Computational Geometry in Air Traffic Management

Joseph S. B. Mitchell*

The next generation of air transportation system will have to use technology to be able to cope with the ever increasing demand for flights. Several challenging optimization problems arise in trying to maximize efficiency while maintaining safe operation in air traffic management (ATM). Constraints and issues unique to air transportation arise in the ATM domain, including weather hazards, turbulence, no-fly zones, and three-dimensional routing. The challenge is substantially compounded when the constraints vary in time and are not known with certainty, as is the case with weather hazards. Human oversight is provided by air traffic controllers, who are responsible for safe operation within a portion of airspace known as a sector.

In this talk we discuss algorithmic methods that can be used in modeling and solving air traffic management problems, including routing of traffic flows, airspace configuration into load-balanced sectors, and capacity estimation in the face of dynamic and uncertain constraints and demands. We highlight several open problems of interest to computational geometers.

This research has been supported by grants from the National Science Foundation (CCF-0729019, CCF-1018388), NASA Ames, and Metron Aviation. The talk is based on collaborative work with many, including Anthony D. Andre, Dominick Andrisani, Estie Arkin, Amitabh Basu, Jit-Tat Chen, Nathan Downs, Moein Ganji, Robert Hoffman, Rafal Kicinger, Joondong Kim, Victor Klimenko, Irina Kostitsyna, Shubh Krishna, Jimmy Krozel, Changkil Lee, Tenny Lindholm, Tim Myers, Anne Pääkkö, Steve Penny, Valentin Polishchuk, Joseph Prete, Girishkumar Sabhnani, Robert Sharman, Philip J. Smith, Amy L. Spencer, Ali Tafazzoli, Gregory Wong, Shang Yang, Arash Yousefi, Jingyu Zou.

^{*}Stony Brook University, joseph.mitchell@stonybrook.edu