 1 + O((αε)/α) = 1 + O(ε). Then, by
Lemma 7 we may replace each portal-to-portal segment
in this path by a path within the spanner for the por-
tals in a single Delaunay triangle, again expanding the
total length by a factor of at most 1 +O(ε). By choos-
ing constants of proportionality appropriately, we may
make the total length expansion be at most 1 + ε. �

6 Approximating the TSP

An algorithm of Klein [16] provides a linear time ap-
proximation scheme for the traveling salesperson prob-
lem in a planar graph. Its first step is to find a low-
weight spanner of the graph. A subsequent paper, also
by Klein [15] describes an algorithm that, given a planar
graph G and a subset S of the nodes, finds a subgraph
of G whose weight is O(ε−4) times that of the minimum-
weight tree spanning S and that is a (1 + ε)-spanner for
the shortest-path metric on S [15]. This subset span-
ner construction can be substituted for the first step of
Klein’s approximation scheme, resulting in an algorithm
for approximating the TSP on the subset S. However, in
this more general result, the spanner construction takes
time O(n log n), so the total time for the approximation
scheme is O(n log n) for any fixed ε > 0.

For points in the plane, we may substitute our own
faster low-weight spanner construction for the first step
of the approximation scheme. The remaining steps of
the approximation use only the facts that the points
we are seeking to connect into a tour are vertices in a
planar graph, and that the whole graph has total weight
proportional to the minimum spanning tree of the given
points. Thus, we obtain the following result:

Theorem 9 For any fixed α and ε, the optimal travel-
ing salesman tour of sets of n points in the plane with
sharpest Delaunay triangulation angle at most α may be
approximated to within a 1 + ε factor in time O(n) plus
the time needed to construct the Delaunay triangulation.

It would also be possible to design a TSP approxima-
tion scheme more directly using a framework used by
Borradaile, Klein and Mathieu [8] to solve the Steiner
tree problem; details on how this framework applies to
TSP were given by Borradaile, Demaine and Tazari [7]
in generalizing the planar framework to bounded-genus
graphs. Their algorithm, as interpreted for point sets
in the Euclidean plane, would partition the triangles
of the Delaunay triangulation into layers according to
their depth from the infinite face in the dual graph so
that the boundary between layers is an ε fraction of
the optimal solution. This can be achieved with depth
fw(α)/ε = O

(
1
α2ε

)
; each layer has tree-width polyno-

mial in this depth. The problem is then solved using
dynamic programming, where the dynamic programs
are additionally indexed by the portals. The base cases

are made to correspond to the triangles in which the
intersection with any tour can be enumerated. The size
of the dynamic program is therefore bounded singly-
exponentially in 1/ε and 1/α. This task is slightly eas-
ier in the geometric setting than in the planar graph
setting as computing shortest paths is trivial.

7 Looking ahead

The most obvious question posed by this work is: how
do we remove the dependence on α? The dependence on
α appears in two places: in the number of circumcircles
that enclose a point and in the weight of the Delaunay
triangulation. We believe that it should be possible to
remove these dependencies on α by treating groups of
skinny triangles as a single region. In fact, using this
idea, we are able to remove each dependency separately,
but not together.

An alternative approach to removing this dependence
would be to augment the input to remove all sharp an-
gles from its Delaunay triangulation, but this may some-
times need a number of added points that cannot be
bounded by a function of n [5]. A construction based on
quadtrees shows that every point set may be augmented
with O(n) points so that the Delaunay triangulation has
no obtuse angles [5]; the resulting triangulation may
also be modified to have the bounded circumcircle en-
closure property, despite having some sharp angles, and
may be constructed as efficiently as sorting [6]. Apply-
ing our spanner construction method to the augmented
input would allow us to completely eliminate the de-
pendence on α in the time and output complexity of
our spanners, but at the expense of losing control over
their total weight. Once a spanner is constructed in this
way, Klein’s subset spanner [15] can be used to reduce
its weight, allowing it to be used in an algorithm to
approximate the TSP for arbitrary planar point sets in
time O(n log n) for any fixed ε > 0, but this does not
improve on the time bound of Rao and Smith [19].

Unlike in the methods of Arora [3], Mitchell [17], Rao
and Smith [19] and Borradaile, Klein and Mathieu [8],
the approximation error in our method is charged locally
as opposed to globally. In the quad-tree based approx-
imation schemes, the error incurred is charged to the
dissection lines that form the quad tree. In the planar
approximation-scheme framework for Steiner tree, the
error incurred is charged to an O(MST)-weight sub-
graph called the mortar graph which acts much like
the quad-tree decomposition. Our charging scheme is
much more similar to that used by Klein for the subset
tour problem in planar graphs [15]. However, in ap-
plying the planar approximation-scheme frameworks of
either Klein or Borradaile, Klein and Mathieu, some er-
ror is incurred in partitioning the graph into pieces of
bounded treewidth. This error is proportional to the

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

301

24th Canadian Conference on Computational Geometry, 2012

graph that is partitioned, which in our case is either
the spanner (for Klein’s scheme) or the triangulations
(for Borradaile et. al.’s scheme). This error is indirectly
related to OPT by way of the O(MST) weight of the
spanner and triangulation. By current techniques, this
source of error does not seem avoidable.

Finally, our spanner construction more closely ties
Euclidean and planar distance metrics together. By uni-
fying the approximation schemes in these two related
metrics, it may be possible to generalize these methods
to other two dimensional metrics.

References

[1] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and
J. Soares. On sparse spanners of weighted graphs.
Discrete Comput. Geom., 9(1):81–100, 1993.

[2] S. Arikati, D. Z. Chen, L. Chew, G. Das, M. Smid,
and C. Zaroliagis. Planar spanners and approxi-
mate shortest path queries among obstacles in the
plane. In Proc. 4th Eur. Symp. Alg., volume 1136
of LNCS, pages 514–528, 1996.

[3] S. Arora. Polynomial time approximation schemes
for Euclidean traveling salesman and other geomet-
ric problems. J. ACM, 45(5):753–782, September
1998.

[4] S. Arya, G. Das, D. M. Mount, J. S. Salowe, and
M. Smid. Euclidean spanners: short, thin, and
lanky. In Proc. 27th ACM Symp. Theory of Com-
puting, pages 489–498, 1995.

[5] M. Bern, D. Eppstein, and J. Gilbert. Prov-
ably good mesh generation. J. Comput. Sys. Sci.,
48(3):384–409, 1994.

[6] M. Bern, D. Eppstein, and S.-H. Teng. Parallel con-
struction of quadtrees and quality triangulations.
Int. J. Computational Geometry & Applications,
9(6):517–532, 1999.

[7] G. Borradaile, E. Demaine, and S. Tazari.
Polynomial-time approximation schemes for
subset-connectivity problems in bounded-genus
graphs. Algorithmica, to appear.

[8] G. Borradaile, P. Klein, and C. Mathieu. An
O(n log n) approximation scheme for Steiner tree
in planar graphs. ACM Trans. Algorithms, 5(3):1–
31, 2009.

[9] P. Bose, L. Devroye, M. Löffler, J. Snoeyink, and
V. Verma. The spanning ratio of the Delaunay
triangulation is greater than π/2. In Proc. 21st
Canad. Conf. Comput. Geom., 2009.

[10] P. Bose and M. Smid. On plane geometric spanners:
a survey and open problems. Manuscript, 2009.

[11] K. Buchin and W. Mulzer. Delaunay triangulations
in O(sort(n)) time and more. J. ACM, 58(2):A6,
2011.

[12] B. Chazelle and H. Edelsbrunner. An optimal al-
gorithm for intersecting line segments in the plane.
J. ACM, 39(1):1–54, 1992.

[13] D. Eppstein. Spanning trees and spanners. In J.-R.
Sack and J. Urrutia, editors, Handbook of Compu-
tational Geometry, chapter 9, pages 425–461. Else-
vier, 2000.

[14] Y. Han and M. Thorup. Integer sorting in
O(n
√

log log n) expected time and linear space. In
Proc. 43rd Annual Symp. Foundations of Computer
Science, pages 135–144, 2002.

[15] P. Klein. A subset spanner for planar graphs, with
application to subset TSP. In Proc. 38th ACM
Symp. Theory of Computing, pages 749–756, 2006.

[16] P. Klein. A linear-time approximation scheme
for TSP in undirected planar graphs with edge-
weights. SIAM J. Comput., 37(6):1926–1952, 2008.

[17] J. S. B. Mitchell. Guillotine subdivisions approxi-
mate polygonal subdivisions: a simple polynomial-
time approximation scheme for geometric TSP, k-
MST, and related problems. SIAM J. Comput.,
28(4):1298–1309, 1999.

[18] C. Radin and L. Sadun. The isoperimetric prob-
lem for pinwheel tilings. Comm. Math. Phys.,
177(1):255–263, 1996.

[19] S. B. Rao and W. D. Smith. Approximating ge-
ometrical graphs via “spanners” and “banyans”.
In Proc. 30th ACM Symp. Theory of Computing,
pages 540–550, 1998.

24th Canadian Conference on Computational Geometry, 2012

302

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

On the Strengthening of Topological Signals in Persistent Homology
through Vector Bundle Based Maps

Eric Hanson Francis Motta Chris Peterson Lori Ziegelmeier∗

1 Abstract

Persistent homology is a relatively new tool from topo-
logical data analysis that has transformed, for many, the
way data sets (and the information contained in those
sets) are viewed. It is derived directly from techniques
in computational homology but has the added feature
that it is able to capture structure at multiple scales.
One way that this multi-scale information can be pre-
sented is through a barcode. A barcode consists of a
collection of line segments each representing the range
of parameter values over which a generator of a homol-
ogy group persists. A segment’s length relative to the
lenght of other segments is an indication of the strength
of a corresponding topological signal. In this paper, we
consider how vector bundles may be used to re-embed
data as a means to improve the topological signal. As
an illustrative example, we construct maps of tori to a
sequence of Grassmannians of increasing dimension. We
equip the Grassmannian with the geodesic metric and
observe an improvement in barcode signal strength as
the dimension of the Grassmannians increase.

2 Introduction

The need to efficiently extract critical information from
large data sets has been growing for decades and is cen-
tral to a variety of scientific, engineering and mathe-
matical challenges. In many settings, underlying con-
straints on the data allow it to be considered as a sam-
pling of a topological space. It is a fundamental prob-
lem in topological data analysis to develop theory and
tools for recovering a topological space from a noisy,
discrete sampling. The tools that one might choose to
use on a given problem depend on the density, quality,
and quantity of the data, on the ambient space from
where the sampling is drawn, and on the complexity
of the topological space as a sub-object of an ambient
space. In this paper, we will focus on data consisting
of points sampled from an algebraic variety (the zero
locus of a system of polynomials). The data points are
obtained using the tools of numerical algebraic geome-
try. Derived from techniques in homotopy continuation,
numerical algebraic geometry allows one to use numeri-

∗Colorado State University, Department of Mathematics
{hanson, motta, peterson, ziegelme}@math.colostate.edu

cal methods to cheaply sample a large collection of low-
noise points from an algebraic set. Persistent homology
(PH) allows one to use such a sample to gain insight into
the topological structure of the algebraic variety. Imple-
mentations of persistent homology are readily available
and have been used in a variety of applications, ranging
from the analysis of experimental data to analyzing the
topology of an algebraic variety. However, as with any
algorithm, there are computational limitations. Gen-
erally, the time and space required for the persistence
computation grows rapidly with the size of the input
sample, so the maximum size of a sample is limited.
Often, applications of PH start with noisy, real-world
data, which may also be limited in size [16]. However,
our consideration begins with effectively unlimited, ar-
bitrarily accurate data. Experience shows that as one
increases the sample size of a fixed space, the quality of
the topological signals produced by PH improves. Since
the computational complexity of persistent homology
limits the size of a sample, methods of preprocessing
data that improve the topological signal, without in-
creasing the sample size, are desirable.

In this paper, we consider how topological re-
embeddings affect the topological signal obtained from
persistent homology. First, a construction of PH and
the inherent challenges of interpreting its output is
briefly introduced. Then, we will provide details about
the setting in which we have applied this embedding
technique, using computational topology to analyze pro-
jective algebraic varieties. Lastly, results for a specific
example are displayed and interpreted.

3 Background

3.1 Persistent Homology

Beginning with a finite set of data points, which are
viewed as a noisy sampling of a topological space, as-
sume one has a way of building the matrix of pairwise
distances between points in the data set. From this dis-
tance matrix, one constructs a nested sequence of sim-
plicial complexes indexed by a parameter t. Fixing a
field K, for each simplicial complex, one builds an asso-
ciated chain complex of vector spaces over K. The ith

homology of the chain complex is a vector space and its
dimension corresponds to the ith Betti number, βi(K),

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

303

24th Canadian Conference on Computational Geometry, 2012

of the corresponding topological space. For each pair
t1 < t2, there is a pair of simplicial complexes, St1 and
St2 , and an inclusion map j : St1 ↪→ St2 . This inclusion
map induces a chain map between the associated chain
complexes which further induces a linear map between
the corresponding ith homology vector spaces. For each
i, the totality of the collection of ith homology vector
spaces and induced linear maps can be encoded as a
graded K[t]-module known as the persistence module.
The ith bar code is a way of presenting the invariant
factors of the persistence module. As the invariant fac-
tors of the persistence module directly relate to the Betti
numbers, from the bar code one can visualize the Betti
numbers as a function of the scale, t, and can visualize
the number of independent homology classes that per-
sist across a given time interval [ti, tj]. For foundational
material and overviews of computational homology in
the setting of persistence, see [8, 21, 12, 6, 9, 20, 15].

One commonly used method for building a nested
sequence of simplicial complexes from a distance ma-
trix is through a Vietoris-Rips complex [12]. This is
done by first building the 1-skeleton of the simplicial
complex then determining the higher dimensional faces
as the clique complex of the 1-skeleton. More pre-
cisely, fix t > 0, a collection of points X, and a metric,
d(xi, xj) for xi, xj ∈ X. The 1-skeleton of the Vietoris-
Rips complex, Ct(X), is defined by including the edge
xixj ∈ Ct(X) if d(xi, xj) ≤ t. A higher dimensional
face is included in Ct(X) if all of its lower dimensional
sub-faces are in Ct(X). In other words, the abstract k-
simplices of Ct(X) are given by unordered (k+1)-tuples
of sample points whose pairwise distances do not exceed
the parameter t.

Given a collection of data points, the resulting
Vietoris-Rips complex, and its homology, is highly de-
pendent on the choice of parameter t. To reconcile this
ambiguity, persistence exploits that if t1 < t2 then Ct1

is a sub simplicial complex of Ct2 . In other words, as
t grows so do the Vietoris-Rips complexes, giving an
inclusion from earlier complexes to those which appear
later. The idea then is to not only consider the ho-
mology for a single specified choice of parameter, but
rather track topological features through a range of pa-
rameters [12]. Those which persist over a large range
of values are considered signals of underlying topology,
while the short lived features are taken to be noise in-
herent in approximating a topological space with a finite
sample [10].

For clarity, consider 4 points in the plane with dis-
tance matrix

0 t2 t5 t3
t2 0 t1 t6
t5 t1 0 t4
t3 t6 t4 0

 .

We label the points a, b, c and d and build the sequence
of Vietoris-Rips simplicial complexes up to Ct5 . Table 1

a

db

c

C = { a,b,c,d}0

db

c

C = { bc,a,d}t1

db

c

C = { bc,ab,d}t2

db

c

C = { bc,ab,da}t3

db

c

C = { bc,ab,da,cd}t4

db

c

C = { abc,cad}t5

t2
= d(a,b)

t1
= d(b,c)

t3
= d(a,d)

a

a a

a

t4
= d(c,d)

a

t5
= d(a,c)

Figure 1: A sequence of Vietoris-Rips simplicial com-
plexes shown geometrically and abstractly along with
their maximal faces.

shows the Betti information (where βi is the dimension
of the ith homology vector space) for the example illus-
trated in Figure 1 over the range of parameter values
t ≥ 0.1

filtration times (t) β0 β1

0 ≤ t < t1 4 0
t1 ≤ t < t2 3 0
t2 ≤ t < t3 2 0
t3 ≤ t < t4 1 0
t4 ≤ t < t5 1 1
t5 ≤ t 1 0

Table 1: Persistent homology data

Even in this simple example, the amount of informa-
tion created by the persistent homology computation is
non-trivial. Furthermore, an effective rendering of the
complexes in Figure 1 is only possible because there are
very few points in the example. In the 4-point example,
at time t6 the simplicial complex Ct6 becomes three-

1For finite data there will only be finitely many parameter
values where the simplicial complex changes.

24th Canadian Conference on Computational Geometry, 2012

304

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

dimensional. As the vertex set or the dimension of the
ambient space grows, visualizing the sequence of com-
plexes is not practical.

The barcode is a visual method for presenting some
of the homological information in a sequence of chain
maps. In particular, it displays the structure of the
invariant factors of the ith persistence module. Figure 2
is the barcode corresponding to the example of the four
points in the plane described in Figure 1.

Figure 2: Barcodes corresponding to Figure 1

The computational requirements of the persistence
computation is related to the sample size. It is often
the case that computing the persistent homology using
the Rips filtration is impractical. There is an alterna-
tive construction, introduced by Carlsson and de Silva,
called the witness complex [7, 13]. Starting with a large
sample set X, one picks a distinguished subset L ⊂ X
of landmark points. The witness complex is a family of
simplicial complexes built on L using information from
the entire set X.

To build the witness complex, first use the landmark
set to assign to each point x ∈ X the numbers mk(x)
corresponding to the distance from x to its (k + 1)-
th nearest landmark point. For each integer k (0 <
k < |X|) and vertices {lji |0 ≤ i ≤ k} ⊂ L, include
the k-simplex [lj0 lj1 ...ljk] in the complex (at time t) if
there exists a point x ∈ X such that max{d(lji , x)|0 ≤
i ≤ k} ≤ t + mk(x), and if all of its faces are in the
complex [1].

The output of the witness filtration is sensitive to the
choice of landmark set. One technique for choosing a
landmark set, called sequential maxmin, is implemented
in the freely distributed persistent homology software
package JPlex [17]. The procedure for using sequential
maxmin is to first pick a point l0 ∈ X then inductively
choose the i-th landmark point from X by choosing the
point furthest from the set of (i − 1) points already
chosen. In practice, this seems to produce a stronger
topological signal than choosing L randomly, so it is
the method we will utilize.

3.2 Algebraic Varieties and Numerical Algebraic Ge-
ometry

A motivating problem for this paper is the computation
of the Betti numbers of a complex projective algebraic
variety from numerically obtained sample points. The

method we use to obtain sample points derive from sev-
eral algorithms in numerical algebraic geometry.

The term numerical algebraic geometry is often used
to describe a wide ranging set of numerical methods to
extract algebraic and geometric information from poly-
nomial systems. The field includes a diverse collection of
algorithms (both numeric and numeric-symbolic). The
class of numerical algorithms that we use are rooted in
homotopy continuation. The idea of homotopy contin-
uation is to link a pair of polynomial systems through
a deformation and to relate features of the two systems
through this deformation. For example, one can track
known, isolated, complex solutions of one polynomial
system to unknown, complex solutions of a second poly-
nomial system through a deformation of system param-
eters.

Let Z be the complex algebraic variety associated
to an ideal in C[z1, . . . , zN]. With numerical homo-
topy continuation methods combined with monodromy
breakup, it is practical to produce sets of numerical data
points which numerically lie on each of the irreducible
components of Z [19, 18].

There are several important features of the methods
of numerical algebraic geometry that are worth high-
lighting. The first feature is the ability to refine sam-
ple points to arbitrarily high precision via Newton’s
method. A second feature is the ability to produce an
arbitrary number of sample points on any given compo-
nent. A third feature is the parallelizability of these nu-
merical methods. For instance, 10,000 processors could
be used in parallel to track 10,000 paths and could be
used in parallel to refine the accuracy of each sample
point to arbitrarily high precision. The basic algorithms
of numerical algebraic geometry (including monodromy
breakup) are implemented in the freely available soft-
ware package, Bertini [4].

It is important to note that sampling is computation-
ally inexpensive, so obtaining large sample sets does not
pose a significant challenge. However, it is not clear that
this sampling technique will provide points that are well
distributed for the purpose of persistent homology com-
putations.

4 Main Idea

4.1 Theory

By its very nature, persistent homology characterizes
intrinsic topological features which should be relatively
insensitive to the metric used to build a pairwise dis-
tance matrix. However, experiments show that the sig-
nal strength is impacted by the choice of metric. In our
experience, even if the topological features remain the
same, the ability to correctly interpret information from
a barcode depends on the strength of the signal. We will
consider the barcode signal strength of mappings of an

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

305

24th Canadian Conference on Computational Geometry, 2012

algebraic variety into various Grassmannians.

The Grassmannian Gr(n, k) is a manifold parametriz-
ing all k dimensional subspaces of a fixed n dimensional
vector space. The Grassmann manifold Gr(n + 1, 1) is
the projective space Pn, and from this vantage point,
Grassmannians can be viewed as generalizations of pro-
jective spaces. These manifolds can be given a topo-
logical structure, a differential structure and even the
structure of a projective variety (e.g. via the Plucker
embedding).

Points in an n-dimensional projective space corre-
spond to 1-dimensional subspaces of a fixed (n + 1)-
dimensional vector space. A natural notion of distance
is given by the smallest angle between the subspaces.
We would like to define the distance between points on
other Grassmannians by extending this definition. As a
starting point, it can be shown that any unitarily invari-
ant metric on a Grassmannian can be written in terms
of the principal angles between the corresponding sub-
spaces. The principal angles between a pair of subspaces
A,B in Cn can be determined as follows. First, deter-
mine matrices M and N whose columns form orthonor-
mal bases for A and B. Next, determine the singular
value decomposition M∗N = UΣV ∗. The singular val-
ues of M∗N are the diagonal entries of Σ. These singu-
lar values are the cosines of the principal angles between
A and B (see [5]). If A and B are k-dimensional, then
there will be principal angles Θ(A,B) = (θ1, θ2, . . . , θk)
with 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θk ≤ π/2. There are
many common metrics computed as functions of the
principal angles [2]. For instance, the Fubini-Study met-
ric induced by the Plucker embedding is dFS(A,B) =

cos−1
(∏k

i=1 cos θi

)
. We have found that the Fubini-

Study metric does not, in general, yield a strong signal,
and instead, we restrict our attention to the geodesic
distance

d(A,B) =
√
θ21 + . . .+ θ2k.

Since we wish to compare the effect of considering
a sample in various Grassmannian embeddings, it re-
mains to define what we mean by relative topological
signal strength. Imagine we know that our sample was
taken from a topological space whose ith Betti number
is bi. Assuming that the bi longest segments in the bar-
code represent these topological features, we will mea-
sure signal strength as the ratio of the sum of the lengths
of the bi longest segments to the sum of the total length
of all the segments in the ith Betti barcode, including
noise. Note that noise consisting of many segments of
total length m and noise consisting of a single segment
of length m cannot be distinguished by this statistic.
To cope with this limitation we also consider the ratio
of the length of the bthi longest segment to the (bi + 1)th

longest segment in the barcode.

4.2 Embeddings into the Grassmannian

Consider a complex projective curve, C ⊂ P2, defined
by the zero locus of a homogenous polynomial F (x, y, z).
When we think of the zero set as a projective vari-
ety, then each point, [x : y : z] on C, corresponds to
a 1-dimensional subspace of C3 (note that the homo-
geneity of the equation leads to the conclusion that if
(x, y, z) is a solution then so is (cx, cy, cz) for any c ∈ C).
Thus, points on a projective variety correspond to one-
dimensional subspaces of C3 constrained to lie on the
vanishing locus of a homogeneous polynomial. From
this point of view, C is a sub-object of P2 = Gr(3, 1).
We can sample random points on C with several dif-
ferent methods. If we wish to build a distance matrix
from these points, then we should consider the distance
between a pair of points as the principal angle between
the one dimensional spaces to which they correspond.

Consider the matrix

E(x, y, z) :=

0 z −y
−z 0 x
y −x 0

 ,

and observe that for any point (x, y, z) 6= (0, 0, 0), the
rank of E(x, y, z) is 2. This can be seen by observing
that the determinant of E(x, y, z) is identically zero and
that the locus of conditions such that all 2×2 minors of
E(x, y, z) are zero force x = y = z = 0. For each value
of (x, y, z), we consider the row space of E(x, y, z). Note
also that

0 z −y
−z 0 x
y −x 0

x
y
z

 =

0
0
0

 .

As a consequence, the row space of E(x, y, z) is the same
as the row space of E(cx, cy, cz), and E(x, y, z) can be
viewed as a rule for attaching a smoothly varying 2 di-
mensional subspace to each point of P2. In other words,
E(x, y, z) determines a rank two vector bundle on P2.
For each one dimensional subspace of C3, we can deter-
mine a 2-dimensional subspace of C3 by mapping it to
the row space of E([x : y : z]). If Φ0 : P2 → Gr(3, 2)
denotes the image of this map, then by restriction this
gives a map φ0 : C → Gr(3, 2).

For each integer k > 0, consider the set of mono-
mials in x, y, z of degree k. We construct new matri-
ces, Ek(x, y, z), by concatenating matrices of the form
mi · E(x, y, z) for each degree k monomial mi. For ex-
ample, E1(x, y, z) is the matrix

[
0 xz −xy 0 yz −y2 0 z2 −zy
−xz 0 x2 −yz 0 yx −z2 0 zx
xy −x2 0 y2 −yx 0 zy −zx 0

]
.

For each k, Ek(x, y, z) has constant rank 2 on P2 and
can be used to define a map φk : C → Gr(Nk, 2) (where

24th Canadian Conference on Computational Geometry, 2012

306

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Nk is the number of columns of Ek(x, y, z)). Geometri-
cally, the columns of Ek(x, y, z) corresponds to a “span-
ning set for the space of sections of the twisted tangent
bundle, TP2(k − 1)”. In this way, we can consider im-
ages of C, in increasingly large Grassmannians via the
maps φ0, φ1, φ2, It can be shown that for each k, Φk

embeds P2 into Gr(Nk, 2) and that φk embeds C into
Gr(Nk, 2).

4.3 Example

Consider the complex projective elliptic curve, C ⊂ P2

defined by the equation

x2y + y2z + z2x = 0. (1)

Topologically, C is a torus whose Betti numbers are
β0 = 1, β1 = 2, β2 = 1.

Using Bertini, we sampled 10,000 points satisfying
Equation 1. We mapped each point to Gr(Nk, 2) using
φk, for k = 1, . . . , 10. From these 10,000 points we fixed
100 landmark sets, Li (of size 200) using the sequen-
tial maxmin algorithm with random initial points l0,i
for i = 1, . . . , 100. For each embedding φk(C) and for
each of the fixed landmark sets, we compute the per-
sistent homology barcodes for the zeroth and first Betti
numbers using the witness complex construction.

Using the geodesic distance to measure distances be-
tween points, Figure 3 shows prototypical Betti-1 bar-
codes for the images of the 10,000 points in Gr(Nk, 2).
In the figure, each segment in the barcode is plotted as
a point in the (x, y)-plane with the x-coordinate corre-
sponding to the starting parameter and the y-coordinate
corresponding to the ending parameter. Short segments
(i.e. topological noise) appear near the y = x line. No-
tice that as we move the elliptic curve to Grassmannians
of higher degree, the two longest segments in the bar-
code grow in length while the number and lengths of
the other segments decrease.

In Figure 4, we plot the relative signal strength of the
Betti-1 barcodes, as measured by the ratio of the sum of
the length of the two longest segments to the total sum
of lengths of all segments, averaged over all landmark
sets for each embedding. We observe an increase from
approximately 10% to 55% of the total length of the bar-
codes being accounted for in the longest two segments.
We also observe that the improvement of the relative
signal strength levels-off after k = 5.

Figure 5 compares the second longest segment in the
Betti-1 barcode (corresponding to a topological circle)
to the third longest segment (representing topological
noise). We notice a sharp increase in this measure of
signal strength followed by a similarly steep decrease.
Together with the content of Figure 4 this indicates that
after k = 5, the relative length of the longest Betti-1 seg-
ment remains somewhat unchanged while the disparity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) k = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) k = 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) k = 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d) k = 4

Figure 3: Betti-1 barcodes for each of the four specified
embeddings.

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Figure 4: Average ratio of the sum of the longest two
barcode lengths to the sum of the lengths of all barcodes
for k = 1, . . . , 10.

in the lengths of the second and third longest segments
is diminished.

It is worth noting that there is a diminished signal
strength from the projective variety to the embeddings
in the Grassmannian. Our aim, however, is to compare
topological signal strength improvement across succes-
sive Grassmannian embeddings.

5 Conclusion

Using the techniques of numerical algebraic geometry,
we can sample arbitrarily many points, to an arbitrary
degree of accuracy, on any prescribed component of an

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

307

24th Canadian Conference on Computational Geometry, 2012

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10
1

1.5

2

2.5

3

3.5

4

Figure 5: Average ratio of the second longest barcode
to the third longest barcode for k = 1, . . . , 10.

algebraic set. Using twists of the tangent bundle to
projective space, we can map these points to a sequence
of Grassmann manifolds of increasing dimension. With
techniques of computational homology, we can build the
persistence module and decompose the module into its
invariant factors. A visual plot of the starting and end-
ing points of the invariant factors aids in the under-
standing of the underlying variety as a topological space.
Higher embeddings of the data seem to strengthen the
topological signal.

For further research, we intend to develop improved
sampling techniques for algebraic varieties. We will also
conduct experiments to determine if alternate vector
bundles or alternate metrics on the Grassmannian can
be used to strengthen topological signals.

References

[1] H. Adams, JPlex with Matlab Tutorial. (2011)
comptop.stanford.edu/programs/jplex/files/

[2] A. Barg and D.Yu. Nogin, Bounds on packings of
spheres in the Grassmann manifold. IEEE Trans. on
Info. Theory. 48 (2002), 2450-2454.

[3] D.J. Bates, J. D. Hauenstein, A. J. Sommese, and C.
W. Wampler, Adaptive multiprecision path tracking.
SIAM J. Numer. Anal. 46 (2008), 722-746.

[4] D.J. Bates, J. D. Hauenstein, A. J. Sommese, and C.
W. Wampler, Bertini: Software for numerical algebraic
geometry. http://www.nd.edu/∼sommese/bertini.

[5] A. Bjorck and G. Golub, Numerical methods for com-
puting angles between linear subspaces. Mathematics
of Computation 27, (1973), no 123, 579-594.

[6] G. Carlsson, Topology and data. Bulletin of the Ameri-
can Mathematical Society, Vol. 46 (2009), no. 2, 255308.

[7] V. de Silva and G. Carlsson, Topological estimation us-
ing witness complexes. SPBG ’04 Symposium on Point-
Based Graphics (2004), 157-166.

[8] H. Edelsbrunner and J. Harer, Persistent homology - a
survey. Contemporary Math 453 (2008), 257-282.

[9] H. Edelsbrunner and J. Harer, Computational Topol-
ogy: An Introduction. American Mathematical Society,
Providence, RI, 2010. xii+241 pp.

[10] H. Edelsbrunner, D. Letscher, and A. Zomorodian,
Topological persistence and simplification. Discrete
Computational Geometry, 28:4 (2002), 511-533.

[11] A. Galantai and Cs. J. Hegedus, Jordan’s principal
angles in complex vector spaces. Numer. Linear Algebra
Appl. 13 (2006), 589-598.

[12] R. Ghrist, Barcodes: The persistent topology of data.
Bulletin of the American Mathematical Society, Vol. 45
(2008), pp. 61-75.

[13] L. Guibas and S. Oudot, Reconstruction using witness
complexes. Proc. 18th ACM-SIAM Sympos. on Discrete
Algorithms (2007).

[14] A. Hatcher, Algebraic Topology, Cambridge University
Press (2002).

[15] T. Kaczynski, K. Mischaikow, and M. Konstantin,
Computational Homology. Applied Mathematical Sci-
ences 157. Springer-Verlag, New York, 2004. 480 pp.

[16] D. Mumford, A. Lee, and K. Pederson, The non-linear
statistics of high-contrast patches in natural images.
Itnl. J. Computer Vision. 54 (2003), 83-103.

[17] H. Sexton and M. Vejdemo-Johansson, JPlex simplicial
complex library.
http://comptop.standord.edu/programs/jplex/.

[18] A.J. Sommese and C.W. Wampler, The Numerical So-
lution of Systems of Polynomials. World Scientific Pub-
lishing Co. Pte. Ltd., Hackensack, NJ, 2005.

[19] A.J. Sommese, J. Verschelde, and C.W. Wampler, Nu-
merical decomposition of the solution sets of polynomi-
als into irreducible components. SIAM J. Numer. Anal.
38 (2001), 2022-2046.

[20] A. Zomorodian, Topology for computing. Cambridge
Monographs on Applied and Computational Mathe-
matics, 16. Cambridge University Press, Cambridge,
2005. xiv+243 pp.

[21] A. Zomorodian and G. Carlsson, Computing persistent
homology. Discrete Comput. Geom. 33 (2005), no. 2,
249274

24th Canadian Conference on Computational Geometry, 2012

308

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

A Multicover Nerve for Geometric Inference

Donald R. Sheehy∗

Abstract

We show that filtering the barycentric decomposition of
a Čech complex by the cardinality of the vertices cap-
tures precisely the topology of k-covered regions among
a collection of balls for all values of k. Moreover, we
relate this result to the Vietoris-Rips complex to get an
approximation in terms of the persistent homology.

1 Introduction

Computational geometers use topology to certify cor-
rectness of geometric constructions and inferences. For
example, in surface reconstruction one often wants a
homeomorphic reconstruction [8] or in medial axis ap-
proximation, one might seek a homotopy equivalence
between the approximation and the true medial axis[4].
In some sensor network problems, topological guaran-
tees can certify that the network covers a geometric do-
main [7]. A growing literature deals explicitly with the
inference of topological structure in data sets (see Carls-
son [1] for a survey).

Many of these examples depend on the Nerve The-
orem or variations thereof to extract topological infor-
mation from geometry. This classic result in algebraic
topology relates the topology of a union of sets to that
of a simplicial complex called the nerve (under certain
conditions on the intersections of the sets).

In this paper, we extend the Nerve Theorem to con-
sider regions covered by at least k different sets. In the
language of sensor networks, this new nerve captures
the notion of k-coverage. Whereas the Nerve Theorem
can be applied directly for any fixed k, there is little
correspondence between the nerves computed for differ-
ent values of k. We show that a natural filtration of the
barycentric decomposition of the nerve can capture this
information for all values of k.

Noise and outliers are a major problem in topologi-
cal data analysis. Even a single outlier can appear as a
significant topological feature using standard methods.
By considering k-covered regions only, our filtration ig-
nores up to k points locally. This is closely related to
a common approach to de-noising data for topological
data analysis points are treated as noise if the distance
to their kth nearest neighbor is at least some threshold
(see [11] and [2] for two notable examples). Our method

∗Geometrica, INRIA Saclay, don.r.sheehy@gmail.com

has the added advantage that it is easy to relate results
for different choices of k.

We prove our results in the setting of persistent ho-
mology. This allows us to relate the main result also to
sets in general metric spaces where it may be difficult
to compute k-wise intersections directly.

The specific case we are interested is the (k, α)-offsets
of a point set P ⊂ Rd, defined as the α-sublevel set
of the kth nearest neighbor distance function. Equiva-
lently, this is the subset of Rd covered by at least k balls
of radius α centered at points in P (see Figure 1).

Figure 1: The α-offsets overlaid with the (2, α)-offsets
for growing values of α.

2 Background

Topology. We will assume a basic knowledge of
standard definitions in topology including topological
spaces, homotopy equivalence, and homology. The book
by Munkres [10] is a good source for all the necessary
background. We use H∗(X) to denote the homology
groups of X and X ' Y to denote homotopy equiva-
lence.

Simplicial Complexes. A simplicial complex S is
family of subsets of a vertex set that is closed under
taking subsets. That is, if σ′ ⊂ σ ∈ S then σ′ ∈ S. The
elements of a simplicial complex are called simplices
and the elements of the simplices are called vertices.
The dimension of a simplex σ is defined as |σ| − 1. In
this paper, we deal purely with abstract simplicial com-
plexes and do not make any assumptions about how
they are embedded.

Given a subset U of the vertices of S, the induced
subcomplex of S on the vertex set U is the set of
simplices of S whose vertices are all in U .

Filtrations. A filtration is a nested sequence of topo-
logical spaces. In this paper, we deal primarily with

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

309

24th Canadian Conference on Computational Geometry, 2012

filtrations parameterized by the nonnegative real num-
bers. So, a filtration G = {Gα}α≥0 is a family of spaces
such that Gα ⊆ Gβ whenever 0 ≤ α ≤ β. For brevity,
we omit the parameter set and write G = {Gα} when
it is obvious that α ranges over R≥0. If the spaces in a
filtration are all simplicial complexes then we call it a
filtered simplicial complex. Throughout the paper,
superscripts are always used to index into a filtration.

Persistent Homology and Persistence Diagrams The
theory of persistent homology describes the way the
topology of the spaces in a filtration change as α ranges
over R≥0. Given a filtered simplicial complex F , there
is an efficient algorithm for computing its so-called per-
sistence diagram DgmF [13]. This diagram is a mul-
tiset of points in the extended plane (R ∪ {∞})2 where
every point represents a topological feature. The x- and
y-coordinates of a point in the persistence diagram rep-
resent the values of α for which that particular feature
appeared and disappeared respectively in the filtration.
For example, a cycle of edges may form at α = x and
then be filled in (killed) by triangles at α = y. These
are sometimes called the birth and death times of the
feature.

By convention the diagonal x = y is included in every
persistence diagram. The distance from this diagonal is
a measure of how long a feature persisted before being
killed.

It is beyond the scope of this paper to give a full treat-
ment of persistent homology; the book by Edelsbrunner
and Harer gives a complete background[9].

From Sets to Filtrations. Persistent homology ex-
tends homology theory from spaces to filtrations. Be-
low, we present some basic definitions and known results
about persistence with an emphasis on the generaliza-
tion from spaces to filtrations. Often, this means we
will overload notation so that the same notation applies
to both spaces and filtrations.

First we define the basic set operations on filtrations,
defining {Fα}∪{Gα} = {Fα∪Gα} and {Fα}∩{Gα} =
{Fα ∩ Gα}. For any collection T of sets (or filtra-
tions), we use the shorthand notation

⋃
T =

⋃
S∈T S

and
⋂
T =

⋂
S∈T S.

The first task is to extend a notion of topological
equivalence from spaces to filtrations. Since the per-
sistence diagram is a complete invariant of the filtra-
tion, two filtrations F and G have isomorphic persis-
tent homology if Dgm F = Dgm G. Unfortunately, to
prove Dgm F = Dgm G, it does not suffice to have
H∗(Fα) ∼= H∗(Gα) or even Fα ' Gα. The following
lemma gives a sufficient condition. It is a special case
of the Persistence Equivalence Theorem [9, page 159]

Lemma 1 Let F = {Fα} and G = {Gα} be filtra-
tions. If for all 0 ≤ α ≤ β, there are isomorphisms

H∗(Fα) → H∗(Gα) and H∗(F β) → H∗(Gβ) that com-
mute with the homomorphisms H∗(Fα) → H∗(F β) and
H∗(Gα)→ H∗(Gβ) induced by inclusion, then DgmF =
Dgm G.

Simplicial Maps. Let S and T be simplicial complexes.
A map f : S → T is a simplicial map if f maps ver-
tices to vertices and for every σ ∈ S, f(σ) ∈ T . A
simplicial map is defined entirely by how it maps ver-
tices to vertices. A simplicial map that is both injective
and surjective is an isomorphism of simplicial com-
plexes. We say that F = {Fα} and G = {Gα} are
isomorphic filtered simplicial complexes if there
exists a family of isomorphisms φα : Fα → Gα such
that for all 0 ≤ α ≤ β, φα is the restriction of φβ to
Fα, denoted φα = φβ |Fα . The following Lemma follows
directly from the definition of isomorphic filtrations and
Lemma 1.

Lemma 2 If F and G are isomorphic filtered simplicial
complexes then Dgm F = Dgm G.

When S ⊂ T , a map f : S → T is a retraction
if f(σ) = σ for all σ ∈ S. A pair of simplicial maps
f, g : S → T are contiguous if f(σ) ∪ g(σ) ∈ T for
all σ ∈ S. The theory of contiguity is a simplicial ana-
logue of homotopy theory. The following lemma gives a
homology analogue of a deformation retraction.

Lemma 3 ([12]) Let X and Y be simplicial complexes
such that X ⊆ Y and let i : X ↪→ Y be the canonical
inclusion map. If there exists a simplicial retraction
π : Y → X such that i ◦ π and idY are contiguous, then
i induces an isomorphism i? : H∗(X)→ H∗(Y) between
the corresponding homology groups.

Barycentric Decomposition. Let S be a simplicial
complex. A flag in S is an ordered subset of sim-
plices {σ1, . . . , σt} ⊆ S such that σ1 ⊂ · · · ⊂ σt.
The barycentric decomposition of S is the simpli-
cial complex formed by the set of flags of S:

Bary S := {U ⊂ S : U is a flag of S}.

We also define the barycentric decomposition of a fil-
tered simplicial complex {Sα} to be the filtered simpli-
cial complex Bary {Sα} := {Bary Sα}.

There is a natural filtration on a barycentric decom-
position induced by considering only the flags of some
minimum cardinality. We define the complexes in this
filtration as

k-Bary S := {γ ∈ Bary S : min
σ∈γ
|σ| ≥ k}.

As before, this definition is extended to filtered com-
plexes {Sα} as k-Bary {Sα} := {k-Bary Sα}.

24th Canadian Conference on Computational Geometry, 2012

310

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

The operation of taking barycentric decompositions
does not change the underlying topology. This fact is
expressed in the following lemma, whose proof is trivial
and omitted.

Lemma 4 If S is a filtered simplicial complex then

Dgm S = Dgm (Bary S)

Note that this lemma is not true if we replace Bary with
k-Bary .

Nerves. Let F = {{Fα1 }, . . . , {Fαn }} be a collection
of filtrations. Define Fα to be the collection of sets
{Fα1 , . . . , Fαn }.

We say that Fα is a good open cover of
⋃Fα if all

Fαi and their intersections are empty or contractible.
This condition is easily satisfied if the Fαi are open con-
vex sets. We say that F is a good filtered cover if
Fα is a good open cover for all α ≥ 0.

The nerve of a collection of sets Fα is the abstract
simplicial complex Nerve Fα := {U ⊆ Fα :

⋂
U 6= ∅}.

The nerve of a collection of filtrations F is the filtered
simplicial complex Nerve F := {Nerve Fα}α≥0.

The following is a classic result in algebraic topology
called the Nerve Theorem.

Theorem 5 (The Nerve Theorem) If Fα is a good
open cover then

⋃
Fα ' Nerve Fα.

The extension of the Nerve Theorem to the persis-
tence setting follows from the Persistent Nerve Lemma
of Chazal and Oudot [5] and Lemma 1:

Theorem 6 (Persistent Nerves) If F is a good fil-
tered cover then

Dgm
{⋃
Fα
}

= Dgm (Nerve F).

k-Covers. For any set S, the notation
(
S
k

)
denotes the

set of k-element subsets of S. Given a collection F of
sets (or filtrations), the k-Cover of the collection is the
set of k-wise intersections:

k-Cover F :=
{⋂

U
}
U∈(F

k)
.

The k-cover of a collection of sets is a new collection of
sets. The k-cover of a collection of filtrations is a new
collection of filtrations.

3 Barycentric Bifiltration

The Barycentric Čech Filtration. Consider a set of
points P ⊂ Rd. The Čech complex at scale α is the
nerve of the set of α-balls centered at the points of P .

The collection of these complexes at all scales is the
Čech filtration C = {Cα}. The k-barycentric decom-
position of the Čech filtration is C̃k := k-Bary C.

Since C̃αk+1 ⊆ C̃αk for any α ≥ 0 and k ∈ N, this gives a
filtration in two variables known as a bifiltration, where
one dimension is parameterized by (increasing) α and
the other is parameterized by (decreasing) k. In fact,
the construction of C̃k gives a general recipe for deriving
a bifiltration from a filtered simplicial complex.

Our goal is to show that the filtration C̃k has the same
persistent homology as the (k, α)-offsets, Pαk .

Theorem 7 For any finite set of points P ⊂ Rd and
any k ∈ N, the persistence diagrams of the (k, α)-offsets
of P and the k-barycentric decomposition of the Čech
filtration are identical:

Dgm C̃k(P) = Dgm {Pαk }.

This theorem follows from a more general result about
good filtered covers, Theorem 10 below. It is the special
case when the good filtered cover is the collection of balls
of radius α centered at the points of P .

The Main Result Before getting to the main result, we
set up some definitions and prove two necessary lemmas.
Let F be a good filtered cover and let k ∈ N be a fixed
constant. Define the following filtrations:

J̃k := k-Bary (Nerve F)

Nk := Nerve (k-Cover F)

Ñk := Bary (Nk)

Formally, the vertices of Ñα
k are the simplices of Nα

k ,
those collections of k-wise intersections of sets in Fα
that have a nonempty intersection. However, we will
instead identify this vertex set with the corresponding
collection of k-tuples from Fα. Letting Xα and Y α be
the vertex sets of J̃ αk and Ñα

k respectively, we have

Xα =
{
U ⊆ Fα : |U | ≥ k and

⋂
Uα 6= ∅

}

Y α =

{
V ⊆

(Fα
k

)
:
⋂

V ′∈V

⋂
V ′ 6= ∅

}

The complex Ñα
k contains redundant information.

The map π : Y α → Y α induces a simplicial map that
“projects out” this redundant information. It is defined
by

π(V) =

(⋃
V

k

)
.

Figure 2 demonstrates the construction of some of the
simplicial complexes described above for the special case
of the Čech filtration and k = 2.

The following Lemma shows that the persistence di-
agram of Ñk is unchanged by π.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

311

24th Canadian Conference on Computational Geometry, 2012

Pα Pα
2 Ñ2 π(Ñ2)N2

Figure 2: The construction of N2, its barycentric de-
composition, and its image under π.

Lemma 8 Dgm Ñk = Dgm π(Ñk).

Proof. By Lemma 1, it suffices to show that for all
α ≥ 0, the inclusion ψ : π(Ñα

k) ↪→ Ñα
k induces an

isomorphism at the homology level. As above, let Y α

be the set of vertices of Ñk and let s = maxV ∈Y α |V |.
For i = 0 . . . s, define

Yi = {V ∈ Y α : |V | ≤ i} ∪ {π(V) : V ∈ Y α, |V | > i}.

Let Ai be the subcomplex of Ñα
k induced on Yi. So

π(Ñα
k) = A0 ⊂ · · · ⊂ As = Ñα

k .

It will suffice to show that the inclusion ψi : Ai−1 ↪→ Ai
induces an isomorphism at the homology level for all
i = 1 . . . s. Let πi : Yi → Yi−1 be defined as

πi(V) =

{
V if |V | < i
π(V) if |V | ≥ i

So ψ = ψs ◦ · · · ◦ ψ1 and π = π1 ◦ · · · ◦ πs. Lemma 3
will give the desired isomorphism if πi is a simplicial re-
traction such that ψi ◦πi is contiguous with the identity
map, i.e. that (1) πi restricts to the identity on Yi−1,
(2) πi(σ) ∈ Ai−1 for all σ ∈ Ai, and (3) (σ∪πi(σ)) ∈ Ai
for all σ ∈ Ai.

Item (1) is obvious from the definitions. To prove (2)
and (3), fix a simplex σ = {V0, . . . , Vt} ∈ Ai and let
σ′ = σ ∪ πi(σ). If σ = σ′ then we are done, so we may
assume that for some vertex Vj ∈ σ, π(Vj) /∈ σ. Recall

that the simplices of Ñk (and also Ai) are strictly nested
sequences of vertices. So, there is at most one vertex Vj
such that π(Vj) /∈ σ, namely the one with cardinality
i. We may therefore express σ′ as σ ∪ {π(Vj)}. Since

σ ∈ Ai ⊂ Ñk, V0 ⊂ · · · ⊂ Vt. Observe that V ⊆ π(V)
for all V ∈ Y α and moreover that U ⊂ V implies π(U) ⊆
π(V). So, it follows that

V0 ⊂ · · · ⊂ Vj ⊂ π(Vj) ⊂ π(Vj+1) = Vj+1 ⊂ · · · ⊂ Vt.

The inclusion of π(Vj) ⊂ π(Vj+1) is strict because of
the assumption that π(Vj) /∈ σ. This is a strictly nested
sequence of the vertices of σ′ so σ′ ∈ Ai, proving (3).
Moreover, πi(σ) = σ′ \ {Vj} so πi(σ) ∈ Ñk as well.
Since πi(σ) ⊂ Yi−1, we conclude that πi(σ) ∈ Ai−1,
proving (2). �

Next, we prove that J̃k and π(Ñk) have identical per-
sistence diagrams.

Lemma 9 Dgm J̃k = Dgm π(Ñk)

Proof. We will show that J̃k and π(Ñk) are isomorphic
filtered simplicial complexes and so the result will follow
from Lemma 2. It will suffice to show that for all α ≥ 0,
J̃ αk and Ñα

k are isomorphic and that the isomorphism
does not depend on α.

The desired isomorphism is the map φ : Xα → π(Y α)
defined as φ(U) =

(
U
k

)
. The inverse of this map is

φ−1(V) =
⋃
V . So, φ takes subsets U ⊂ Fα of size

at least k such that
⋂
U 6= ∅ to the family of k-element

subsets of U . It is easy to check that φ is a bijection.
To show that φ is an isomorphism, we will prove that

σ is a simplex of J̃ αk if and only if φ(σ) is a simplex

of π(Ñk). Let σ = (U0, . . . , Uj) ∈ J̃ αk be any simplex.

By the definition of J̃ αk , U0 ⊂ · · · ⊂ Uj . For any pair
of vertices Ua and Ub, Ua ⊂ Ub if and only if φ(Ua) ⊂
φ(Ub). So, σ ∈ J̃ αk if and only if φ(U0) ⊂ · · · ⊂ φ(Uj),

which holds if and only if φ(σ) ∈ π(Ñk). �

We are now ready to prove the main theorem relat-
ing the persistence diagrams of k-Bary (Nerve F) and⋃
k-Cover F . The basic strategy is illustrated in Fig-

ure 3.

Theorem 10 If F is a good filtered cover and k ∈ N
then Dgm (k-Bary (Nerve F)) = Dgm (

⋃
k-Cover F) .

Proof. Recall the notations J̃k, Nk, and Ñk defined
above.

Dgm J̃k = Dgm π(Ñk) [by Lemma 9]

= Dgm Ñk [by Lemma 8]

= DgmNk [by Lemma 4]

= Dgm (Nerve (k-Cover F)) [by definition]

= Dgm
(⋃

k-Cover F
)

[by Theorem 6]

�

The Barycentric Vietoris-Rips Filtration One draw-
back of the Čech filtration is that it requires testing
sets of balls for common intersections. An alternative
approach is to construct the edges only and include sim-
plices for every clique. This is known as the Vietoris-
Rips filtration R = {Rα}, where

Rα := {Q ⊆ P : diameter(Q) ≤ 2α}.

This can be computed using only the pairwise distances
between points and therefore is well-defined for any
metric space. We can apply the same barycentric bi-
filtration approach used above to yield a bifiltration
R̃k = {R̃αk} := k-BaryR.

Given filtrations F and G, we say Dgm F is c-
approximation for Dgm G if there is a 1-1 correspon-
dence that maps each (x, y) ∈ DgmF to (u, v) ∈ DgmG

24th Canadian Conference on Computational Geometry, 2012

312

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Pα

Pα
2

Cα

N α
2 Ñ α

2

C̃α C̃α
2

π(Ñ α
2)

Figure 3: We transform the collection of balls in two different ways to get equivalent complexes, C̃αk (top) and π(Ñα
k)

(bottom) for k = 2.

such that u/c ≤ x ≤ cu and v/c ≤ y ≤ cv. A sufficient
condition for DgmF to be a c-approximation to DgmG
is that Fα/c ⊆ Gα ⊆ Fcα for all α ≥ 0. This is a simple
corollary to the Strong Stability Theorem of Chazal et
al. [3].

The Vietoris-Rips filtration gives a good approxima-
tion to the Čech filtration. It was shown by de Silva
and Ghrist that Cα ⊆ Rα ⊆ Ccα, where c = 2 for gen-
eral metric spaces and c =

√
2 for Euclidean spaces[6].

So, the Vietoris-Rips filtration gives a c-approximation
to the Čech filtration for persistent homology. The in-
terleaving also implies the following extension to the
Vietoris-Rips bifiltration {R̃αk}, where R̃k = k-BaryR.

Theorem 11 For any fixed k, the persistence diagram
of the k-barycentric Rips filtration, {R̃αk}, is a

√
2-

approximation to the persistence diagram of the (k, α)-
offsets {Pαk } when the underlying space is Euclidean,
and is a 2-approximation for general metrics.

Proof. It suffices to observe that Cα ⊆ Rα ⊆ Ccα
implies k-Bary Cα ⊆ k-Bary Rα ⊆ k-Bary Ccα for all
α ≥ 0. �

4 Conclusions and Future Work

We have presented a nerve construction to capture the
topology of the k-covered regions of a collection of well-
behaved sets. Our focus was on guaranteeing the correct
persistent homology, when the sets are filtrations, but it
is also possible to consider the case of just a single good
open cover S. In that case, using a slightly stronger
version of Lemma 3, it is possible to prove that the
k-Bary(NerveS) is homotopy equivalent to

⋃
k-CoverS.

In practice, it is common to truncate Čech filtrations
at some maximum scale to avoid the huge complexity
blowup. The method of barycentric bifiltrations nat-
urally adapts to this setting. In recent work, we pro-

posed an alternative approach to controlling the com-
plexity of distance-based filtrations using hierarchical
net-trees [12]. It may be possible to combine those ideas
with those presented in this paper to give sparse ap-
proximations of the (k, α)-offsets. This is the subject of
future work.

5 Acknowledgements

This work was partially supported by the National Sci-
ence Foundation under grant number CCF-1065106, by
GIGA grant ANR-09-BLAN-0331-01, and by the Euro-
pean project CG-Learning No. 255827.

References

[1] G. Carlsson. Topology and data. Bull. Amer. Math.
Soc., 46:255–308, 2009.

[2] G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomoro-
dian. On the local behavior of spaces of natural images.
International Journal of Computer Vision, 76(1):1–12,
2008.

[3] F. Chazal, D. Cohen-Steiner, M. Glisse, L. J. Guibas,
and S. Y. Oudot. Proximity of persistence modules
and their diagrams. In Proceedings of the 25th ACM
Symposium on Computational Geometry, pages 237–
246, 2009.

[4] F. Chazal and A. Lieutier. The “λ-medial axis”. Graph-
ical Models, 67(4):304–331, 2005.

[5] F. Chazal and S. Y. Oudot. Towards persistence-based
reconstruction in Euclidean spaces. In Proceedings of
the 24th ACM Symposium on Computational Geometry,
pages 232–241, 2008.

[6] V. de Silva and R. Ghrist. Coverage in sensor net-
works via persistent homology. Algorithmic & Geomet-
ric Topology, 7:339–358, 2007.

[7] V. de Silva and R. Ghrist. Homological sensor networks.
Notices Amer. Math. Soc., 54(1):10–17, 2007.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

313

24th Canadian Conference on Computational Geometry, 2012

[8] T. K. Dey. Curve and Surface Reconstruction : Algo-
rithms with Mathematical Analysis. Cambridge Univer-
sity Press, 2007.

[9] H. Edelsbrunner and J. L. Harer. Computational Topol-
ogy: An Introduction. Amer. Math. Soc., 2009.

[10] J. R. Munkres. Elements of Algebraic Topology.
Addison-Wesley, 1984.

[11] P. Niyogi, S. Smale, and S. Weinberger. A topological
view of unsupervised learning from noisy data. 2008.

[12] D. R. Sheehy. Linear-size approximations to the
vietoris-rips filtration. In Proceedings of the 28th ACM
Symposium on Computational Geometry, 2012.

[13] A. Zomorodian and G. Carlsson. Computing persis-
tent homology. Discrete & Computational Geometry,
33(2):249–274, 2005.

24th Canadian Conference on Computational Geometry, 2012

314

Index

A

Aarts, Emile 89
Agarwal, Pankaj 9
Aichholzer, Oswin 247, 253
Aleksovski, Zharko 89
Aloupis, Greg 41, 113
Ashok, Pradeesha 65

B

Bajaj, Chandrajit 185
Barba, Luis 107, 113
Barbay, Jérémy 71
Beingessner, Alexis 95
Ben-David, Shalev 47
Bezdek, Andras 217
Bharadwaj, Subramanya 65
Bint, Gregory 35
Borcea, Ciprian 235
Borradaile, Glencora 297
Bose, Prosenjit 11, 199, 285, 291
Bremner, David 143
Busch, Costas 83

C

Cannon, Sarah 161
Cano, Javier 155
Carrigan, Braxton 217
Cassidy, Hugh 265
Chambers, Erin 23
Chen, Dan 229
Cheng, Howard 253

D

De Carufel, Jean-Lou 199, 291
Demaine, Erik D. 101
Devadoss, Satyan L. 253
Devroye, Luc 193
Dorrigiv, Reza 277
Dujmovic, Vida 11
Durocher, Stephane 59

E
Ebeida, Mohamed 185
Emmerich, Michael T. M. 77
Eppstein, David 297

F
Fabila-Monroy, Ruy 247
Fagerberg, Rolf 285
Fonseca, Carlos M. 77
Fraser, Maia 205
Fraser, Robert 53

G
Govindarajan, Sathish 65, 149
Grant, Elyot 47
Grimm, Carsten 199
Guerreiro, Andreia P. 77

H
Hackl, Thomas 247, 253
Hanson, Eric 303
Hearn, Robert 41
Held, Martin 179
Hoda, Nima 11
Horiyama, Takashi 211
Huber, Stefan 179, 253
Huemer, Clemens 247

I
Ito, Takehiro 211
Iwasawa, Hirokazu 41

J
Jordan, Kirk 265
Jovanovic, Natasa 89

K
Kalantari, Bahman 271

24th Canadian Conference on Computational Geometry, 2012

Khopkar, Abhijeet 149
Khromov, Denis 259
Korst, Jan 89
Krohn, Erik 167

L
Langerman, Stefan 113
Lee-St.John, Audrey 173
Li, Brian 253
Lubiw, Anna 119
Lukkien, Johan 89
López-Ortiz, Alejandro 53, 277

M
Ma, Will 47
Macgillivray, Stuart 29
Maheshwari, Anil 35, 199
Mann, Willi 179
Matsui, Tomomi 241
Mehrabi, Saeed 59
Meijer, Henk 223
Mestetskiy, Leonid 259
Michiels, Wil 89
Mitchell, Joseph 283
Mitchell, Scott 185
Miyamoto, Yuichiro 241
Morin, Pat 11, 193, 229, 291
Moss, Aaron 143
Motta, Francis 303

N
Nakatsuka, Keita 211
Navarro, Gonzalo 71
Nickerson, Bradford 29
Nilsson, Bengt 167

O
O’Rourke, Joseph 101

P
Pathak, Vinayak 119
Peters, Thomas 265
Peterson, Chris 303
Pilz, Alexander 247
Pérez-Lantero, Pablo 71

R
Rai, Suresh 83

Rand, Alexander 185
Rao, Chintan 65
Risteski, Andrej 253

S
Sharma, Gokarna 83
Sharpe, Malcolm 47
Sheehy, Donald 309
Shirakawa, Toshihiro 17
Skala, Matthew 59
Smid, Michiel 35, 95, 199
Souvaine, Diane 161
Streinu, Ileana 235
Suzuki, Akira 211
Sykes, Kyle 23

T
Tawfik, Selim 277
Toth, Csaba 155
Trahan, Jerry 83
Traub, Cynthia 23, 125

U
Uehara, Ryuhei 17, 41, 211
Urrutia, Jorge 155

V
Vahrenhold, Jan 131
Vaidyanathan, Ramachandran 83
Van Renssen, André 285, 291
Verdonschot, Sander 285, 291
Vogtenhuber, Birgit 247

W
Wahid, Mohammad Abdul 59
White, Jeffrey 137
Winslow, Andrew 161
Wismath, Steve 223
Wortman, Kevin 137

Z
Ziegelmeier, Lori 303
Ziegler, Günter 191

316

