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Open Problems from CCCG 2011

Erik D. Demaine∗ Joseph O’Rourke†

The following is a description of the problems pre-
sented on August 10, 2011 at the open-problem session
of the 23rd Canadian Conference on Computational Ge-
ometry held in Toronto, Ontario, Canada.

Blocking visibility with cylinders
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

Suppose you have a supply of infinite-length,
opaque, unit-radius cylinders, and you would like
to block all visibility from a point p ∈ R3 to infin-
ity with as few cylinders as possible. (The cylin-
ders are infinite length in both directions.) The
cylinders may touch but not interpenetrate, and
they should be disjoint from p, leaving a small ball
around p empty. (Another variation would insist
that cylinders be pairwise disjoint, i.e., not touch-
ing one another.)

A collection of parallel cylinders arranged to form
a “fence” around p do not suffice, leaving two line-
of-sight ± rays to infinity. Perhaps a grid of cylin-
ders in the pattern illustrated in Figure 1 (left) suf-
fice, but at least if there are not many cylinders,
there is a view from an interior point to infinity
(Figure 1, right).

Figure 1: A grid of cross cylinders. A view from inside
shows not all visiblity is blocked.

This question was originally posed on MathOver-
flow [OR11a], and several ideas contributed there
suggest to start with the six cylinder arrangment in
Figure 2 (left), supplemented by a circular “forest”
to block the remaining lines of sight, three-quarters
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of which are illustrated in Figure 2 (right). The il-
lustrated configuration needs 18 cylinders, but per-
haps as few as 10 suffice for this plan?

Figure 2: Six cylinders block all but some “diagonal”
lines of sight. Erecting a vertical fence should then block
all lines of sight.

What is the minimum number of infinite cylin-
ders that can block visibility from a point?
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The Rain Hull and the Rain Ridge
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

Rain falls steadily on an island, a 2-manifold
M , which you may assume, as you prefer, is:
(a) smooth, or (b) a PL-manifold, or perhaps (c) a
triangulated irregular network (TIN). After a time,
M is saturated, in the sense that every raindrop
drains into the ocean rather than filling yet-unfilled
crevices or basins. At this point, we have what
I will dub the rain hull of M , HR(M), a uni-
directional version of the the reflex-free hull defined
by Jack Snoeyink at the 13th CCCG [ACCS04]

(1) How difficult is to compute the rain hull
HR(M)?

This question was originally posed on Math-
Overflow [OR11b] and a respondent there (Joel
Hamkins) argued that at least it can be computed
in polynomial time. Nonlocal effects such as that
illustrated in Figure 3 must be accommodated.
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Figure 3: (a) The connecting tube rises too high to fill
the other, protected basin. (b) A lower tube does overflow
into the other catch-basin.

Let us assume we have M = HR(M) computed
or given. A raindrop falling on p ∈ M might
follow a unique trickle path (that is the technical
term: e.g., see [dBHT11]) to the ocean, or the drop
may randomly ‘fracture’ to follow distinct paths to
the ocean. Define the rain ridge (my terminology)
R(M) to be the complement of the points of M
that have a unique trickle path.

So points on the rain ridge are akin to points on
a cut locus, in that they have two or more distinct
paths to ∂M . They are, in a sense, continental-
divide points [Hay09].

(2) What can be said about the structure of the
rain ridge R(M)? And how quickly can it be com-
puted?

Unlike the cut locus or “ridge tree,” the rain
ridge is not always a tree. All the points in a filled
basin are in the rain ridge, for when a raindrop
lands in a filled basin, it is natural to assume it
“spreads out” and spills in equal portions over ev-
ery boundary point of the basin. But surely there
are substantive properties to investigate. Surely
the rain ridge R(M) cannot be an arbitrary subset
of M?

(3) Can an extended metric be assigned to M so
that its geodesics are its trickle paths?

An extended metric is one that permits d(x, y) =
∞ (e.g., for points not on the same trickle path).
What I am hoping for here is a way to view the
rain ridge as a cut locus of ∂M , and then apply a
century of knowledge on the cut locus to the rain
ridge.
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Long Alternating Paths
Jorge Urrutia
Universidad Nacional Autónoma de México
urrutia@matem.unam.mx

Let Pkn be a point set with kn points in general
position. A k-coloring of Pkn is a partitioning of
Pkn into k disjoint subsets S1, . . . , Sk, each with n
elements. The sets S1, . . . , Sk, are called the chro-
matic classes of Pkn.

An alternating path Π of Pkn is a simple polyg-
onal path connecting a subset of the points of Pkn
such that there are no monochromatic edges in the
path.

Conjecture Any 3-colored point set P3n contains
an alternating path with at least 2n elements.

We have been unable to prove that P3n always
contains an alternating path with 3

2n points; this
seems to be a challenging weaker open problem.
For 3-colored point sets P3n in convex position,
it is known there always exists a path that cov-
ers 2n points, and that this bound is tight [MSU].
Tight bounds for 2-colored point sets are not
known for point sets in convex, or in general po-
sition [AGHNP].
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Monochromatic Empty Triangles
Jorge Urrutia
Universidad Nacional Autónoma de México
urrutia@matem.unam.mx

Let Pn be a set of n points in general position
on the plane, each of which is colored red or blue.
A triangle with vertices in P is called empty if it
contains no point of P in its interior, it is called
monochromatic if all of its vertices are red, or all
are blue.

Conjecture Any bicolored point set Pn contains
Ω(n2) monochromatic empty triangles.

A liner bound was established in [DHKS]. It was

improved to cn
5
4 in [AFHU], and to cn

4
3 in [PT].
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empty triangles in two-colored point sets.
Geometry, Games, Graphs and Education:
the Joe Malkevitch Festschrift (S. Gar-
funkel, R. Nath, eds.), COMAP, Bedford,
MA, 2008, 195-198. Also in: Discrete Ap-
plied Mathematics, submitted.

Shortest Periodic Light Ray
Boaz Ben-Moshe
Ariel University Center of Samaria
benmo@g.ariel.ac.il

Given a simple polygon, find the shortest peri-
odic path of a light ray reflecting from the polygon
edges as perfect mirrors. This problem is solved for
rational triangles, those whose angles are rational
multiples of π, but seems to be open for arbitrary
triangles.

The Geometry of Golf
Alejandro López-Ortiz
University of Waterloo
alopez-o@uwaterloo.ca

After repeated unsuccessful attempts to get the ball
in the hole from a particular point in the green, a
golfer walks away in frustration and declares: That
shot is impossible!

A mathematician happens to be standing nearby
and says outloud: Hmmm, is it true that one can
always putt a golf ball into the hole on this or any
other arbitrary green?

A computer scientist overhears the mathemati-
cian and thinks: for given a green and ball location
can I use my smartphone to determine if the shot
is possible and if so in what direction and speed
should I hit the ball?

More formally, the mathematician’s question be-
comes: does every smooth two-dimensional mani-
fold under a gravitational potential field is “con-
nected” in the sense that a point particle at an
arbitrary point on it can be made to roll into any
other point on the manifold given a proper nudge
(initial velocity vector) in the right direction.

The answer for this question is no. A simple
counterexample folds the surface into caves, but
this is not strictly necessary: there are C∞ mani-
folds which are described by the plot of a function
f : R×R→ R and yet do not allow rolling motions
into the hole. To see this consider a green with a
mountain ridge between the ball and the hole, as
depicted in Figure 4. If the slope on the hole side of

Figure 4: The hole is at the top center. This particular
example is due to Jaap Eldering at http://mathoverflow.
net/questions/84033/.

the ridge is sufficiently steep the ball can be made
to become airborne and overfly the hole; see Fig-
ure 5.

The computer scientist’s questions, posed for-
mally, become: first, given a description of a green
(perhaps discretized as a TIN) give an efficient al-
gorithm that determines if the hole can always be
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Figure 5: (a) Not gently falling. (b) Gently falling. Fig-
ure from [OR11c].

reached from all points, and second, given a ball
position in said green can we compute the direc-
tion and speed of the putting action that will roll
the ball into the hole?

Several variations of the question

Putting. Under what conditions can a given ball
on a C∞ manifold, with a quadratic gravita-
tional field, reach the hole?

Golf green design. Under what conditions can
every putt on a C∞ manifold, with a quadratic
gravitational field, reach the hole?

Hole location design. Given a C∞ manifold,
which points on it are reachable from all oth-
ers and hence would be reasonable choices for
location of the hole?

Chipping. What if you can chip, i.e., loft the ball?

Driving. Under what conditions is it possible to
achieve a “hole-in-one” from the driving tee if
we consider obstacles such as trees?

Sand Save. Under what shape conditions can you
chip out of a sand trap and always move closer
to the hole.

To understand the physics of the problem we
study the 2D setting of a ball rolling down a curve.

First consider the instantaneous version of the
problem: given a ball on the curve and moving at
a certain speed will it become airborne at this in-
stant?

We consider first the case where the particle was
at rest. In this setting two forces are acting on the
ball, namely gravity and surface resistance. Grav-
ity is a vertical vector pointing downwards with
magnitude 9.8m/s2. The surface resistance is a
vector perpendicular to the tangent to the curve.

Observe that the magnitude of the resistance vec-
tor is exactly equal to to the projection of the grav-
itational vector on the normal direction to the tan-
gent to the curve at all times. This is easier to
see when the particle is at rest: if the forces on

the direction of the surface were not perfectly can-
celed with that of gravity then the particle would
either burrow into the surface until equilibrium is
achieved (think of a really heavy ball making a
dent) or would magically start hovering over it,
both of which do not happen with a rolling golf
ball.

Hence the only movement possible for a parti-
cle at rest is in the direction of the tangent to the
surface and the surface resistance must perfectly
cancel any force in any other direction.

The ball will then move along the direction of the
tangent at a speed which is given by the addition
of the resistance vector to that of the force of grav-
ity. Let Γ(t) = (x(t), y(t)) denote the trajectory of
the particle parameterized by the time t. Then the
speed vector v(t) is given by dΓ/dt, and the instan-
taneous change in speed is given by the differential
equation v′(t) = ||Γ′(t)||−1(Γ′(t) ·(0,−g))+(0,−g).

The particle becomes airborne if the speed vector
ever lies above the tangent to the curve which would
result in a ski-like take off along the direction of the
speed vector.

If the particle is already in motion then the same
equations apply and the only change is in the initial
condition v(t) which for the particle at rest case was
v(t0) = ~0 and now becomes v(t0) = (vx(t0), vy(t0)).

We can test for the airborne state if we recall that
the cross product of two vectors ~a = (a1, a2), = ~b =
(b1, b2) in the plane is the vector (0, 0, a1b2−a2b1),
where the last coordinate is positive if and only if
~a is below ~b. Substituting the speed vector and the
tangent vector above we get that the ball remains
on the surface iff

vx(t)ay(t)− vy(t)ax(t) ≤ 0

We can now use this equation together with an
iterative differential equation solver to numerically
test this property along the entire trajectory of a
putting path.

Update. In [OR11c] differential equations are de-
rived for what can be considered a one-dimensional
version of the putting problem.
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Polygon Triangulation Without Large Angles
Alexander Rand
University of Texas at Austin
arand@ices.utexas.edu

Let P be a generic convex polygon with vertices
V1, V2, . . ., Vn (and define V0 := Vn and Vn+1 := V1
for simplicity). For γ < π, we will say that P
belongs to the set Sγ if for any i /∈ {j, j + 1} then
∠VjViVj+1 < γ, i.e., no vertex forms a large angle
with any opposite side of the polygon. See Figure 6.

Vi

Vj Vj+1

α

Figure 6: If ∠VjViVj+1 (denoted by α in the figure) is
large, then no triangulation exists without a large angle. If
this angle is bounded for all pairs of vertices and opposite
edges, we expect some acceptable triangulation can be
formed.

Open Problem For γ < π, give an algorithm
that, for any convex polygon in Sγ , adds some ver-
tices to the interior of the polygon and produces a
triangulation with no angles larger than θ(γ) < π.

• Most related problems/algorithms in the liter-
ature (e.g., [BMR95, MPS07]) involve insert-
ing vertices on the boundary of the polygon,
which we have disallowed.

• The restriction to the set Sγ is essential: an
obtuse triangle with largest angle very near π
cannot be triangulated satisfying our require-
ments.

• The specific relationship between θ and γ can
be selected at the discretion of the solver. The
best solution hopefully has a form π − θ(γ) =
Ω(π − γ).

• The number of points added by the algorithm
is unimportant for the original motivation of
the problem, but it makes sense to ask what
is the fewest number of vertices which can be
added (which examples suggest is small; see
conjecture below). Simple approaches often
involve O(n) vertices. Adding a very large
number of vertices is not particularly helpful
as any vertex placed too close to a boundary
edge produces a large angle in the triangula-
tion.

• At least one vertex can be necessary. Any tri-
angulation of the regular n-gon without any
additional vertices will produce at least one

triangle of three consecutive vertices and, for
large n, this has a large angle. Adding a sin-
gle vertex at the center of the polygon gives
an acute triangulation. See Figure 7.

• Moreover, it appears that at least two vertices
must be inserted in some cases. See Figure 8.

Conjecture There exists an algorithm and some
function θ(γ) which solve the problem above using
at most two additional vertices.

Figure 7: For a regular n-gon with n large, any trian-
gulation without additional vertices includes a triangle of
three consecutive vertices and thus a large angle. Adding
a single vertex in the center yields an acute triangulation.

Figure 8: An example which requires two additional ver-
tices (or at least appears to). This can be extended to
any extreme γ or θ thresholds by adding more vertices to
the semi-circles and making the full example wider in the
horizontal direction.

Update. This problem is a special case of one
less formally stated in the conclusion of [BDE92].
Specifically, Bern et al. ask for an algorithm
and class of polygons yielding quality triangula-
tions (i.e. without large angles) using only interior
Steiner points.
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