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Variable Radii Poisson-Disk Sampling
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Abstract

We introduce three natural and well-defined generaliza-
tions of maximal Poisson-disk sampling. The first is to
decouple the disk-free (inhibition) radius from the max-
imality (coverage) radius. Selecting a smaller inhibition
radius than the coverage radius yields samples which
mix advantages of Poisson-disk and uniform-random
samplings. The second generalization yields hierarchical
samplings, by scaling inhibition and coverage radii by
an abstract parameter, e.g. time. The third generaliza-
tion is to allow the radii to vary spatially, according to a
formally characterized sizing function. We state bounds
on edge lengths and angles in a Delaunay triangulation
of the points, dependent on the ratio of inhibition to
coverage radii, or the sizing function’s Lipschitz con-
stant. Hierarchical samplings have distributions similar
to those created directly.

1 Maximal Poisson-disk Sampling

A sampling is a set of ordered points taken from a do-
main at random. Each point is the center of a disk that
precludes additional points inside it, but points are oth-
erwise chosen uniformly. The sampling is maximal if
the entire domain is covered by disks. Together these
define maximal Poisson-disk sampling (MPS).
More formally, a sampling X = (xi)ni=1, xi 2 ⌦ satis-

fies the inhibition or empty disk property if

8i < j  n, |xi � xj | � r. (1)

The set of uncovered points is defined to be

S(X) = {y 2 ⌦ : |y� xi| � r, i = 1..n}. (2)

A sampling X is maximal if S(X) is empty:

S(X) = ;. (3)

Given a non-maximal sampling, the next sample is bias-
free if the probability of selecting it from any uncovered
subregion is proportional to the subregion’s area, i.e.,

8A ⇢ S(X) : P (xn+1 2 A |X) =
|A|

|S(X)| . (4)

⇤
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We generalize these equations: decoupling the radii
in the empty disk and uncovered equations; scaling the
radii for a hierarchy of denser samplings; and varying
the radii spatially by a sizing function.

The purpose of this short paper is to introduce these
generalizations in a mathematically consistent way. Ex-
amples illustrate the properties of the resulting out-
put distributions. For simplicity our language is two-
dimensional, e.g. “disks” instead of “spheres,” but the
definitions are general dimensional. Also for simplicity,
we consider only periodic (or free-boundary) domains.
These domains are used in some applications: computer
graphics texture synthesis and mesh generation of ma-
terial grains.

2 Motivation and Previous Work

An MPS sampling is a separated-yet-dense point set:
points are not too close together and lie throughout the
entire domain. This is an e�cient way to distribute a
fixed budget of points.

In mesh generation, separated-yet-dense points yield
Delaunay triangulations (DT) with provable quality
bounds [4, 9, 19]. Delaunay Refinement (DR) [20] in-
troduces points to improve DT triangle quality and a
separated-yet-dense point set follows. Variations of DR
provide adaptivity and sizing control [16]. DR is usu-
ally deterministic; although regions of acceptable points
have been characterized [12, 13], and one may select
from regions randomly to improve tetrahedron qual-
ity [5], randomized point positions are not a traditional
requirement. However, random meshes are of indepen-
dent interest for certain applications; e.g. in some frac-
ture mechanics methods, cracks propagate only along
mesh edges. Meshes from MPS produce more physically
realistic cracks [1, 2, 8, 7]. Ensembles of MPS meshes
can model natural material strength variations.

In a sphere packing no two disks overlap. If the disk
radii satisfy a Lipschitz condition then a quality mesh
results [19]. As in MPS and in reverse to DR, algo-
rithms add disks until the packing is (nearly) maximal,
and a good-quality DT follows. A fixed-r MPS sam-
pling is a sphere packing: halve the disk radius r so no
disks overlap. We define four new spatial variations for
MPS, however none are equivalent to maximal sphere
packings. Conflicts are defined by disks containing each
other’s centers; for unequal radii this is not equivalent
to non-overlapping 1/2-radii disks. Also, we achieve a
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maximal distribution following a characterized statisti-
cal process.

MPS is popular for computer graphics [15] for tex-
ture synthesis because the distribution avoids repeating
patterns of distances between points which produce vis-
ible artifacts. Fixed radius disks are traditional, but not
suitable in all situations.

In real-time games and data exploration [17] with
level-of-detail adaptivity, renderings use a finer sam-
pling as the camera zooms in. Switching between dis-
crete sets of samples is common, but has the potential
to introduce visible artifacts or scene jumps [23]. Our
definitions enable smoothly increasing density in time.
Spatially varying samplings are useful for objects with
varying curvature and lighting [3, 14]. Curvature and
solution gradients motivate spatially-varying finite ele-
ment meshes, and incremental adaptivity is preferred
over mesh replacement.

Varying density sampling is popular in Graphics but
often the algorithms are heuristic, and the requirements
not well understood. This paper seeks to provide some
formal guidance. For example, the spatially-varying
sampling algorithm of Bowers et al. [3] uses a datas-
tructure that holds all the nearby points whose Poisson-
disks might conflict with a new point. This datastruc-
ture sometimes overflows in practice. We show that this
is the fault of the input and not their algorithm: the
bigger-disks criteria in Section 5 shows that a sizing
function with Lipschitz constant L < 1/2 is necessary
to bound the number of nearby points.

Classic dart throwing [6] generates samples and re-
jects those inside prior disks. The probability of gener-
ating an acceptable sample becomes vanishingly small,
so maximality is not reached. After many rejected sam-
ples McCool and Flume [18] reduce the radii of disks,
either locally or globally, to make room for more sam-
ples. An adaptive MPS variation [23] for deforming
point clouds coarsens to remove points that are too
close together, and refines to re-achieve maximality. For
coarsening the disk-free and maximal criteria hold ap-
proximately, subject to a tolerance band. In Section 3
we e↵ectively tune this tolerance band by the ratio of
the two radii, and scale the radii continuously in Sec-
tion 4.

3 Di↵erent inhibition and coverage radii

Here we relax the condition that the coverage and in-
hibition radii are equal. We focus on a particular re-
laxation that proves useful for generating hierarchical
point sets, and flatter FFT radial power spectra.

Let Rf  Rc denote the inhibition and coverage radii,
respectively. The empty disk property is

8i < j  n, |xi � xj | � Rf . (5)

The set of free points is defined to be

S(X) = {y 2 ⌦ : |y� xi| � Rf , i = 1..n}. (6)

The set of uncovered points is defined to be

U(X) = {y 2 ⌦ : |y� xi| � Rc, i = 1..n}. (7)

The sampling is maximal if U(X) is empty,

U(X) = ;. (8)

For this variation to be useful and di↵erent than the
single radius case, we sample from S, but restrict to
points that are close enough to U to reduce it:

T (X) = S(X) \ {U(X) +Rc}. (9)

The bias-free process selects from T (X) uniformly.
This variation is useful to add randomness to ini-

tial and continuously parameterized hierarchical sam-
ples. Samplings will likely have points that could be
removed and still meet the coverage condition (Equa-
tion 8). There are more extra points the smaller Rf is
compared to Rc. This process provides samplings that
are less uniform, i.e., with greater variation in inter-
sample distances, than classical MPS. In particular, as
the ratio of inhibition and coverage radii grows, the rings
in the FFT spectrum of the output are reduced. For a
modest ratio, Rc/Rf = 2, the radial power oscillations
are barely perceptible: the resulting FFT spectrum is
much closer to a uniform-random distribution, except
for the low frequency component. See Figures 4–10 for
examples.

3.1 Edge Length and DT Angle Bounds

We consider a Delaunay triangulation (DT) of our point
cloud. The inhibition radius bounds the shortest edge
length. The coverage radius bounds the largest empty
Delaunay circumcircle. The longest edge length is at
most the diameter of that circle. To summarize:

Proposition 1 |e| 2 [Rf , 2R] and R  Rc, where R is

the radius of a Delaunay circumcircle.

The Central Angle Theorem provides a relation be-
tween the smallest angle ↵, the shortest edge length |e|,
and the circumradius R of a triangle. (This has been
used to provide quality bounds for separated-yet-dense
points since DR’s inception [4].)

Proposition 2 sin↵ � |e|/2R.

For example, in a DT of a point set with Rc = Rf ,
we have ↵ > 30�. If Rc = 2Rf , then ↵ > 14.4�.
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4 Hierarchical Sampling

4.1 Parameterized radii

Consider a maximal sampling, from either a single disk
radius or di↵erent inhibition and coverage radii. We
scale these radii by t; e.g., t could be time. For t 2 (0, 1]
we have rf (t) = tRf and rc(t) = tRc.
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(b) rc ⌧ rf .

Figure 1: Possible T shapes for two radii when t is re-
duced to uncover a single point u = U . The circumcircle
of 4x1x2x3 has center u and radius rc. T is the part of
this circumcircle outside the light rf disks at xi.

4.2 Continuous Decrease Refinement

Consider decreasing t continuously from 1 to 0. The
sampling becomes non-maximal for some t

⇤ when
U(X) 6= ;; recall Equation 8. To simplify the discussion
assume distinct Delaunay circumradii so the largest one
is unique; then at t

⇤ we have that U(X) grows by a
single point, a single Voronoi vertex u. A new sample
is needed. If rf = rc then there is only one place to
put the sample, at u, so the process is deterministic.
Otherwise, we insert a random point from the set T of
free points which will reduce the size of the uncovered
set. See Figure 1 for example T shapes. E�ciently se-
lecting a new sample can be done by sampling from a
geometric outer approximation to T and resampling if
necessary [10, 11].
In 2d periodic or infinite domains, we observe that u

is the circumcenter of a non-obtuse triangle, which lies
inside it. For obtuse triangles, the Delaunay triangle
sharing its longest edge has a larger circumsphere, so
its center would be uncovered for a smaller t.
DR can be implemented with a priority queue, pri-

oritizing the circumcenters of Delaunay triangles by de-
creasing radii. A new sample creates new triangles and
destroys some old ones, so the queue must be updated.
This is essentially the generic Delaunay refinement al-
gorithm with a largest-first queue priority for inserting
circumcenters. DR makes no restrictions on the circum-
center insertion order, and the Triangle code [22] takes
the opposite approach: processing the smallest triangles
first. The main di↵erence is that when an event occurs,

we insert a nearby random point, but DR inserts the
point itself (or an o↵-center, etc.).

4.3 Discrete Decrease Refinement

Consider decreasing t in discrete jumps. For a new value
of t, the sampling may be non-maximal, and the same
algorithm that generated the initial sampling can be
continued to achieve maximality. Figure 2 shows com-
pleting a sampling after a jump. Some new samples are
inside the light covered region, but, nonetheless, each of
their rc disks reduced the white uncovered area when it
was introduced.

(a) t = 0.8 end (b) t = 0.6 start (c) t = 0.6 end

Figure 2: A step in a discrete hierarchy of samplings.

5 Spatially Varying Radii

We aim to produce spatially varying point density ac-
cording to a sizing function r(x) : ⌦ ! (0,1). A sam-
ple satisfies the empty disk property, vs. (1), if

8i < j  n, |xi � xj | � f(xi,xj), (10)

and the set of uncovered points, vs. (2), is

S(X) = {y 2 ⌦ : |y� xi| � f(xi,y), i = 1..n}. (11)

Here f(xi,y) is a function of r(·) evaluated at a previ-
ously accepted sample xi and a later candidate sample
y. A candidate is accepted if |x � y| � f(x,y) 8x 2 X

so far. We have four variations:

f(x,y) := r(x) Prior-disks,

f(x,y) := r(y) Current-disks,

f(x,y) := max (r(x), r(y)) Bigger-disks,

f(x,y) := min (r(x), r(y)) Smaller-disks.

(Sphere packings use a sum-of-disks sizing function,
f(x,y) = r(x) + r(y).) The f are equivalent for a fixed
radius r, but are all distinct for spatially-varying r.
Each approach has certain advantages in terms of sim-
plicity, output size, DT quality, and how quickly the
sizing function may vary. See Table 1 for a summary,
below for proofs for one case, and the extended version
of this paper for the other cases.

A variation of Ebeida et al. [10] can e�ciently produce
a maximal sampling using a flat-quadtree to capture
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Distance Order Full Conflict Edge Edge Sin Angle Max
Method Function Independent Coverage Free Min Max Min L

Prior r(x) no no no 1/(1 + L) 2/(1� 2L) (1� 2L)/2 1/2
Current r(y) no no no 1/(1 + L) 2/(1� L) (1� L)/2 1
Bigger max (r(x), r(y)) yes no yes 1 2/(1� 2L) (1� 2L)/2 1/2
Smaller min (r(x), r(y)) yes yes no 1/(1 + L) 2/(1� L) (1� L)/2 1

Table 1: Summary of results for spatially varying radii. Points closer than f conflict. Symmetric f provide order
independence: any sampling with the order of samples permuted still satisfies the empty disk property. Full
coverage means that every point of the domain is inside some sample’s r disk. Conflict free means that no sample
is inside another sample’s r disk. Edge max and min bound the lengths of an edge containing x in a Delaunay
triangulation of X, as a factor of r(x). The Lipschitz constant must be less than max L to bound the maximum
DT edge length and minimum DT angle.

the uncovered area. Implementing the conflict condition
and coverage checks is simpler for some variations.

There is a limit to how quickly r(·) is allowed to vary.
We require that r is L-Lipschitz, i.e., for all x,y 2 ⌦,
|r(x)� r(y)|  L |x� y| for some constant L. The
lengths of DT edges at x depend not only on r(x) but
also on r(y), which can be bounded using L. Some ap-
proaches require L < 1, others L < 1/2. The quality
guarantees disappear as L approaches the upper limit.
As L approaches zero the quality guarantees smoothly
approach those in the uniform case.

Bias-free An alternative to uniform-random is to
weight the uncovered set by the local sizing function,
i.e., the desired output density. In dimension d,

w(S) =

Z

S

1

r(x)d
dx, and

8A ⇢ S(X) : P (xn+1 2 A |X) =
w(A)

w(S(X))
. (12)

While we have not implemented it, one could approx-
imate Equation 12 from values at quadtree corners.

Prior-disk Output Guarantees We justify the edge-
length and angle guarantees in Table 1 for prior-disks.
The proofs for the other criteria are similar and are
given in the extended version of this paper.

Proposition 3 If X satisfies the empty disk property,

then for all i,j, |xi � xj | � r(xi)
1+L .

Proof. If i < j, the empty-disk definition implies
|xi � xj | � r(xi). Otherwise,

r(xi)  r(xj) + L |xi � xj |  |xi � xj |+ L |xi � xj |
by the Lipschitz property and the fact that xi satisfies
the empty-disk property when it is inserted. ⇤

Proposition 4 If X is maximal and T is a result-

ing Delaunay triangle, then the circumradius RT 
min

⇣
r(y)
1�L ,

r(x)
1�2L

⌘
where y is the circumcenter and x is

any triangle vertex.

x

y

< r(y)

z

< r(z)

Figure 3: Notation for proofs
of circumradii bounds in the
Delaunay triangulation of a
maximal sampling.

Proof. Since X is maximal, |z� y|  r(z) for some
sample z 2 X, where z is not required to be a vertex of
T ; see Figure 3. The Lipschitz property gives

|z� y|  r(z)  r(y) + L |z� y| .
Rearranging gives RT  |z� y|  r(y)

1�L . Applying the
Lipschitz property again gives,

RT = |x� y|  |z� y|  r(y)

1� L

 r(x) + L |x� y|
1� L

.

Rearranging again completes the proof. ⇤

Corollary 5 If X is maximal, |xi � xj |  2r(xi)
1�2L .

Lemma 6 Suppose X is a maximal sample satisfying

the empty disk property. Then all the angles in the De-

launay triangulation are at least arcsin
�
1�2L

2

�
.

Proof. Let ↵ be an angle in the Delaunay triangula-
tion of X and let x be the vertex on the edge oppo-
site of ↵ which was inserted first. This opposite edge
has length at least r(x). Propositions 2 and 4 give

sin↵ � r(x)
2r(x)/(1�2L) =

1�2L
2 . ⇤

6 Experimental Results

We consider the spectra of distributions generated with
the di↵erent methods, but similar coverage/inhibition
radii. Spectra are analyzed using the Point Set Anal-
ysis [21] tool, which generates standardized diagrams,
aiding direct comparison. The first panel is the point
set. The second panel is the FFT spectrum of the point
set with the DC component removed. The third panel
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is the radial mean power, which measures the average
variation of the second panel’s rings’ magnitudes.
Figure 4 is for uniform MPS. In the FFT spectrum

we see the typical dark central disk surrounded by al-
ternating light and dark rings decreasing in magnitude.
Figures 5 and 8 show the PSA results for point clouds
generated using di↵erent inhibition and coverage radii.
The FFT ringing artifacts are dramatically reduced, as
is the size of the central disk. Comparing Figures 4
& 5 to 6 & 7 shows that there is little di↵erence in the
spectra whether a sampling is generated in a discrete hi-
erarchy over t or directly. Using a large coverage radius
yields significantly fewer samples, as seen in Figures 8
and 9.
Figure 11 shows sampling results using the same

pseudo-random number sequence over all four spatially
varying radii strategies. The experimental results match
the theory: the smaller-disk construction yields a larger
minimum angle. Figure 12 shows our resampling of a
stippled image [14, 24].

7 Conclusions

We provide simple definitions for separated-yet-dense
random samplings, which are amenable to simple algo-
rithms for generating provable quality point sets and
meshes. Intermediate triangulations and Delaunay cir-
cumspheres are not needed. Of our spatial variations,
the smaller-disks approach has the weakest require-
ments and provides the best quality, but generates the
most points. The prior-disks method is the easiest to
implement, as it is a minor change to existing MPS al-
gorithms. However, it has the most restrictions on the
input and provides the weakest output guarantees.
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