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Abstract

This paper discusses a problem for determining whether
a given plane graph is a Delaunay graph, i.e., whether
it is topologically equivalent to a Delaunay triangula-
tion. There exists a theorem which characterizes De-
launay graphs and yields a polynomial time algorithm
for the problem only by solving a certain linear inequal-
ity system. The theorem was proved by Rivin based on
arguments of hyperbolic geometry. Independently, Hi-
roshima, Miyamoto and Sugihara gave another proof of
the theorem based on primitive arguments on Euclidean
geometry. Unfortunately, the existing proofs of the the-
orem are rather difficult or long. In this paper, we give
a simple proof of the theorem characterizing Delaunay
graphs, which is based on the fixed point theorem.

1 Introduction

The two-dimensional Delaunay triangulation and its
dual, the Voronoi diagram, are fundamental concepts
in computational geometry, and have many practical
applications such as interpolation and mesh genera-
tion [1, 3, 8]. It is also important to recognize De-
launay triangulations. The recognition problem can
be divided into two types: geometric and combinato-
rial. The geometric problem is to judge whether a given
drawing is a Delaunay triangulation. The combinato-
rial problem, which is discussed in this paper, deter-
mines whether a given embedded graph is topologically
equivalent to a Delaunay triangulation. The combina-
torial problem is important not only theoretically but
also practically because it is closely related to the design
of a topologically consistent algorithm for constructing
the Delaunay/Voronoi diagram in finite-precision arith-
metic [7, 11, 12].
Hodgson et al. [6] characterized the convex polyhe-

dra that can be inscribed in a sphere, and constructed a
polynomial time algorithm for judging whether a given
graph is realizable as a convex polyhedron with all the
vertices on a common sphere. On the basis of this char-
acterization, Rivin [9, 10] reduced the recognition prob-
lem on the Delaunay graph to a certain linear program-
ming problem, and thus gave a polynomial time algo-

∗Department of Information and System Engineering, Chuo
University, matsui@ise.chuo-u.ac.jp

†Department of Information and Communication Sciences,
Sophia University, miyamoto@sophia.ac.jp.

rithm. His proof was based on sophisticated arguments
about hyperbolic geometry, and hence is not easy to
understand. Almost the same time Hiroshima et al. in-
dependently found the same algorithm [5]. Their proof
is simple in the sense that it is based on primitive argu-
ments on Euclidean geometry, but the proof is long and
intricate.
In this paper, we give a simple short proof of the

theorem characterizing Delaunay graphs by employing
the fixed point theorem. After making preparations in
Section 2, we give our main result (a simple proof) in
Section 3.

2 Preliminaries

2.1 Delaunay Graph

First, we briefly review the notion of a Delaunay tri-
angulation. Given a set of mutually distinct points
P ⊆ R2, a Delaunay triangulation of P is commonly de-
fined as a triangulation of P satisfying the property that
the circumcircle of each inner cell (triangle) contains no
point of P in its interior. A Delaunay triangulation of P
is also known as the planar dual of the Voronoi diagram
of P . A Delaunay triangulation is called non-degenerate
if and only if it satisfies the conditions that no three
vertices on the outermost cell are collinear, and no four
vertices lie on a common circle that circumscribes an
inner cell.
Next, we give a definition of combinatorial triangu-

lation. Let G be an undirected graph with vertex set
V and edge set E. We assume that G is connected
and plane graph (planar graph embedded in the 2-
dimensional plane) without selfloops and parallel edges.
The outermost cell is unbounded while the other cells,
called inner cells, are bounded. We also assume that all
the inner cells are bounded by exactly three edges. For
each inner cell, we associate a directed 3-cycle which is
obtained from an undirected 3-cycle of G forming the
boundary of the cell by directing edges counterclock-
wise. Let C be the set of all the directed 3-cycles cor-
responding to all the inner cells of G. A combinatorial
triangulation is defined by a triplet (V,E,C). In the
rest of this paper, we write G = (V,E,C) and concen-
trate our attention on the topological structure of G;
we do not care about the actual positions at which the
vertices are placed. When a given undirected graph,
which is defined by vertex set V and edge set E, is
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2-connected, we say that a combinatorial triangulation
(V,E,C) is 2-connected.
In the following, we introduce some notions related

to a problem for judging whether a given combinatorial
triangulation is obtained from a Delaunay triangulation.
Given a combinatorial triangulation G = (V,E,C), we
seek an injection ψ : V → R2 satisfying that the set
of points {ψ(v) ∈ R2 | v ∈ V } and the set of line seg-
ments between pairs in {{ψ(u), ψ(v)} | {u, v} ∈ E} de-
fine a Delaunay triangulation. A map ψ satisfying the
above conditions is called a Delaunay realization, if it
exists. When a combinatorial triangulation G has a De-
launay realization, we say that G is a Delaunay graph.
In particular, if a corresponding Delaunay triangulation
is non-degenerate, then G is called a non-degenerate De-
launay graph.

2.2 Characterizing Delaunay Graphs

In this subsection, we briefly review an inequality
system which characterizes (non-degenerate) Delau-
nay graphs. Given a combinatorial triangulation
G = (V,E,C), we denote the elements of C by
c0, c1, . . . , c|C|−1. For each cycle ci ∈ C, we introduce
three variables x3i+1, x3i+2, x3i+3 assigned to three ver-
tices in ci. In the rest of this paper, we interpret these
variables as angles in degrees at the corresponding cor-
ner of a triangle defined by cycle ci. So, let us call
these variables angle variables. There are 3|C| angle
variables. We denotes the index set of angle variables
by J := {1, 2, . . . , 3|C|}. For example, a combinatorial
triangulation shown in Figure 1 has nine angle variables
x1, x2, . . . , x9.
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Figure 1: Combinatorial triangulation and angle vari-
ables

A vertex of a combinatorial triangulation G is called
an outer vertex if it is on the boundary of the outermost
cell, and an inner vertex otherwise. Similarly, an edge
of G is called an outer edge if it is on the boundary of
the outermost cell, and an inner edge otherwise. In the
rest of this paper, we denote a set of outer vertices and
a set of inner vertices by V outer and V inner respectively.

If a given combinatorial triangulation G = (V,E,C)
is a Delaunay graph, a corresponding vector of angle
variables, defined by a Delaunay realization, satisfies
the following conditions.

C1 For each cycle in C, the sum of the associated three
angle variables is equal to 180.

C2 For each inner vertex, the sum of all the associated
angle variables is equal to 360.

C3 For each outer vertex, the sum of all the associated
angle variables is at most 180.

C4 For each inner edge, the sum of the associated pair
of the facing angle variables (i.e., the angle variables
corresponding to the vertices that are on the same
cycle as, but are not incident to, the inner edge) is
at most 180.

C5 Each angle variable is positive.

For example, if we consider the combinatorial trian-
gulation in Figure 1, the above conditions give the fol-
lowing linear inequality system;

(C1) defined by c0 : x1 + x2 + x3 = 180,
(C1) defined by c1 : x4 + x5 + x6 = 180,
(C1) defined by c2 : x7 + x8 + x9 = 180,
(C2) defined by v1 : x1 + x4 + x7 = 360,
(C3) defined by v2 : x2 + x9 ≤ 180,
(C3) defined by v3 : x3 + x5 ≤ 180,
(C3) defined by v4 : x6 + x8 ≤ 180,
(C4) defined by {v1, v2} : x3 + x8 ≤ 180,
(C4) defined by {v1, v3} : x2 + x6 ≤ 180,
(C4) defined by {v1, v4} : x5 + x9 ≤ 180,
(C5) : x1, x2, . . . , x9 > 0.

Figure 2 gives an example of a Delaunay realization of
the combinatorial triangulation in Figure 1.
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Figure 2: Realized Delaunay triangulation.

Unfortunately, the values of the angle variables sat-
isfying all the conditions C1–C5 do not necessarily cor-
respond to a Delaunay triangulation. For example, the
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combinatorial triangulation in Figure 1 has a vector of
angle variables defined by

x1 = x4 = x7 = 120, x2 = x5 = x8 = 32,

x3 = x6 = x9 = 28,

which satisfies C1–C5, but it does not correspond to
any triangulations. If we try to draw the diagram using
these angle values, we come across an inconsistency as
shown in Figure 3. In order to avoid this inconsistency,
we still need other conditions described below.
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Figure 3: Angle variables satisfying C1–C5.

Let c ∈ C be an inner cell with three vertices
vα, vβ , vγ , and xi, xj , xk be three angle variables cor-
responding to the three vertices, respectively. We say
that xj is cc-facing (meaning “facing counterclockwise”)
around vα and xk is c-facing (meaning “facing clock-
wise”) around vα. In Figure 4, for example, x2, x5, x8
are cc-facing around v1 while x3, x9, x6 are c-facing
around v1.
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Figure 4: x3, x6, x9 are c-facing and x2, x5, x8 are
cc-facing around v1.

For any inner vertex v ∈ V inner, let XCC
v ⊆ J be in-

dices of cc-facing angle variables around v, and XC
v ⊆ J

be indices of c-facing angle variables around v. Further-

more, we introduce a function

Fv(x) :=

∏
j∈XCC

v

sinxj∏
j∈XC

v

sinxj
, (1)

where x ∈ RJ is a vector of angle variables (in degrees).
We only consider angle variables satisfying 0 < xj <
180 (∀j ∈ J), and hence we get 0 < Fv(x) <∞.
Now we describe a necessary and sufficient condition

that a combinatorial triangulation becomes a Delaunay
graph.

Theorem 1 ([5]) A 2-connected combinatorial trian-
gulation G = (V,E,C) is a Delaunay graph if and only
if the set of conditions C1–C6 is satisfiable, where

C6 Fv(x) = 1 for any inner vertex v ∈ V inner.

It is not so difficult to prove the above theorem. For ex-
ample, Hiroshima, Miyamoto and Sugihara gave a short
and elementary proof in their paper [5].
If we restrict the Delaunay triangulations to non-

degenerate ones, the conditions C3 and C4 are respec-
tively changed in the following way.

C3’ For each outer vertex, the sum of all the associated
angle variables is less than 180.

C4’ For each inner edge, the sum of the associated pair
of the angle values facing the edge is less than 180.

A non-degenerate version of Theorem 1 is as follows.

Theorem 2 ([5]) A 2-connected combinatorial trian-
gulation G = (V,E,C) is a non-degenerate Delaunay
graph if and only if the set of conditions C1, C2, C3’,
C4’, C5 and C6 is satisfiable.

Thus, we get a necessary and sufficient condition for
a combinatorial triangulation to be a (non-degenerate)
Delaunay graph. However, the conditions stated in The-
orems 1 and 2 are not useful for the recognition of a De-
launay graph, because we do not know any finite-step
algorithm for judging the satisfiability of these condi-
tions.

3 Main Result

Now we describe a theorem which yields an efficient
method for recognizing Delaunay graphs. The following
theorem says that when we only need to judge whether
a given combinatorial triangulation is a Delaunay graph
(or not), we can drop condition C6, surprisingly.

Theorem 3 ([5, 9, 10]) A 2-connected combinatorial
triangulation G = (V,E,C) is a Delaunay graph if and
only if the set of conditions C1–C5 is satisfiable.
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We can judge the satisfiability of the set of condi-
tions C1–C5 in finite steps because the conditions C1
through C5 are linear in the variables and the method
for checking their satisfiability has been established us-
ing linear programming (see [5] for detail). Especially,
the obtained linear programming problem satisfies that
all the non-zero coefficients are +1 or −1, and thus it is
solvable in strongly polynomial time [4].
The following theorem deals with the non-degenerate

case.

Theorem 4 ([5, 9, 10]) A 2-connected combinatorial
triangulation G = (V,E,C) is a non-degenerate Delau-
nay graph if and only if the set of conditions C1, C2,
C3’, C4’ and C5 is satisfiable.

We employ the fixed point theorem and give simple
proofs of Theorem 3 and Theorem 4.

Theorem 5 (Fixed Point Theorem [2])
Every continuous map f : Bm → Bm defined on an
m-dimensional closed ball Bm has a fixed point (a point
x ∈ Bm with f(x) = x).

It is well known that we can extend the above theorem
to a continuous map defined on a convex compact set.

Before describing our proof, we give a sketch of an
important procedure, which transforms a feasible solu-
tion of the linear inequality system defined by C1–C5.
Let us recall a vector of angle variables shown in Fig-
ure 3, that satisfies conditions C1–C5, but not C6. Now
we construct a (new) vector by increasing angle vari-
ables c-facing around the inner vertex v1 by α degree,
and decreasing angle variables cc-facing around v1 by
α degree. After this procedure, conditions C1–C4 are
preserved. When we set α = 2, the obtained vector of
angle variables, shown in Figure 2, satisfies conditions
C1–C6.
Now we describe the above procedure precisely. Given

a non-negative vector x ≥ 0 of angle variables satisfy-
ing C1–C4, an inner vertex v and a real number α, we
introduce a vector x(α) defined by

x(α)j =

 xj + α, j ∈ XCC
v ,

xj − α, j ∈ XC
v ,

xj , otherwise.
(2)

The following lemma shows some properties of x(α).

Lemma 6 Let x ≥ 0 be a non-negative vector of angle
variables satisfying C1–C4 and x(α) be a vector defined
by (2) w.r.t. an inner vertex v ∈ V inner. For any α ∈ R,
vector x(α) satisfies conditions C1–C4. We define

αmax =max{α ∈ R | x(α) ≥ 0},
αmin = min{α ∈ R | x(α) ≥ 0}.

If αmin < αmax, then Fv(x(α)) : (αmin, αmax) → R is a
continuous monotone increasing function w.r.t. α.

Proof. It is easy to show that x(α) satisfies conditions
C1–C4. The continuity of Fv(x(α)) with respect to α
is obvious. Let C(v) ⊆ C be a set of cycles includ-
ing v. For each cycle c′ ∈ C(v), angle variable xCC

c′

(xCc′) denotes associated cc-facing (c-facing) angle vari-
able around v. Condition C1, non-negativity of x, and
inequality αmin < αmax imply that 0 < xCC

c′ + xCc′ ≤
180 (∀c′ ∈ C(v)). We transform the following differen-
tiation and obtain that

d logFv(x(α))

dα

=
∑

j∈XCC
v

d log sin(xj + α)

dα
−

∑
j∈XC

v

d log sin(xj − α)

dα

=
∑

j∈XCC
v

cos(xj + α)

sin(xj + α)
+

∑
j∈XC

v

cos(xj − α)

sin(xj − α)

=
∑

c′∈C(v)

(
cos(xCC

c′ + α)

sin(xCC
c′ + α)

+
cos(xCc′ − α)

sin(xCc′ − α)

)

=
∑

c′∈C(v)

sin(xCC
c′ + xCc′)

sin(xCC
c′ + α) sin(xCc′ − α)

> 0,

where the last inequality is derived from the facts that
(1) ∀α ∈ (αmin, αmax), ∀c′ ∈ C(v), sin(xCC

c′ +α) sin(xCc′−
α) > 0 (2) ∀c′ ∈ C(v), sin(xCC

c′ + xCc′) ≥ 0, and (3)
∃c′ ∈ C(v), sin(xCC

c′ + xCc′) > 0 (obtained from C2).
Thus, both logFv(x(α)) and Fv(x(α)) are monotoni-
cally increasing. □

In the following, we show that if there exists a vector
of angle variables satisfying C1–C5, then there also ex-
ists a vector of angle variables satisfying C1–C6 which
is obtained by adopting the above procedure around all
inner vertices simultaneously.

Proof. (Proof of Theorem 3.) From Theorem 1, we
only have to show that we once obtain angle variables
satisfying C1–C5 there is a vector of angle variables sat-
isfying C1–C6.
Let b ∈ RJ be a vector of angle variables satisfying

conditions C1–C5, where J = {1, 2, . . . , 3|C|} is a set of
indices of angle variables. We define a matrix M whose
rows are indexed by J , columns are indexed by the ver-
tex set V , and each entry miv is defined as follows:

miv =

 1, angle variable xi is cc-facing around v,
−1, angle variable xi is c-facing around v,
0, otherwise.

Figure 5 shows a matrix M corresponding to Figure 1.
Let M̃ be a column submatrix ofM corresponding to

inner vertices V inner. It is easy to see that the vector of
angle variables M̃y+b is obtained from b by increasing
angle variables c-facing around the inner vertex v by
yv, and decrease angle variables cc-facing around v by
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v1 v2 v3 v4
x1 0 −1 1 0
x2 1 0 −1 0
x3 −1 1 0 0
x4 0 0 −1 1
x5 1 0 0 −1
x6 −1 0 1 0
x7 0 1 0 −1
x8 1 −1 0 0
x9 −1 0 0 1

Figure 5: A matrix M corresponding to Figure 1.

yv, for each inner vertex v ∈ V inner. Lemma 6 directly
implies that for any vector y ∈ RV inner

, a vector of angle
variables M̃y + b also satisfies conditions C1–C4.
We introduce a subset Ω ⊆ RV inner

defined by

Ω :=
{
y ∈ RV inner

∣∣∣ M̃y + b ≥ 0
}
.

Here, we briefly prove the boundedness of Ω by show-
ing that every vector y ∈ Ω satisfies −180|V |1 ≤ y ≤
180|V |1. Let {u, v} be an inner edge of G. Since {u, v}
is an inner edge, there exists an angle bj (in the vector
b) which is both c-facing around u and cc-facing around
v. There also exists an angle bj′ (in vector b) which is
both cc-facing around u and c-facing around v. When
both u and v are inner vertices, every vector y ∈ Ω
satisfies

−180 ≤ −bj′ ≤ yu − yv ≤ bj ≤ 180. (3)

If (u, v) ∈ V inner × V outer, then we have

−180 ≤ −bj′ ≤ yu ≤ bj ≤ 180. (4)

For any inner vertex u, there exists a minimal path Γu

on G connecting u and an outer vertex. From the mini-
mality, Γu consists of inner edges. The telescoping sum
of inequalities (3) and (4) w.r.t. inner edges in Γu gives

−180|V | ≤ yu ≤ 180|V |.

From the above, Ω becomes a compact convex set.
For any pair (y, v) ∈ Ω × V inner, we define following

two values:

αmax(y, v) := max{α ∈ R | y + αev ∈ Ω},
αmin(y, v) := min{α ∈ R | y + αev ∈ Ω},

where ev ∈ {0, 1}V inner

is a unit vector whose entry is
equal to 1 if and only if the corresponding index is equal
to v. (Here we note that both the maximum and the
minimum always exist, because Ω is a bounded closed
set and is nonempty; clearly b ∈ Ω.) Since y ∈ Ω,

inequalities αmin(y, v) ≤ 0 ≤ αmax(y, v) hold. When
αmin(y, v) < αmax(y, v), we have that

lim
α→αmax(y,v)

Fv(y + αev) = +∞,

lim
α→αmin(y,v)

Fv(y + αev) = +0,

and thus Lemma 6 and the intermediate value theo-
rem imply that there exists a unique value α∗ in the
open interval (αmin(y, v), αmax(y, v)) satisfying equality
Fv(y+α∗ev) = 1. Now we introduce a map fv : Ω → Ω
for each v ∈ V inner defined by

fv(y) =

{
y, if αmin(y, v) = αmax(y, v) = 0,
y + α∗ev, if αmin(y, v) < αmax(y, v),

where α∗ is a unique value satisfying Fv(y+α∗ev) = 1.
It is obvious that for each inner vertex v, the corre-
sponding map fv is continuous.
Lastly, we define a map f : Ω → Ω as:

f(y) :=
1

|V inner|
∑

v∈V inner

fv(y),

where f(y) is the gravity center of vectors {fv(y) | v ∈
V inner}. Since fv is continuous for each inner vertex v,
f is also continuous.
Now we apply the fixed point theorem to the contin-

uous map f and obtain a result that there exists a fixed
point y∗ ∈ Ω, i.e., y∗ satisfies f(y∗) = y∗.
Every fixed point y∗ satisfies that

∀v ∈ V inner,
αmin(y

∗, v) = αmax(y
∗, v) = 0 or Fv(y

∗) = 1.
(5)

Otherwise, there exists at least one inner vertex v′ sat-
isfying αmin(y

∗, v′) < αmax(y
∗, v′) and Fv′(y∗) ̸= 1.

Then v′ also satisfies fv′(y∗) ̸= y∗, which implies
f(y∗) ̸= y∗. It is a contradiction.
We have shown that there exists a non-negative vector

of angle variables satisfying C1–C4. Next we discuss
condition C5, which also yields condition C6. In the
following, we show that M̃y∗ + b > 0 for any fixed
point y∗.
When a vertex v satisfies Fv(y

∗) = 1, it is obvious
that αmin(y

∗, v) < 0 < αmax(y
∗, v). Since y∗ is a fixed

point, property (5) implies that for any v ∈ V inner,

αmin(y
∗, v) = 0 if and only if αmax(y

∗, v) = 0.

Put x∗ = M̃y∗+b. If an inner vertex v has a cc-facing
angle variable xj satisfying x

∗
j = 0, then αmin(y

∗, v) = 0
and thus αmax(y

∗, v) = 0, which implies that v also has
a c-facing angle variable xj′ satisfying x∗j′ = 0. Simi-
larly, when an inner vertex v has a c-facing angle vari-
able xj satisfying x∗j = 0, then αmax(y

∗, v) = 0 and
thus αmin(y

∗, v) = 0, which implies that v also has a
cc-facing angle variable xj′ satisfying x

∗
j′ = 0.
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Let us consider a directed graph H whose incident
matrix is M⊤: i.e., a directed graph obtained from G
by substituting a pair of parallel arcs with opposite di-
rection for each edge in E (see Figure 6). Digraph H
has vertex set V and edge set J , which is an index set of
angle variables. Each angle variable xj corresponds to
an arc in H from u to v where xj is a c-facing variable
around u and cc-facing variable around v.
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Figure 6: A directed graph (V, J) corresponding to Fig-
ure 1.

If an arc a of H satisfies that the corresponding angle
variable, denoted by xa, satisfies x

∗
a = 0, we say that a

is a critical arc. In the directed graph, if an inner vertex
v has an incoming critical arc, then v also has at least
one outgoing critical arc.
Now we show x∗ > 0. Assume on the contrary that

there exists an angle variable xj satisfying x∗j = 0.
Then, there exists a critical arc in H. Let A0 be a
set of critical arcs. From the above discussion, a di-
graph defined by (V,A0) has either (Case 1) “a directed
elementary path Γ1 connecting a pair of outer vertices
and passing only inner vertices” or (Case 2) “a directed
elementary cycle Γ2 consisting of inner vertices.”
Case 1. Let χ1 ∈ {0, 1}J be a characteristic vector of
the set of arcs in Γ1. Since Γ1 consists of critical edges,
χ⊤
1 x

∗ = 0 hold. Every inner vertex v has an incoming
arc in Γ1 if and only if v has an outgoing arc in Γ1.
Accordingly, the equality χ⊤

1 M̃ = 0 hold. Thus we have
that

0 = χ⊤
1 x

∗ = χ⊤
1 (M̃y∗+b) = χ⊤

1 M̃y∗+χ⊤
1 b = χ⊤

1 b > 0.

Contradiction.
Case 2. Let χ2 ∈ {0, 1}J be a characteristic vector of
the set of arcs in Γ2. Since Γ2 consists of inner vertices
and critical edges, both χ⊤

2 M̃ = 0 and χ⊤
2 x

∗ = 0 hold.
Thus we have that

0 = χ⊤
2 x

∗ = χ⊤
2 (M̃y∗+b) = χ⊤

2 M̃y∗+χ⊤
2 b = χ⊤

2 b > 0.

Contradiction.
Now we have shown that every fixed point y∗ satis-

fies condition C5 and thus every inner vertex v satis-
fies αmin(y

∗, v) < 0 < αmax(y
∗, v). From property (5),

every inner vertex v satisfies Fv(y
∗) = 1. As a conse-

quence, condition C6 is satisfied. □

A proof of Theorem 4 is almost the same. Actually,
we only have to replace C3 and C4 with C3’ and C4’
respectively in our proofs of Lemma 6 and Theorem 3.
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