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Abstract

We investigate the Within-Strip Discrete Unit Disk
Cover problem (WSDUDC), where one wishes to find
a minimal set of unit disks from an input set D so that
a set of points P is covered. Furthermore, all points and
disk centres are located in a strip of height h, defined
by a pair of parallel lines. We give a general approxi-
mation algorithm which finds a 3d1/

√
1− h2e-factor ap-

proximation to the optimal solution. We also provide a
4-approximate solution given a strip where h ≤ 2

√
2/3,

and a 3-approximation in a strip if h ≤ 4/5, improv-
ing over the 6-approximation for such strips using the
general scheme. Finally, we show that WSDUDC is NP-
complete for a strip with any height h > 0.

1 Introduction

In the Within-Strip Discrete Unit Disk Cover (WS-
DUDC) problem, the input consists of a set of m unit
disks D with centre points Q, and a set of n points P,
all of which lie in the Euclidean plane. We define the
strip s of height h as the region of the plane between two
parallel lines `1 and `2, where Q∩s = Q and P∩s = P.
We assume that we are provided with the lines `1 and
`2; alternatively, a minimum width strip may be com-
puted. We wish to determine the minimum cardinality
set of disks D? ⊆ D such that P ∩ D? = P. This is
a seemingly simpler context than the general Discrete
Unit Disk Cover (DUDC) problem, which has no strip
confining the positions of the points and disks. The
DUDC problem is NP-complete [10], and has received
attention due to applications in wireless networking and
related optimization problems [14].

This paper addresses an open question regarding the
hardness of the general DUDC problem. An implica-
tion of a polynomial time algorithm for WSDUDC for
strips of any fixed width would be a simple PTAS for
DUDC, using the shifting techniques of Hochbaum and
Maass [9]. The recent PTAS for DUDC [12], as dis-
cussed shortly, uses fundamentally different techniques.

The notion of decomposing a problem into strip-based
subproblems is natural, since an exact algorithm or
PTAS for the subproblem can potentially be used to
derive a general PTAS using the “shifting strategy” [9].
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For example, the PTAS for the geometric unit disk cover
problem (like DUDC except the centres of the disks
are unrestricted) operates by dividing the problem into
strips [9]. The maximum independent set of a unit disk
graph may be found in polynomial time if the setting
is confined to a strip of fixed height [11]. Geometric
set cover on unit squares (precisely WSDUDC, except
the disks are replaced with axis-aligned unit squares)
may be solved optimally in nO(k) time when confined
to strips of height k [7]. Considering these results, the
hardness of WSDUDC is somewhat surprising.

The WSDUDC problem was formally introduced by
Das et al. [6], as a subroutine for their DUDC approx-
imation algorithm. In that work, it was demonstrated
that points in a strip of height 1/

√
2 (≈ 0.707) may be

covered in O(mn+n log n) time using a fixed partition-
ing technique to obtain a 6-approximate algorithm.

The Strip-Separated Discrete Unit Disk Cover (SS-
DUDC) problem was first addressed by Ambühl et al.
[1, Lemma 1]. The input consists of a set of points P
located in a strip in the plane, like WSDUDC, but the
set of unit disk centres Q lies strictly outside of the
strip rather than in the strip. In the electronic version
of this paper, we outline an O(m2n + n log n) time ex-
act algorithm for SSDUDC based on [1], which we use
as a subroutine in our work. The Line-Separated Dis-
crete Unit Disk Cover (LSDUDC) problem has a single
line separating P from Q. A version of LSDUDC was
first discussed by [5], where a 2-approximate solution
was given; an exact algorithm for LSDUDC was pre-
sented in [4]. Another generalization of this problem is
the Double-Sided Disk Cover (DSDC) problem, where
disks centred in a strip are used to cover points outside
of the strip. This also has an exact dynamic program-
ming solution [13].

Many papers have addressed DUDC using a vari-
ety of techniques, e.g. [3, 5]; a summary of such re-
sults is presented in [6]. Brönnimann and Goodrich
[2] established the first constant factor approximation
algorithm based on epsilon nets. Mustafa and Ray
[12] described a PTAS for a more general version of
DUDC based on local search. Interest in research
on approximation algorithms for DUDC and related
problems has remained high because of the large run-
ning time associated with the PTAS (O(m65n) for a 3-

approximation, O(mO(1/ε)2n) in general for 0 < ε ≤ 2).
The best tractable result for DUDC is that of [6], which
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describes a 18-approximate algorithm which runs in
O(mn + n log n) time.

1.1 Our Results

We provide a general 3d1/
√

1− h2e-approximate algo-
rithm for solving the Within-Strip Discrete Unit Disk
Cover (WSDUDC) problem on strips of height h < 1,
which runs in O(m2n + n log n) time. Given a strip of
height at most 2

√
2/3 (≈ 0.94), a 4-approximate so-

lution is given which refines the general algorithm by
checking for simple redundancy while still running in
O(m2n + n log n) time. For a strip of height at most
4/5, an O(m6n) time 3-approximate solution is pro-
vided which uses dynamic programming to solve all sub-
problems optimally (using the general 3d1/

√
1− h2e-

approximate algorithm on strips of height 2
√

2/3 or 4/5
would produce a 6-approximation). To conclude, we
show that WSDUDC is NP-complete.

2 Approximation Algorithms for WSDUDC

In this section, we present algorithms for approximating
the optimal WSDUDC solution. We begin with a gen-
eral technique, followed by refinements which achieve
better approximation factors in narrower strips.

Theorem 1 Given a strip of height h < 1, we may find
a 3d1/

√
1− h2e-approximation to the WSDUDC prob-

lem in O(m2n+n log n) time. If h ≤ 2
√

2/3, we can im-
prove the approximation factor to 4 in O(m2n+n log n)
time. Given a strip of height h ≤ 4/5, a 3-approximate
solution may be found in O(m6n) time.

We define the set of rectangles R◦, where R◦i is the
largest rectangle of height 2h which may be covered by
Di ∈ D, where the strip s has height h and is assumed
to be horizontal. Further, we use a set of rectangles R
of height h, defined as Ri = R◦i ∩ s,∀R◦i ∈ R◦.

Observation 1 Suppose we are given a strip of height
h < 1 and a unit disk D whose centre lies in the strip.
R◦ is defined as the rectangle of height 2h and width
k = 2

√
1− h2 which is circumscribed by D. If a point

q is covered by R◦, then D also covers q. Furthermore,
R◦ covers the entire height of the strip.

We divide the set of points P into two sets P = PR∪PR,
where PR is the set of points covered by the set of rect-
angles R, and PR = P\PR, i.e. those points covered by
D but not R. The approximation algorithms proceed in
two stages to compute the cover: first the points in PR
are covered, and then the remaining uncovered points
in PR are covered. We refer to the points in PR as oc-
curring in the gaps of the strip, and the points in PR

gap1 interval1
gap2 gap3

gap4interval2 interval3

Figure 1: Intervals are continuous segments of the strip
covered by the rectangles in R, and gaps are the seg-
ments of the strip outside of the intervals.

Algorithm 1 Greedy-Rectangles(R,PR)

R′ ← ∅, sort R by x-coordinate, sort PR by left boundary
while PR 6= ∅ do

p` ← left-most point in PR
Rr ← right-most rectangle in R covering p`
R′ = R′ ∪Rr

PR = PR \ (Rr ∩ PR)
return R′

are in the intervals (see Figure 1). In our discussion, we
assume that h > 0, so that k = 2

√
1− h2 < 2. 1

2.1 Covering PR
The centres of all disks are separated from the points in
PR by vertical lines (those of the gap boundaries). For
each gap of the strip, the points are covered optimally
with the O(m2n+n log n) time algorithm for SSDUDC.
While points in each gap are covered optimally, we may
lose optimality when we combine these solutions2. Re-
call that rectangles have width k = 2

√
1− h2. There

is a rectangle for each disk, and so no disk centre lies
within a distance of k/2 of any gap. By interleaving
rectangles with gaps of width ε, a disk may cover points
in 2d1/k− 1/2e gaps as ε→ 0. To see this, consider the
right side of a disk Di, where Ri defines an interval of
width k/2 on this right side. Since Di has unit radius,
d(1− k/2)/ke additional intervals (and gaps, one to the
left of each interval) may be at least partially covered by
the right half of Di. Thus, the union of the solutions for
each gap has an approximation factor of 2d1/k − 1/2e
for covering PR.

2.2 Covering PR
To cover the points remaining after the previous step,
we iteratively add the right-most rectangle that covers
the left-most remaining point to the solution, as detailed
in Algorithm 1 (Greedy-Rectangles).

1If h = 0, all points and disk centres are collinear, and
PR is empty. This setting is solved optimally by the Greedy-
Rectangles algorithm detailed in Section 2.2.

2Covering the points in the union of the gaps cannot be covered
optimally in general, as the hardness proof for WSDUDC (Section
3) only has points in gaps.
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Lemma 2 A rectangle R′i selected by Greedy-
Rectangles may overlap another rectangle R′i−1 (the
previous rectangle chosen) by k − ε, for any ε > 0. 3

Lemma 3 Let R′ = {R′1, . . . , R′|R′|} be the set of rect-
angles found by Greedy-Rectangles, indexed from
left to right so that ∀i, j, i < j ↔ left(R′i, R

′
j) where

left(R′i, R
′
j) indicates that R′i is left of R′j. Then

∀i, j, j > i + 1→ R′i ∩R′j = ∅. 3

Lemma 4 Greedy-Rectangles computes a cover of
PR with an approximation factor of 3d1/k− 1/2e times
the optimal solution.

Proof. Consider the maximum number of rectangles
in the Greedy-Rectangles solution that may be re-
placed by a single disk Di in the strip. One of the
rectangles available to the algorithm is Ri ⊂ R◦i , where
R◦i is circumscribed by Di. By Lemma 2, there may be
another rectangle ε to the left or right of Ri which will
be selected by the algorithm, and so the approximation
factor is at least 2. It may be possible to pack addi-
tional pairs of nearly overlapping rectangles as densely
as permitted by Lemma 3 so that the points covered by
these rectangles are also covered by Di. Since all disks
have unit radius and R◦i is circumscribed, each side of
Di can potentially cover all points covered by at most
2d(1−k/2)/ke−1 additional rectangles. This analysis is
similar to Section 2.1, but now all rectangles are paired
except for the right-most one (in a right-most pair, the
region covered only by the right rectangle cannot be
covered at all by Di since we consider the pairs to have
width k, i.e. ε = 0). Thus, the total approximation
factor is 4d1/k − 1/2e. �

Greedy-Rectangles requires both the set of rectan-
gles R and the set of points PR to be sorted in left to
right order. The sorted lists are each walked through
once, so the running time is O(m logm + n log n).

2-approximation when k ≥ 2/3 (h ≤ 2
√

2/3). The
general algorithm for covering PR presented above has
an approximation factor of 4 when k ≥ 2/3. For each
pair of consecutive rectangles R′i−1 and R′i found by
Greedy-Rectangles, we determine whether there ex-
ists a disk Dj such that (R′i−1 ∪R′i) ∩ P ⊆ Dj ∩ P. To
do so, we run through R′ in order, and check whether
the current pair may be replaced by any disk in D.

Consider a disk Di ∈ D?, which may or may not be
a member of our refined solution set. Di may intersect
at most four rectangles in R′. Every consecutive pair
of rectangles in R′ now requires at least two disks, so
at least two disks are required to cover any four consec-
utive rectangles. Therefore, the overall approximation

3Due to lack of space, the proof of this lemma is omitted. It
is presented in the electronic version of this paper.

factor is two. This operation will scan m disks for ev-
ery possible disk to remove from the solution, so the
operation takes O(m2n + n log n) time.

Optimal solution when k ≥ 6/5 (h ≤ 4/5). In this
case4, the PR sub-problem may be solved optimally us-
ing dynamic programming. We define a set of disks Ds

as mutually spanning if each disk in Ds covers a non-
empty set of points which lies to the left of all other
disks in Ds, as well as a non-empty set of points lying
to the right of all other disks in Ds.

Lemma 5 If h ≤ 4/5, an optimal solution to PR re-
quires mutually spanning sets of size at most 3. 3

By Lemma 5, a dynamic program which add disks to
the solution in a left-to-right fashion need only con-
sider up to triples of disks to terminate sub-problems
to ensure that the sub-problems are independent and
optimal. Such a dynamic program is described in Al-
gorithm 2. In the algorithm, D2 and D3 are the sets
of mutually spanning doubles and triples of disks re-
spectively, and D is the set of all sets of disks under
consideration. Given two sets Di,Dj ∈ D, if Di cov-
ers points left of Dj , and Dj does not cover points left
of Di, we write Di <c Dj to indicate this relationship.
Otherwise, we consider them incomparable under this
operator. Hence, we may establish a partially ordered
set over all of the sets in D w.r.t. the <c operator. Note
that directed cycles are impossible in this set, since the
transitive property holds for the <c operator. We im-
pose a topological sorting D = {D1, . . . ,D|D|} so that
for any two sets Di,Dj in this ordering, we have that
i < j → Dj 6<c Di.

The correctness of Optimal-PR follows from the fact
that all points left of a set Di are covered in a valid
solution to a subproblem terminating with Di, and all
mutually spanning sets up to size three are considered.
Optimal-PR runs in O(m6n) time: there are O(m3)
possible combinations of disks that we consider in two
nested for loops, and inside the nested loop we check
the disks against the point set P.

2.3 Combining solutions for PR and PR
Recall that the approximation factor for covering the
entire set of PR is 2d1/k − 1/2e and 4d1/k − 1/2e
for covering PR, where k is the width of the rectan-
gles. We simply sum these factors to get an overall
approximation factor of 6d1/k − 1/2e < 3d1/

√
1− h2e

for strips of arbitrary height h < 1. The running time is
O(m2n+n log n), effectively dominated by the SSDUDC
algorithm used to cover PR.

4A similar dynamic programming algorithm applies to larger
strips, but the running time increases rapidly with h.
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Algorithm 2 Optimal-PR (D,PR) (Assumes k ≥
6/5)

D← D ∪D2 ∪ D3, m′ ← |D|
Topologically sort D on the <c operator
c[0] = 0, c[1 . . .m′] =∞
for i = 1 . . .m′ do

for j = 0 . . . i− 1 do
size ← c[j] + |Di|
if size < c[i] and no points lie between Di and Dj

then
c[i]← size

Backtrack on c to recover optimal cover D?

return D?

4-approximation when k ≥ 2/3 (h ≤ 2
√

2/3). We
have a 2-approximate algorithm for PR when k ≥ 2/3,
and we may solve each gap of PR optimally. For the
purposes of counting, we may assume that the disks
forming the cover for each gap are equally distributed
amongst the neighbouring intervals for both the approx-
imate solution and the optimal one. We are not in-
terested in the worst-case approximation factor in any
given interval; rather we are interested in the approxi-
mation factor over the strip as a whole. For each gap,
only disks found in adjacent intervals may form part of
the solution. Disk centres are located at least a distance
1/3 from the end of an interval, and so disk centres in
non-adjacent intervals are more than unit distance away
from the gap. Thus, for each interval of the strip, as-
sume that n` (resp. nr) disks are used for covering the
gap to the left (resp. right), and ns disks are used for
covering the points in the interval. The minimum num-
ber of disks required is max{n`, ns/2, nr}, since both n`

and nr are optimal and ns is a 2-approximation. We
conclude that n` + ns + nr ≤ 4 ·max{n`, ns/2, nr}, and
thus it is a 4-approximation algorithm. Again, the run-
ning time is O(m2n + n log n).

3-approximation when k ≥ 6/5 (h ≤ 4/5). We have
optimal algorithms for computing the cover of each gap
of PR and each interval of PR. Further, the disks cov-
ering a gap only come from the two adjacent intervals,
and the disks covering an interval only come from the
interval itself. Since the disks in each interval can con-
tribute to only three problems, each of which is solved
optimally, the worst-case is that three times the opti-
mal number of disks is used. The running time of the
algorithm is dominated by Optimal-PR, so the overall
running time is O(m6n).

Corollary 6 There is a 15- (resp. 16-) approximate
algorithm for DUDC, which runs in O(m6n) (resp.
O(m2n + n log n)) time.

3 Hardness of WSDUDC

We prove that WSDUDC is NP-complete by reduc-
ing from the minimum vertex cover problem (Vertex-
Cover) on planar graphs of maximum degree three,
which is known to be NP-complete [8]. Recall the
setting for Vertex-Cover: We are given a graph
G = (V,E), and we seek a minimum cardinality sub-
set V ? ⊆ V such that for all e(i,j) = (vi, vj) ∈ E, either
vi ∈ V ? or vj ∈ V ?. In other words, the vertex cover is
a minimum cardinality hitting set of all of the edges in
the graph.

Theorem 7 WSDUDC is NP-complete.

WSDUDC is in NP, since a certificate may be pro-
vided as a set of disks that covers all of the points in P,
which is trivial to verify.

In the reduction, we create an instance of WSDUDC
from a planar graph so that a solution D? to the WS-
DUDC problem provides a solution V ? to the Vertex-
Cover problem on the graph. For our reduction, it is
easier to consider the dual (disk piercing) setting of WS-
DUDC. The Within-Strip Discrete Unit Disk Piercing
problem (WSDUDP) accepts a set of points Q, a set
of unit disks DP with centre points P, and a strip of
height h as inputs, and computes the minimum number
of points Q? ⊆ Q such that each disk in DP contains at
least one point from Q?. Let WS(G) be the WSDUDP
instance created from a graph G. Note that a solution
Q? for WSDUDP is exactly the set of centre points to
D?, the optimal solution to the WSDUDC problem in
the primal setting.

Assume that we have a planar embedding of the graph
and a horizontal strip so that the terms left, right, above
and below are all well defined. Let `vvert be a vertical
line through vertex v. For the reduction, we make use
of dummy vertices, which are simply extra vertices that
we may place on an edge of the graph G. A dummy edge
is an edge which is incident upon at least one dummy
vertex. Informally, the steps of the reduction are:

1. Obtain a planar embedding of G where each vertex
has a distinct x-coordinate.

2. For any vertex v with degree three where all inci-
dent edges are left or right of `vvert, ‘bend’ the lowest
edge with a dummy vertex so that the edge becomes
incident to v from the opposite side of `vvert, call this
new graph G′ = (V ′, E′).

3. For each vertex v ∈ V ′, add a dummy vertex at
each point where `vvert ∩ e 6= ∅,∀e ∈ E′.

4. Identify each vertex v of degree one or two where
all edges are incident on the same side of `vvert, say
w.l.o.g. the edges are incident from the right. Place
a vertical line `vert between v and the next vertex
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to the left, and add a dummy vertex at each point
where `vert ∩ e 6= ∅,∀e ∈ E′. This ensures that
consecutive vertical arrays of vertices differ in car-
dinality by at most one.

5. For any pair of vertices vi, vj ∈ V , ensure that an
even number of vertices occur any path from vi to
vj in G′, by adding additional dummy vertices.

6. Create the WSDUDP instance WS(G) from G′ so
that every edge in E′ corresponds to a disk in D and
every vertex in V ′ to a point in Q. We then show
that an optimal solution to WSDUDP provides an
optimal cover for G′, from which an optimal vertex
cover for G may be found, as required.

Lemma 8 Given an edge e(i,j) of the graph G = (V,E),
we can add a pair of adjacent dummy vertices Vd =
{vi1 , vi2} along the edge e(i,j) to create the graph G′ =
(V ∪Vd, E ∪{e(i,i1), e(i1,i2), e(i2,j)}\{e(i,j)}). The graph
remains planar, and the size of the optimal solution to
Vertex-Cover over G′ is |V ?| + 1, where V ? is the
set of vertices in a minimum vertex cover of G. 3

Lemma 9 Given any optimal solution V ?
G′ to Vertex-

Cover on G′, we can find an optimal solution V ?
G to

Vertex-Cover on G in polynomial time. 3

An example WSDUDP construction WS(G) is shown
in Figure 2, to provide intuition for the gadgets used
in the reduction. Each edge of the graph G′ (actual
or dummy) corresponds to a disk in WS(G), and each
vertex (actual or dummy) corresponds to a point in Q.
A point in Q stabs two disks in WS(G) if the degree
of the corresponding vertex in G′ is two; the remaining
points stab three disks and their corresponding vertices
have degree three.

A wire wi is a sequence of disks positioned so that
consecutive centres are spaced ddisk units apart, not
necessarily collinearly, where 2

√
1− h2

` < ddisk <√
2 + 2

√
1− (3h`/4)2, so that there exists a small area

of overlap between consecutive disks which contains
a point in Q.5 Disk centres on adjacent wires are
dvert = 3h`/2 units apart vertically, and we define a
stack as a set of such vertically aligned disks. The cen-
tres of the disks in a stack are shifted within the strip
by dvert/2 relative to an adjacent stack when the num-
ber of disks in the two stacks differs, while the distance
between consecutive centres in each wire remains ddisk.

Lemma 10 There is a non-empty area of intersection
between three disks in consecutive stacks when the cen-
tres of the stacks are shifted by dvert/2 relative to each

other, and ddisk <
√

2 + 2
√

1− (3h`/4)2. 3

5Note that 2
√

1− h2
` <

√
2 + 2

√
1− (3h`/4)2 for h` > 0.

3.1 Gadgets

In the graph, we may encounter vertices of degree one,
two, or three. With each vertex, wires may begin, end,
split, merge, or continue unchanged. For vertices of de-
gree one, the incident edge will correspond to a terminal
disk on a wire. For vertices of degree two, if one edge
leaves to the left and the other to the right in the em-
bedding, this is a trans-2 vertex, and we handle it by
continuing all wires. If both edges go in the same direc-
tion (left or right), we call this a cis-2 vertex, and we
have a gadget to merge the pair of wires corresponding
to the edges. Analogously, we have gadgets for both
the trans-3 and cis-3 degree three vertices. Finally, we
build a gadget to increase the number of vertices on an
edge. With each gadget, we apply the analogous modifi-
cation to G′ by adding dummy vertices to the respective
edges. This ensures that an optimal solution to WS(G)
corresponds exactly to an optimal vertex cover for G′.

cis-2 Gadget. In this case, a pair of wires will ter-
minate, and since the two terminal disks correspond to
a pair of edges sharing a vertex, we place a vertex in the
area covered by both disks and no others. An extra col-
umn of dummy nodes should be used to extend all other
wires if the vertex is on an interior face of the planar
embedding of the graph, since two wires are terminated
simultaneously, and we may only shift wires by dvert/2
with each column.

trans-3 Gadget. Suppose we have an upper wire
ending in disk Du and a lower wire ending in disk Dl,
and they merge into a single wire beginning with disk
Dc. Therefore, we can place Dc at a point so that the
distance between the centres of both Dc to Du and Dc

to Dl is ddisk, as described in Lemma 10. By placing a
vertex in Dc ∩Du ∩Dl, a single point stabs three disks,
which corresponds to a vertex which can cover three
edges in the graph.

cis-3 Gadget. For this gadget, we combine the
trans-3 and cis-2 gadgets to build a cis-3 configura-
tion. In the planar graph embedding, this corresponds
to introducing a bend in the lowest edge incident to the
cis-3 vertex with a dummy vertex, so that it becomes a
trans-3 vertex.

Card+ Gadget. If the total number of dummy ver-
tices added to an edge of G is odd, we require a gadget
which increases the number of disks between a pair of
points on a wire by one. An extra disk whose centre is
very close to the centre point of a disk on the wire allows
points to be placed so that the wire remains indepen-
dent from adjacent wires, while increasing the number
of disks on the wire by one.

Now an instance of WSDUDP WS(G) may be con-
structed from any planar graph G with no vertex of
degree greater than three. A solution Q? to WS(G) is
also a solution V ?

G′ to the Vertex-Cover problem on
G′ = (V ′, E′), where vi ∈ V ′ is mapped to qi ∈ Q and
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}}

dvertdvert/2 ddisk

`1

`2

(a)

(b)

trans-2

cis-3

trans-3

cis-2

Figure 2: A sample WSDUDP construction WS(G) for the NP-hardness reduction. (a) Given a graph G, we compute
a planar embedding (see Section 3.1 for vertex classes). (b) We construct a series of stacks of disks, where disks in
adjacent stacks have slight overlap. The disk centres in each stack are aligned vertically and separated by a fixed
distance dvert. The number of disks in adjacent stacks may only vary by one. If two consecutive stacks have the same
number of disks, the centres are aligned horizontally and separated by ddisk. If two consecutive stacks have differing
numbers of disks, the centres are staggered vertically by dvert/2, so that each disk centre is ddisk from two disk centres
in the adjacent stack (thus, these stacks are distance

√
d2disk − d2vert apart). The points of Q are indicated by squares;

those points stabbing three disks are empty. The centre points of the disks P are displayed as filled circles.

qi ∈ Dj ↔ vi ∈ ej ∈ E′. By Lemma 9, we can find
a minimum vertex cover V ?

G for G from V ?
G′ in poly-

nomial time. Therefore, there is a hitting set of size
c + (|D| − |V |)/2 for WS(G) if and only if there exists
a vertex cover of size c for G (exactly half of the extra
points added in the construction of WS(G) from G are
required for a hitting set for D). The number of disks
stacked vertically in any column of WS(G) is in O(m),
where m is the number of edges and n is the number of
vertices in the graph G. The number of such stacks is
in O(n), so the total number of disks and points in the
WSDUDP construction is O(mn). This completes the
proof of Theorem 7.

4 Conclusions

We outlined several approximation algorithms for WS-
DUDC and a proof of NP-completeness. The gen-
eral 3d1/

√
1− h2e-approximate algorithm and the 4-

approximation for strips of height ≤ 2
√

2/3 both run in
O(m2n + n log n) time. The 3-approximate algorithm
for strips of height ≤ 4/5 runs in O(m6n) time.

References
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