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Unfolding Rectangle-Faced Orthostacks
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Abstract

We prove that rectangle-faced orthostacks, a restricted
class of orthostacks, can be grid-edge unfolded without
additional refinement. We prove several lemmas appli-
cable to larger classes of orthostacks, and construct an
example to illustrate that our algorithm does not di-
rectly extend to more general classes of orthostacks.

1 Introduction

An unfolding of a polyhedron is a cutting of the surface
of the polyhedron such that the surface may be unfolded
into the plane as a simple polygon where the interior
of any two faces does not overlap. An edge unfolding
considers only cuts made along edges, while general un-
foldings allow cuts anywhere on the surface.

There are many open questions relating to polyhe-
dral unfoldings. For example, while it is known that
not every nonconvex polyhedron has an edge-unfolding,
it is still open whether every polyhedron has a gen-
eral unfolding. In general, progress has been made on
this problem by considering restricted classes of poly-
hedra [2, 3, 10, 5] or by varying the type of cuts that
are allowed, such as vertex unfoldings [7, 6, 4] or star
unfoldings [1, 9]. See [8, 11] for surveys of this area.

We will consider an unrefined grid-edge unfolding of a
class of axis-orthogonal polyhedra known as orthostacks
(formally defined in Section 2). An unrefined grid-edge
unfolding creates new edges on the surface of a poly-
hedron by intersecting the surface with planes parallel
to the x, y, z−axes through every vertex of the polyhe-
dron. Any of the edges from the original polyhedral
surface as well as these new edges are now available for
cutting. The technique of grid-edge refinement can be
generalized by further dividing every rectangle of the
surface into k × l rectangles. An unrefined grid-edge
unfolding is thus a 1 × 1 refinement. It is known that
every orthostack can be grid-edge unfolded with a 1× 2
refinement [2]. In this paper we prove that a certain
class of orthostacks (which we call “rectangle-faced or-
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Figure 1: (a) An example of an orthostack. (b) A
rectangle-faced orthostack.

thostacks”) can be grid-edge unfolded without further
refinement of the surface.

Our algorithm is a natural one given the structure
of orthostacks, where we unfold each layer of the or-
thostack and connect them via “bridges” between the
layers. It has a similar setup to the one for the 1 × 2
refinement [2], although theirs cannot choose bridges
in the same fashion; they instead cut each band verti-
cally in half to ”shift” the bridge-rectangle to the top
position. Unfortunately, our algorithm will not extend
to general orthostacks; in section 5 we present a (non-
rectangular-faced) orthostack which our algorithm fails
to unfold. We conclude with a discussion of how our
structural results may be useful for computing 1 × 1
unfoldings of more general classes of orthostacks.

2 Definitions

An orthostack P is a genus-zero axis-orthogonal poly-
hedron with the property that that in at least one di-
mension, each distinct cross section of P is an orthog-
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onal polygon that is both connected and simply con-
nected (containing no holes). Without loss of gener-
ality, assume this dimension is the z−dimension. Fol-
lowing the terminology used in [2], we name the faces
of the orthostack according to the axis to which they
are orthogonal, thus giving rise to x−, y− and z−faces.
Changes in the z−cross sections of an orthostack occur
at finitely many z−coordinates z0, z1, . . . , zk. We call
the i-th band Bi the collection of x− and y−faces that
form the boundary of the orthostack for zi−1 ≤ z ≤ zi,
where i ranges from 1 to k. So the faces of the or-
thostack P are therefore partitioned into bands Bi

(1 ≤ i ≤ k) and the z−faces that occur in the planes
z = z0, z = z1, . . . , z = zk. Note that the z−faces oc-
cur at the “top” and “bottom” of the orthostack as well
as in the layers forming transitions between bands. We
will also let layer Li be the subset of the orthostack
with zi−1 ≤ z ≤ zi, which is the 3-dimensional solid
bounded by Bi, z = zi−1, and z = zi.

We call an orthostack rectangle-faced if every z−face
is a rectangle, excluding the z−faces on the top of bot-
tom of the orthostack, and edges of these z-faces are en-
tirely along one band or another (with no edge belonging
to both adjacent bands). Examples of orthostacks with
and without the rectangle-faced property are shown in
Figure 1.

3 Structural results

We begin with several structural lemmas regarding or-
thostacks. Note that these results apply to any or-
thostack, not just rectangle-faced ones, and may be of
use for more general classes of orthostacks.

Lemma 1 Any z-face at height z = zi, 1 ≤ i ≤ k − 1,
must be incident to both Bi and Bi+1.

Proof. Suppose to the contrary that some z-face, R,
at height z = zi has edges only incident to one band,
which we assume without loss of generality is Bi. The
face R does not occur at z = z0 or z = zk due to our
initial assumption on i, so there must exist a subset
of Bi ∩ (z = zi) that is not incident to R. (Else, the
orthostack will not continue past the face R, a contra-
diction.) The intersection produced by slicing the or-
thostack with a plane z = zi − ε for a sufficiently small
value of ε will either be disconnected or a degenerate
polygon consisting of (at least) two polygons attached
at a single vertex. Both situations contradict the defini-
tion of an orthostack, since each z-slice must be a simply
connected polygon. Therefore, R must have edges inci-
dent to both Bi and Bi+1. �

Lemma 2 The perimeter of any z-face at height z = zi,
1 ≤ i ≤ k − 1, is partitioned into two contiguous com-
ponents, one incident to band Bi and the other incident

to Bi+1. Moreover, some pair of opposite edges a and
b of the face will have edge e1 containing a segment in-
cident to Bi and edge e2 containing a segment incident
to Bi+1.

Proof. Assume that the boundary of a z-face R is
partitioned into more than two contiguous components
from bands Bi and Bi+1; see Figure 2. At this zi layer,
the rectangle must be visible; this happens due to a
change in the layers of the orthostack. Namely, the
cross-sections above and below z = zi are distinguished
by which cross-section includes R. Thinking of R in
terms of x and y coordinates, we assume without loss
of generality that, for sufficiently small ε, R× [zi− ε, zi]
is contained in layer Li and R× [zi, zi + ε] is exterior to
layer Li+1.

Figure 2: A 3-dimensional view of how rectangle R
(shaded darker) appears in the orthostack; the adjacent
portions of Bi and Bi+1 that border R are shown red
(striped) and blue (solid).

Since each intersection of the orthostack with a z-
plane is one simply connected polygon, the two or more
connected components of R ∩ Bi+1 must be pathwise
connected to one another via Bi+1 ∩ (z = zi), a curve
we color solid blue in Figure 3. Moreover, since the blue
curve is the boundary of a simply connected polygon in
the z = zi plane, it will not self intersect.

Two possible orientations of these paths are given in
Figure 3, where the rectangle boundaries shaded in red
come from band Bi and those from Bi+1 are shaded in
blue. In case 1 (Figure 3, left), there is a region (il-
lustrated near the upper right corner of the rectangle)
exterior to the cross section of the rectangular face but
completely surrounded by the union of the rectangle
with the area bounded by the solid blue curve. This
forms a cross-section at z = zi in the orthostack which
fails to be simply connected, contradicting the defini-
tion of orthostack. In case 2 (Figure 3, right), the blue
curve represents an “inner” boundary of Bi+1, which
means that the cross section at z = zi will also fail to be
simply connected (since there is a gap between the rect-
angle and the blue curve marking the inner boundary
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Figure 3: Two possible visualizations for our face R,
where the red (dashed) component of the boundary is
adjacent to band Bi and the blue (solid) is adjacent to
band Bi+1.

of Bi+1). In either case, we contradict the assumption
that the original object was an orthostack and therefore
had simply connected orthogonal cross sections.

Note that in either of the two cases, the contradic-
tion appears between two components of the boundary
of R induced by Bi+1 that appear sequentially around
the boundary of R. While our image only shows 2
connected components total, the same contradiction is
present even if more than two connected components
are present along the boundary of R. �

We will use lemma 2 in the next section to set up
“bridges” between the unfolded bands in our algorithm,
but we also need to characterize the order in which the
z-faces are encountered before proceeding with our al-
gorithm.

Lemma 3 For any orthostack, the cyclic ordering of
the rectangles at height z = zi, given by tracing around
the band Bi counterclockwise and numbering z-faces by
the order in which they are encountered, is the same
as the cyclic ordering given by tracing the band Bi+1

counterclockwise.

Proof. Begin by fixing 1 ≤ i ≤ k − 1. First suppose
that the bands Bi and Bi+1 do not share any common
point. If there are any z-faces, then using the previous
lemma, we know that the z-face must form an annulus
bounded by Bi on one side and Bi+1 on the other, since
any other configuration will either result in a common
point or non-contiguous components adjacent to Bi or
Bi+1. Moreover, this must be the only z-face at this
level, since otherwise the band must stop tracing the
boundary of the z-face and later re-enter it after tracing
around another z-face, which results in that layer not
being simply connected. Since there is only one z-face,
the statement of the lemma holds trivially.

Now if Bi and Bi+1 have some common point, pick
any one of them as a start point. Proceed counterclock-
wise on a path along the boundary at cross section zi

shared by both bands until the bands diverge, which
must happen if there is any z-face at height zi. When
the path diverges, you have met a z-face α at a bound-
ary point where Bi and Bi+1 meet. One path will trace
the boundary of α shared with Bi and the other will
trace the boundary of α shared with Bi+1. Note that
neither band can move away from α and then return,
since by Lemma 2 we know that each band stays adja-
cent to the face in a single connected component along
the boundary of the α. Label this z-face as α1. The
paths continue tracing their respective boundaries un-
til they intersect at a point shared by both boundaries,
which again follows from Lemma 2. At this point, the
paths merge into a single path again and continue trac-
ing counterclockwise along a portion adjacent to both
bands (which possibly consists of only a single point, if
we meet the next z-face immediate). We can continue
following the bands counterclockwise along the shared
boundary at height zi, with the bands diverging only
when they meet the same new z-face. We will label
these z-faces in the order we meet them. Proceeding in
this manner around the perimeter of both bands gives a
unique labeling of all the z-faces as α1, α2, . . . , αk which
is common to both bands, so the clockwise ordering is
identical. �

4 Algorithm

In this section, we restrict our attention to rectangle-
faced orthostacks, where the z-faces are rectangles whose
edges entirely belong to the boundary of Bi or Bi+1, but
not both.

Our unfolding algorithm proceeds as follows. We
will unfold into an xz-plane, in order of increasing z-
coordinate. References to x-coordinates will refer to
the unfolded shape in this plane. Start by unfolding
band B1 arbitrarily. Attach the z0-face arbitrarily be-
low band B1. Loop through the following steps for i = 1
to k − 1.

1. Consider all the rectangles from layer z = zi. We
know these must attach to both Bi and Bi+1 on
some opposite pair of edges by Lemma 2. We con-
sider only these opposite edges as possible attach-
ments for these z-faces, and attach them arbitrarily
to the band Bi.

2. Now among the attached rectangles, choose the
one which has the highest x-coordinate; this is our
“bridge” between Bi and Bi+1. We then attach
band Bi+1 to the bridge rectangle and unfold Bi+1

“upward” into the increasing x direction.

Lastly, we can glue zk-face to the final band arbitrar-
ily, since there is no “next” band to conflict with any
possible attachment point.
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Figure 4: Top: An example of a rectangle-faced or-
thostack. Bottom: The same orthostack when viewed
looking towards the −z direction. A solid red dot indi-
cates where we choose our initial cut for band B1 (Red,
bottom layer in top picture), a blue X indicates where
the band B2 (Blue, middle layer) is cut, and the hollow
green point indicates where the band B3 (Green, top
layer) is cut.

5 Conclusion & Further Work

It remains to be shown whether every orthostack can
be grid-unfolded with a 1x1 refinement. Recall that the
structural lemmas in Section 3 extend to orthostacks
in general, and might lend insight to the more general
problem. In particular, even with rectangles that are
not rectangle-faced, if the faces are rectangular then a
version of Lemma 2 applies, and there must be a pair of
edges which at least partially border the two adjacent
bands.

The obvious extension of our algorithm to orthostacks

x

z

Figure 5: An partial unfolding of the orthostack in Fig-
ure 1(b). The bands are not to scale, and only the
z−faces where z = z1 between B1 and B2 are shown
attached to B1.

with only rectangular faces between the bands would be
to again choose the bridge rectangle which has the high-
est x-coordinate, and unfold the adjacent band in the
increasing x direction. However, in this case, since the
bridge may not have an entire edge which is adjacent to
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Bi+1, we lose the fact that we can arbitrarily glue rect-
angles as in step 1. This insight leads to an example
of a rectangular orthostack (where all z-faces are rect-
angles but may have edges adjacent to each band) on
which our algorithm will fail; see Figure 6. Note that
in this example, the faces shaded red will overlap when
unfolded via our algorithm.

Figure 6: A rectangular orthostack (that is not
rectangle-faced) where our algorithm fails to unfold into
a planar polygon.

As an alternative, we propose the following algorithm.
Instead of choosing the rectangle with the largest x-
coordinate as our “bridge” between Bi and Bi+1 in
step 2, we could instead choose the rectangle which has
the greatest width (measured so that this width has
a component of Bi along one side and Bi+1 along the
opposite side, so that it could serve as a bridge). In-
tuitively, this rectangle separates the bands as much as
possible, so that every other rectangle would have some
point of attachment along the bands where it would fit
without overlapping the neighboring band. The prob-
lem which remains is to show that none of the rectan-
gles would overlap each other, since these rectangles are
not rectangle-faced. This reduces to almost a type of
matching argument; each rectangle has several possible
attachment points, and we must find a selection so that
no two overlap. It seems likely that Lemma 3 may prove
useful here, since it provides a strong ordering on where
the faces can be attached.

Extending this type of algorithm to non-rectangular
orthostacks seems more difficult, since the notion of a
good bridge would necessarily be more complex when z-
faces are not simple rectangles. Choosing such a bridge
would involve search for all possible ways that the z-
faces could attach to the bands, and somehow finding
the best (either “highest” or “widest”) such bridge, as
well as dealing with more complex overlap between z-
faces when attached to the bands.
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