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Covering Points with Disjoint Unit Disks

Greg Aloupis∗ Robert A. Hearn† Hirokazu Iwasawa‡ Ryuhei Uehara§

Abstract

We consider the following problem. How many points
must be placed in the plane so that no collection of
disjoint unit disks can cover them? The answer, k, is
already known to satisfy 11 ≤ k ≤ 53. Here, we im-
prove the lower bound to 13 and the upper bound to
50. We also provide a set of 45 points that apparently
cannot be covered, although this has been determined
via computer search.

1 Introduction

In 2008, Japanese puzzle designer Naoki Inaba proposed
and solved an interesting question [3, 4], which was to
determine if every given configuration of 10 points can
be covered by identical coins. Any number of coins can
be used, but they cannot overlap. That is, Inaba proved
the following lower bound.

Theorem 1 [Inaba] Any configuration of 10 points in
the plane can be covered by disjoint unit disks.

Inaba gave an interesting proof based on the prob-
abilistic method (see [6, 8]), and asked the natural
extension: How many points do we need to use, so that
their appropriate arrangement cannot be covered by
disjoint unit disks?

Let k be the size of the smallest point set that is
not coverable. Inaba’s theorem states that 11 ≤ k, and
trivially k is finite; if we place sufficiently many points
on a fine lattice, disjoint disks cannot cover them all
(see Figure 1). This problem gained popularity within
the puzzle society in 2010 (at the 9th Gathering 4 Gard-
ner). Winkler [7] proposed a configuration of 60 points
that cannot be covered by disjoint disks. Winkler also
suggested how to improve the lower bound in [8], but
this has not been settled1. Elser [1] improved the upper
bound to 55, and Okayama et. al [6] further improved
this to 53.
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Figure 1: A dense point set that cannot be covered by
disjoint unit disks.

In this paper, we improve the known bounds as fol-
lows.

Theorem 2 Let k be the size of the smallest point set
that is not coverable by disjoint unit disks. Then 13 ≤
k ≤ 45.

That is, we improve the lower bound from 11 to 13, and
the upper bound from 53 to 45.

For the lower bound, we give a refinement of Inaba’s
proof based on the probabilistic method. For the upper
bound, we have used two different approaches. First
we give a configuration of 50 points on a lattice, for
which an analytical proof exists. This is an improve-
ment over the solution in [6], from which we remove
three points. We also state a better upper bound of
45. The validity of this configuration has been deter-
mined via an exhaustive computer search, however we
note that a mathematically rigorous proof remains to
be shown. Finally we mention that it is NP -complete
to decide if a given set of n points can be covered [2].

2 Preliminaries

We say that a disk C is placed at (x, y) if its center is
placed at the point (x, y). This is sometimes denoted
by C(x, y). To simplify our arguments, let each unit
disk be open, so that it does not cover points on its
boundary. Using a perturbation technique, our results
can be applied to closed disks as well. We denote by
|A| the area of a bounded region A in the plane. A
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Figure 2: An infinite configuration S(0, 0) of unit disks.

region S in the plane is periodic if there is a bounded
region A ⊂ R2 such that for any vector (x, y) ∈ R2 there
is a vector (a, b) ∈ A with S + (x, y) = S + (a, b). A
measurable minimum-area set A with this property is
then said to be a fundamental region for S. The density
ρ(S) of S is defined by

ρ(S) =
|S ∩A|
|A|

which is independent of the choice of A, if A is a funda-
mental region for S.

3 Lower bound

In this section, we show that 13 ≤ k. That is, any set of
12 points can be covered by disjoint unit disks. Let S be
the union of unit disks placed at (2i+ (j mod 2), j

√
3),

for i, j ∈ Z. (See Figure 2.) S is then periodic. Its
fundamental set is the regular hexagon H with vertices
at (±1,±

√
3/3) and (0,±2

√
3/3). Its density is thus

ρ(S) = |S ∩H|/|H| = π/
√

12 ∼ 0.9069. We will show
that any 12 points in the plane are covered by S+(x, y)
for some (x, y) ∈ H.

Inaba’s proof for 10 points notes that if (x, y) is chosen
uniformly from H then any fixed point in the plane is
covered by S + (x, y) with probability ρ(S) > 9/10.
Thus, of any 10 points, the expected number covered by
S+ (x, y) is greater than 9; it follows that with positive
probability S+(x, y) will cover all ten points. Of course,
only at most 10 of the disks in S + (x, y) are actually
needed to cover the points.

We refine Inaba’s method to show:

Lemma 3 Any configuration of 12 points can be cov-
ered by S + (x, y), for appropriate values of x and y.

Proof. (Outline) We denote by S + (x, y) the set of
points that are not covered by S + (x, y). Since (a, b) ∈
S + (x, y) if and only if (x, y) ∈ S − (a, b), we have:

Observation 1 Let X be a set of m points p1 =
(x1, y1), p2 = (x2, y2), . . . , pm = (xm, ym). Then the
following statements are equivalent.

1. For all (x, y) ∈ H, S + (x, y) fails to cover X.

2. ∪i=1,...,mS − (xi, yi) covers the plane;

3. ∪i=1,...,mS − (xi, yi) covers H.

For x ∈ [−1, 1], let P (x) be the vertical line segment
consisting of all points in H of x-coordinate x. Then

the ratio φ(x) =
∣∣∣S + (x, y) ∩ P (x)

∣∣∣/|P (x)| (where the

set-measure is now ordinary one-dimensional length) is
given by

φ(x) =
(√

3−
√

1− x2 −
√

2|x| − x2
)
/
√

3.

Thus, by Observation 1, to prove Lemma 3 it is sufficient
to establish that

min{φ(x)+φ(x−d1)+φ(x−d2)+ · · ·+φ(x−d11)} < 1

for any real numbers d1, d2, . . . , d11. Let
ψ(x; d1, d2, . . . , d11) = φ(x) + φ(x − d1) + φ(x −
d2) + · · · + φ(x − d11). We will prove that
max min{ψ(x; d1, . . . , d11) | 0 ≤ x ≤ 1} is given
when di = i/12 for i = 1, . . . , 11, and then
max min{ψ(x; d1, . . . , d11) | 0 ≤ x ≤ 1} ≈ 0.942809 < 1.
We omit the details of this calculation, which will be
given in the electronic proceedings. �

4 Upper bounds

In this section, we state two upper bounds, by providing
configurations of point sets that cannot be covered. Our
first set is simply a subset of 50 points taken from the
pattern in [6]. In fact this configuration is constrained
to a triangular lattice, which permits a concise proof.
The second set contains only 45 points and was checked
by a computer program that is based on a non-trivial
exhaustive search. Although disk placement is not a
finite process, we explain how this problem can be solved
in a discrete way.

4.1 50-point configuration on a triangular lattice

The configuration is given in Figure 3. This is based
on a triangular lattice; the smallest equilateral triangle
is on a circle of radius 2

√
3/3 − 1. Unless mentioned

otherwise, when we use the term “triangle”, we will be
referring to three points that are mutual neighbors on
the lattice, i.e., forming the equilateral triangle men-
tioned. The radius 2

√
3/3 − 1 was chosen to be the

largest value satisfying the following property:

Lemma 4 ([6]) The three points forming a triangle
cannot be covered by three disjoint unit disks.
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Figure 3: A 50-point configuration that cannot be cov-
ered by disjoint unit disks.

Thus, if our set of 50 points is to be covered by disjoint
unit disks, each triangle must be covered by either one or
two disks. We say that a disk partially covers a triangle
if it only covers one or two of its points. A chain is
a sequence of triangles t1, t2, . . . , th, with consecutive
triangles sharing a common edge.

Lemma 5 Suppose that the chain t1, t2, . . . , th is cov-
ered, and every disk involved only covers triangles par-
tially. Let C and C ′ be two disks that cover t1. Then
the entire chain is covered only by C and C ′.

Proof. By Lemma 4, without loss of generality assume
that two points p1, p2 of t1 are covered by C, and the
remaining point p3 is covered by C ′. Consider the first
two triangles (h = 2). By definition, t1 and t2 share
two points. It is not possible for t2 to share p1 and
p2, since C cannot cover both points without covering
either p3 or the third point of t2, which would contradict
the assumption about partial coverage by every disk.
Thus we can assume that the two triangles share p1
and p3, which as mentioned are covered by C and C ′

respectively. By Lemma 4, the third point of t2 must
be covered by C or C ′. Our claim follows by iterating
through adjacent pairs of triangles in the chain. Every
such pair must share two points that are not covered by
the same disk. �

Now we are ready to show the upper bound:

Theorem 6 The 50-point configuration in Figure 3
cannot be covered by disjoint unit disks.

Proof. In the configuration, there are 10 vertical
columns, each containing 5 points. The columns are
labeled `1 to `10 from left to right. Let pj1, p

j
2, p

j
3, p

j
4, p

j
5

be the five points on `j from top to bottom. Notice
that by rotating a half-turn, the same configuration is
obtained.

For the sake of contradiction, suppose that the config-
uration is covered. Let the centers of the configuration
be the points c0 = p63 and c1 = p53, as shown in Figure 3.
Let C0 be a unit disk that covers c0 or c1. (Choose ar-
bitrarily, if the two centers are covered by two different
disks.) It is easy to see that C0 cannot cover points both
in `1 and in `10 since the distance between `1 and `10
is around 2.08846. Without loss of generality, assume
that no point in `1 is covered by C0. More precisely,
suppose that the first r columns are not covered by C0.
Then we have 1 ≤ r ≤ 5.

Suppose that pr+1
1 and pr+1

5 are not covered by C0.
In other words, C0 covers all points pr+1

k1
, . . . , pr+1

k2
for

some 2 ≤ k1 ≤ k2 ≤ 4. Then, by Lemma 5, pr+1
k1−1

and pr+1
k2+1 must be covered by one disk, since a suitable

chain connecting the two always exists. However, by
convexity, this is impossible.

Therefore, C0 covers pr+1
1 or pr+1

5 . We first consider
the case that C0 covers pr+1

5 . We distinguish between
two subcases, depending on the parity of r as shown in
Figure 4 or Figure 5.

q0
q1 q3

q4
q5

q2

p45

C0

C1

q6

p35

Figure 4: Contradiction for r = 3.

Subcase r = 1, 3, 5: We consider a polyline L =
(q0, q1, q2, q3, q4, q5, q6) defined by q0 = pr1, q1 = pr+1

1 ,
q2 = pr+2

1 , q3 = pr+3
1 , q4 = pr+4

2 , q5 = pr+4
3 , and

q6 = pr+4
4 . Figure 4 illustrates the case for r = 3. Re-

call that C0 covers pr+1
5 and at least one of the two

centers c0 and c1, and does not cover any point in `r.
Given these restrictions, we claim that the boundary of
C0 must cross L. It suffices to show that some vertex
of L is contained in C0, since q0 is not. For r = 1, q6
lies on the segment joining pr+1

5 and c0. Also, q5 = c1.
Therefore regardless of which center is in C0, a vertex
of L is also in C0. For r = 3 and r = 5, C0 must cover
even more of L. Specifically, C0 cannot reach to cover
c0 or c1 while containing pr+1

5 and excluding q6.
Let z be the smallest index such that qz is contained in
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C0. Given the convexity of C0 as well, we can determine
that there must exist a chain of triangles such that every
triangle is partially covered by C0. Furthermore this
chain starts with a triangle that has pr5, p

r+1
5 as an edge,

and ends with a triangle that has qz−1, qz as an edge.
By Lemma 5, qz−1 is covered by the same disk as pr5.

An example of a chain is illustrated in Figure 4. Each
triangle contains either one or two points covered by
C0. For any given placement of C0, the chain is easy
to determine. Regardless of the value of z, the coverage
requirement is geometrically impossible. For example,
in Figure 4, to achieve the smallest overlap, C1 passes
through p35 and q3, and C0 passes through p45 and q4
(precisely, C0 and C1 are closer since they are open
disks). In the case, the distance between the centers
of C0 and C1 is

√
3.57198 = 1.88997 < 2. (Letting p35 =

(0, 0), p45 = (2−
√

3, 0), q3 = ((2−
√

3)/2, 5(
√

3− 3/2)),
and q4 = (3(2−

√
3)/2, 5(

√
3−3/2)), we solve x21+y21 = 1

and (x1 − ((2 −
√

3)/2))2 + (y1 − (5(
√

3 − 3/2)))2 =
1 for C1(x1, y1), and (x0 − (2 −

√
3))2 + y20 = 1

and (x0 − (3(2 −
√

3)/2))2 + (y0 − (5(
√

3 − 3/2)))2 =
1 for C0(x0, y0). Then we have (x0, y0, x1, y1) =
(1.14135, 0.487011,−0.739421, 0.673243) and (x1 −
x0)2 + (y1 − y0)2 = 3.57198.) Therefore, C0 and C1

overlap in this case. All cases are summarized in Table
1. In each case, the distance is less than 2, and hence
the disks C0 and C1 overlap.

Case q0 ∈ C1, q1 ∈ C1, q2 ∈ C1,
q1 ∈ C0 q2 ∈ C0 q3 ∈ C0

Distance 1.92528 1.89161 1.88996

Case q3 ∈ C1, q4 ∈ C1, q5 ∈ C1,
q4 ∈ C0 q5 ∈ C0 q6 ∈ C0

Distance 1.88997 1.89160 1.88588

Table 1: Distance in each case (r:odd)

Subcase r = 2, 4: In this case, we just change the defi-
nition of the polyline L = (q0, q1, q2, q3, q4, q5) as shown
in Figure 5 (for r = 2). The distances between the two
disk centers are summarized in Table 2. In each case,
the distance is less than 2. Thus the disks C0 and C1

overlap.

Case q0 ∈ C1, q1 ∈ C1, q2 ∈ C1,
q1 ∈ C0 q2 ∈ C0 q3 ∈ C0

Distance 1.92528 1.89161 1.90467

Case q3 ∈ C1, q4 ∈ C1,
q4 ∈ C0 q5 ∈ C0

Distance 1.86166 1.81971

Table 2: Distance in each case (r:even)

The last case is that C0 covers pr+1
1 (We also know

q0
q1

q3
q4

q5

q2

p35

C0

C1

p25

Figure 5: Contradiction for r = 2.

that it does not cover pr+1
5 , although this does not affect

our analysis.) In this case we flip L as shown in Figure 6.
We also change how we handle the parity of r, since pr+1

1

is on the convex hull if and only if pr+1
5 is not.

Figure 6: Polylines for r = 2 and r = 5.

We conclude that in all cases it is impossible to cover
all points in Figure 3 with disjoint unit disks. �

4.2 45-point configuration

The configuration given in Figure 7 consists of 45 points
equally spaced on three concentric circles: 3 points on
the circle of radius 0.1, 21 points on the circle of radius
0.721, and 21 points on the circle of radius 1.0001. By
computer search, we have determined that this set can-

Figure 7: A 45-point configuration that cannot be cov-
ered by disjoint unit disks.
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not be covered. This set was found heuristically, using
the search program interactively.2

The search program exhaustively considers all possi-
ble ways of covering the given points with disks. This is
not obviously a discrete combinatorial search problem
— there are an infinite number of possible disk place-
ments. Therefore, we describe here how the search al-
gorithm works.

The algorithm considers (in principle) all possible
ways of assigning points to disks that must cover them.
This is a discrete search. For each such partition of the
points, the algorithm proves conservative bounds for the
location of the center of each disk, represented as a rect-
angle that must contain the disk center. For example,
when a disk C is assigned its first point, its rectangle is
set to a square of size 2 centered on the point. As more
points are assigned to C, the rectangle can be shrunk:
no rectangle edge can be farther than 1 from any point
p that must be covered. Similar rectangle restrictions
may be applied based on the requirement that the disks
do not overlap. Sometimes a rectangle may be shrunk to
nonexistence, ruling out the current point assignment.
This pruning makes the search over all point partitions
tractable; most partitions are ruled out without ever
being considered explicitly.

If a point assignment survives this first stage of anal-
ysis, we are left with a “candidate solution”: an assign-
ment of points to disks, and for each disk, a correspond-
ing rectangle. The problem then is to find a solution
within this space, or prove that none exists.3 To do this,
we subdivide the largest rectangle, and recursively con-
sider each candidate solution. Eventually, all rectangles
are shrunk to the point where either a solution is easy to
find (by testing, for example, the rectangle centers), or
we can prove impossibility, via the same geometric rect-
angle restrictions used in the initial part of the search.
For example, if we have two disk rectangles that can
together be contained in a circle of radius < 2, we can
rule out this candidate, because any disk placement re-
specting these bounds will have overlapping disks (see
Figure 8).

Finally, we must mention numerical issues. Our pro-
gram uses IEEE double-precision floating point num-
bers. We must ensure that roundoff problems do not
cause us to miss a solution. The program uses an ad-
justable numerical tolerance ε for all of its geometrical
restrictions — all operations are performed conserva-
tively to this tolerance. (For example, if two points are
< 2 + ε apart, the program will not rule out the possi-
bility of coverage by a single disk.) This means that in
principle, the program could be unable to either find a

2This general family of configurations was suggested by Bram
Cohen.

3At this stage, the problem could also be treated as a quadrat-
ically constrained quadratic program, for which solvers exist (e.g.,
[5]). Our solution is optimized for this particular application.

Figure 8: A candidate solution that can be ruled out:
any placement will have overlapping disks.

solution or prove that none exists. However, this has not
been a problem for the configurations we have searched.
IEEE floating point is accurate to 15 decimal places, and
we have set ε = 10−5, giving us a high confidence that
our results are correct.

5 Concluding remarks

We provide lower and upper bounds for the size k of
the smallest point set that cannot be covered by dis-
joint unit disks. Our conclusion is that 13 ≤ k ≤ 45.
We conjecture that the true value lies closer to 45. For
the lower bound, we have restricted to considering only
the fixed configuration in Figure 2 and its translation.
By considering rotations and other arrangements of unit
disks, the bound might be improved. Moreover, since
the bound is (essentially) obtained via the probabilistic
method, it is not likely to be tight. We are currently
working on a concise mathematical proof for the con-
figuration of 45 points in Figure 7. Small perturbations
are not likely to yield improvements. For instance, if
the second radius is reduced to 0.720 from 0.721, our
program finds a covering. Also, our program has de-
termined that removing any points from the 50-point
configuration always yields a covering.
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