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Circle Separability Queries in Logarithmic Time

Greg Aloupis∗ † Luis Barba∗ Stefan Langerman∗‡

Abstract

In this paper we preprocess a set P of n points so that we
can answer queries of the following form: Given a convex
m-gon Q, report the minimum circle containing P and
excluding Q. Our data structure can be constructed in
O(n log n) time using O(n) space, and answers queries
in O(log n+ logm) time.

1 Introduction

The planar separability problem consists of construct-
ing, if possible, a boundary that separates the plane into
two components such that two given sets of geomet-
ric objects become isolated. Typically this boundary
is a single curve such as a line, circle or simple poly-
gon, meaning that each component of the plane is con-
nected. Probably the most classic instance of this prob-
lem is to separate two given point sets with a circle (or
a line, which is equivalent to an infinitely large circle).
A separating line can be found, if it exists, using linear
programing. This takes linear time by Megiddo’s algo-
rithm [9]. For circle separability (in fact spherical sep-
arability in any fixed dimension), O’Rourke, Kosaraju
and Megiddo [10] gave a linear-time algorithm for the
decision problem improving earlier bounds [3, 8]. They
also gave an O(n log n) time algorithm for finding the
largest separating circle and a linear-time algorithm for
finding the minimum separating circle between any two
finite point sets. With these ideas, Boissonat et al. [4]
gave a linear-time algorithm to report the smallest sep-
arating circle for two simple polygons, if any exists.

Augustine et al. [1] showed how to preprocess a point
set (or a simple polygon) P , so that the largest cir-
cle isolating P from a query point can be found in
logarithmic time. For the line separability problem,
Edelsbrunner showed that a point set P can be pre-
processed in O(n log n) time, so that a separating line
between P and a query convex m-gon Q can be com-
puted in O(log n + logm) time [7]. In 3D, Dobkin and
Kirkpatrick showed that two convex polyhedra of size
n and m can be preprocessed in linear time, so that
a separating plane, if any exists, can be computed in
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‡Mâıtre de recherches du F.R.S.-FNRS

O(log n · logm) time [6]. In this paper we show that
a set P on n points can be preprocessed in O(n log n)
time, using O(n) space, so that for any given convex m-
gon Q we can find the smallest circle enclosing P and
excluding Q in O(log n + logm) time. This improves
the O(log n · logm) bound presented in [2], which is de-
scribed in this paper as well.

2 Preliminaries

Let P be a set of n points in the plane and let Q be a
convex m-gon. A P -circle is a circle containing P and
a separating circle is a P -circle whose interior does not
intersect Q. A separating line is a straight line leaving
the interiors of P and Q in different halfplanes.

Let C∗ denote the minimum separating circle and let
c∗ be its center. Note that C∗ passes through at least
two points of P , hence c∗ lies on an edge of the farthest-
point Voronoi diagram V(P ), which is a tree with leaves
at infinity [5]. For each point p of P , let R(p) be the
farthest-point Voronoi region of p.

Let CP be the minimum enclosing circle of P . If CP

is constrained by three points of P then its center, cP ,
is at a vertex of V(P ). Otherwise CP is constrained by
two points of P (forming its diameter). In this case,
cP is on the interior of an edge of V(P ) and we insert
cP into V(P ) by splitting the edge where it belongs.
Thus, we can think of V(P ) as a rooted tree on cP . For
any given point x on V(P ) there is a unique path along
V(P ) joining cP with x. Throughout this paper we will
denote this path by πx.

Given any point y in the plane, let C(y) be the mini-
mum P -circle with center on y and let ρ(y) be the radius
of C(y). We say that y is a separating point if C(y) is
a separating circle.

3 Properties of the minimum separating circle

In this section we describe some properties of C∗, and
the relationship between c∗ and V(P ). Several results
in this section have been proved in [2].

Let CH(P ) denote the convex hull of P . We assume
that the interiors of Q and CH(P ) are disjoint, oth-
erwise there is no separating circle. Also, if Q and CP

have disjoint interiors, then CP is trivially the minimum
separating circle.
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Observation 1 Every P -circle contained in a separat-
ing circle is also a separating circle.

Lemma 2 [2] Let x be a point on V(P ). The function
ρ is monotonically increasing along every edge of the
path πx starting at cP .

We remark that Lemma 2 has also been shown to hold
on vertices of πx (not edge interiors), in [12].

Theorem 3 [2] Let s be a point on V(P ). If s is a
separating point, then c∗ belongs to πs.

Given a separating point s, we claim that if we move
a point y continuously from s towards cP on πs, then
C(y) will shrink and approach Q, becoming tangent to
it for the first time when y reaches c∗. To prove this
claim in Lemma 6, we introduce the following notation.

Let x be a point lying on an edge e of V(P ) such that
e lies on the bisector of p, p′ ∈ P . Let C−(x) and C+(x)
be the two closed convex regions obtained by splitting
the disk C(x) with the segment [p, p′]. Assume that x
is contained in C−(x); see Figure 1.

Observation 4 Let x, y be two points lying on an edge
e of V(P ). If ρ(x) > ρ(y), then C+(x) ⊂ C+(y) and
C−(y) ⊂ C−(x).

e

p

p′

xy

C+(x)

C+(y)

C−(x)

C−(y)

Figure 1: Observation 4 when ρ(x) > ρ(y).

Lemma 5 Let s be a point on V(P ) and let x and y be
two points on πs. If ρ(x) > ρ(y), then C+(x) ⊂ C+(y)
and C−(y) ⊂ C−(x).

Proof. Note that if x and y lie on the same edge, then
the result holds by Observation 4. If they are on differ-
ent edges, we consider the path Φ = (x, v0, . . . , vk, y)
contained in πs joining x and y, such that vi is a

vertex of V(P ), i ∈ {0, . . . , k}. Thus, Observation 4
and Lemma 2 imply that C+(x) ⊂ C+(v0) ⊂ . . . ⊂
C+(vk) ⊂ C+(y) and that C−(y) ⊂ C−(vk) ⊂ . . . ⊂
C−(v0) ⊂ C−(x). �

Note that C∗ = C(c∗) must be tangent to the bound-
ary of Q. Otherwise, c∗ could be pushed closer to the
root on V(P ), while keeping it as a separating point
until it reaches Q. From now on we refer to φ′ as the
tangency point between C∗ and Q. We claim that φ′

lies on the boundary of C+(c∗). Assume to the con-
trary that φ′ lies on C−(c∗). Let ε > 0 and let cε be the
point obtained by moving c∗ a distance of ε towards cP
on V(P ). Note that by Lemma 2, ρ(cε) < ρ(c∗). In ad-
dition, Lemma 5 implies that C−(cε) ⊂ C−(c∗). Since
we assumed that φ′ lies on the boundary of C−(c∗), we
conclude that φ′ does not belong to C(cε). This implies
that, for ε sufficiently small, C(cε) is a separating circle
which is a contradiction to the minimality of C∗. The
following result was mentioned in [2] without a proof.

Lemma 6 Let s be a separating point. If x is a point
lying on πs, then C(x) is a separating circle if and only
if ρ(x) ≥ ρ(c∗). Moreover, C∗ is the only separating
circle whose boundary intersects Q.

Proof. We know by Theorem 3 that c∗ belongs to
πs. Let x1 and x2 be two points on πs such that
ρ(x1) < ρ(c∗) and ρ(c∗) < ρ(x2). Lemma 5 implies that
C+(c∗) ⊂ C+(x1) and since φ′ belongs to the boundary
of C+(c∗), we conclude C(x1) contains φ′ in its interior.
Therefore C(x1) is not a separating circle.

On the other hand, C(x2) contains no point of Q.
Otherwise, let q ∈ Q be a point lying in C(x2). Two
cases arise: Either q belongs to C−(x2) or q belongs
to C+(x2). In the former case, since ρ(s) > ρ(x2),
q ∈ C−(x2) ⊂ C−(s)— a contradiction since C(s) is a
separating circle. In the latter case, since ρ(x2) > ρ(c∗),
Lemma 5 would imply that q belongs to the interior of
C∗ which would also be a contradiction. �

The basis of our algorithm is to find a separating point
s and then perform a binary search on πs to find a
separating circle tangent to Q with center on this path.

4 Preprocessing

We first compute V(P ) and cP in O(n log n) time [13].
Assume that V(P ) is stored as a binary tree with n
(unbounded) leaves, so that every edge and every vertex
of the tree has a set of pointers to the vertices of P
defining it. Every Voronoi region is stored as a convex
polygon and every vertex p of P has a pointer to R(p).
If cP is not a vertex of V(P ), we split the edge that
it belongs to. We want our data structure to support
binary search queries on any possible path πs of V(P ).
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Thus, to guide the binary search we would like to have
an oracle that answers queries of the following form:
Given a vertex v of πs, decide if c∗ lies either between
cP and v or between v and s in πs. By Lemma 6, we
only need to decide if C(v) is a separating circle.

We will use an operation on the vertices of V(P ) called
PointBetween with the following properties. Given
two vertices u, v in πs, PointBetween(u, v) returns
a vertex z that splits the path on πs joining u and v
into two subpaths. Moreover, if we use our oracle to
discard the subpath that does not contain c∗ and we
proceed recursively on the other, then, after O(log n)
iterations, the search interval becomes only an edge of
πs containing c∗.

A data structure that supports this operation was
presented in [12]. This data structure can be con-
structed in O(n) time and uses linear space.

5 The algorithm

Since Q is a convex m-gon, we can check in O(logm)
time if CP is a separating circle [7]. Thus, assume that
CP is not the minimum separating circle. To determine
the position of c∗ on V(P ), we first find a separating
point s and then search for c∗ on πs using our data
structure. To find s, we construct a separating line L
between P and Q in O(log n + logm) time [7]. Let
p

L
be the point of P closest to L and assume that no

other point in P lies at the same distance; otherwise
rotate L slightly. Let L⊥ be the perpendicular to L
that contains p

L
and let s be the intersection of L⊥

with the boundary of R(p
L

); see Figure 2. We know
that L⊥ intersects R(p

L
) because L can be considered

as a P -circle, containing only p
L

, with center at infinity
on L⊥.

s

Q

L

L⊥pL

P

R(pL)

C(s)

Figure 2: Construction of s. Figure borrowed from [2].

Since s is on the boundary of R(p
L

), C(s) passes
through p

L
. Furthermore C(s) is contained in the same

halfplane defined by L that contains P . So C(s) is a
separating circle. Assume that s lies on the edge xy
of V(P ) with ρ(x) > ρ(y) and let πs = (u0 = s, u1 =
y, . . . , ur = cP ) be the path of length r + 1 joining s
with cP in V(P ). Theorem 3 implies that c∗ lies on πs.

It is then possible to use our data structure to perform
a binary search on the vertices of πs, computing, at each
vertex v, the radius of C(v) and the distance to Q in
O(logm) time. This way we can determine if C(v) is a
separating (or intersecting) circle. This approach finds
cP in O(log n · logm) time and was the algorithm given
in [2]. However, an improvement can be obtained by
using the convexity of Q.

To determine if some point v on πs is a separating
point, it is not always necessary to compute the distance
between v and Q. One can first test, in O(1) time, if
C(v) intersects a separating line tangent to Q. If not,
then C(v) is a separating circle and we can proceed with
the binary search. Otherwise, we can try to compute a
new separating line, tangent to Q, not intersecting C(v).
The advantage of this is that while doing so, we reduce
the portion of Q that we need to consider in the future.
This is done as follows:

Compute the two internal tangents L and L′ be-
tween the convex hull of P and Q in O(log n + logm)
time. The techniques to construct these tangents are
shown in Chapter 4 of [11]. Let q and q′ be the respec-
tive tangency points of L and L′ with the boundary of
Q. Consider the clockwise polygonal chain ϕ = [q =
q0, . . . , qk = q′] joining q and q′ as in Figure 3. Recall
that φ′ denotes the intersection point between C∗ and
the boundary of Q and note that the tangent line to C∗

at φ′ is a separating line. Therefore, φ′ must lie on an
edge of ϕ since no separating line passes through any
other boundary point of Q.

Q

L

L′

q′

q

ϕ

P

Figure 3: The construction of ϕ.

If q = q′, then φ′ = q and hence we can ignore Q and
compute the minimum separating circle between P and
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q. As mentioned previously, this takes O(log n) time.
Assume from now on that q 6= q′, as shown in Figure 3.

For each edge ei = qiqi+1 (0 ≤ i ≤ k − 1) of ϕ, let
`i be the line extending that edge. By construction, we
know that each `i separates P and Q. We say that a
point x on `i but not on ei lies to the left of ei if it is
closer to qi, or to the right if it is closer to qi+1.

Our algorithm will essentially perform two parallel
binary searches, the first one on πs and the second one
on ϕ, such that at each step we discard either a section
of πs or a linear fraction of ϕ. As we search on πs, every
time we find a separating circle, we move towards cP .
When we confirm that a P -circle intersects Q, we move
away from cP . To confirm if a vertex v is a separating
point, we compare C(v) to some separating line `i for
intersection in constant time. If C(v) is a separating
circle, we discard the section of the path lying below v on
V(P ). If C(v) does intersect `i, we make a quick attempt
to check if C(v) intersects Q by comparing C(v) and
the edge ei for intersection. If they intersect, v is not
a separating point and we can proceed with the binary
search on πs. Otherwise, the intersection of C(v) with
`i lies either to the left or to the right of ei. However,
in this case we are not able to quickly conclude whether
C(v) intersects Q or not. Thus, we suspend the binary
search on V(P ) and focus on C(v), using its intersection
with `i to eliminate half of ϕ. Specifically, the fact that
C(v) intersects `i to one side of ei (right or left) tells
us that no future P -circle on our search will intersect
`i on the other side of ei. This implicitly discards half
of ϕ from future consideration, and is discussed in more
detail in Theorem 7. Thus, in constant time, we manage
to remove a section of the path πs, or half of ϕ. The
entire process is detailed in Algorithm 1.

Theorem 7 Algorithm 1 finds the edge of πs contain-
ing c∗ in O(log n+ logm) time.

Proof. Our algorithm maintains two invariants. The
first is that C(u) is never a separating circle and C(v)
is always a separating circle. To begin with, C(u) =
C(s) is a separating circle while C(v) = CP is not. If
either of these assumptions does not hold, the problem
is solved trivially, without resorting to this algorithm.
Changes to u and v occur in steps 14 or 17, and in
both the invariant is preserved. Thus, c∗ always lies
on the path joining u with v. As a second invariant, φ′

always lies on the clockwise path joining qa with qb along
ϕ. We already explained that the invariant holds when
a = 0 and b = k, corresponding to the inner tangents
supporting P and Q. Thus, we only need to look at
steps 20 and 22 where a and b are redefined. We analyze
Step 20, however Step 22 is analogous.

In Step 20 we know that C(z) intersects `j to the left
of ej and that ej does not intersect C(z). We claim that
for every point w lying on an edge of πs, if C(w) is a

Algorithm 1 Given ϕ = [q = q0, . . . , qk = q′] and
πs = (u0 = s, u1 = y, . . . , ur = cP ), find the edge of πs
that contains c∗.

1: Define the initial subpath of πs that contains c∗,
u← s, v ← cP

2: Define the initial search interval on the chain ϕ,
a← 0, b← k

3: if u and v are neighbors in V(P ) and b = a+1 then
4: Finish and report the segment S = [u, v] and the

segment H = [qa, qb]
5: end if
6: Let z ← FindPointBetween(u, v), j ← ba+b

2 c
7: Let ej ← qjqj+1 and let `j be the line extending ej
8: if b > a+ 1 then
9: Compute ρ(z) and let δ ← d(z, `j), ∆← d(z, ej)

10: else
11: Compute ρ(z) and let δ ← d(z, ej), ∆← d(z, ej)
12: end if
13: if ρ(z) ≤ δ, that is C(z) is a separating circle then
14: Move forward on πs, u← z and return to Step 3
15: else
16: if ρ(z) > ∆ , that is if C(z) is not a separating

circle then
17: Move backward on πs, v ← z and return to

Step 3
18: else
19: if C(z) intersects `j to the left of ej then
20: Discard the polygonal chain to the right of

ej , b← max{j, a+ 1}
21: else
22: Discard the polygonal chain to the left of ej ,

a← j
23: end if
24: Return to Step 3
25: end if
26: end if
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separating circle that intersects `j , then it intersects it
to the left of ej . Note that if our claim is true, we can
ignore the polygonal chain lying to the right of ej since
no separating circle will intersect it. To prove our claim,
suppose that there is a point w on πs, such that C(w)
is a separating circle and C(w) intersects `j to the right
of ej . Let x and x′ be two points on the intersection
of `j with C(w) and C(z), respectively. First suppose
that ρ(w) < ρ(z) and recall that by Lemma 5, since x′

lies on C+(z) ⊂ C+(w), x′ lies in C(w). Thus, both
x and x′ belong to C(w) which by convexity implies
that ej is contained in C(w). Therefore C(w) is not a
separating circle which is a contradiction. Analogously,
if ρ(w) > ρ(z), then ej is contained in C(z) which is
directly a contradiction since we assumed the opposite.
Thus, our claim holds.

Note that in each iteration of the algorithm, a, b, u
or v are redefined so that either a linear fraction of
ϕ is discarded, or a part of πs is discarded and a
new call to PointBetween is performed. Recall that
our data structure guarantees that O(log n) calls to
PointBetween are sufficient to reduce the search in-
terval in πs to an edge [12]. Thus, the algorithm finishes
in O(log n+ logm) iterations.

One additional detail needs to be considered when
b = a + 1. In this case only one edge e = [qa, qa+1]
remains from ϕ, and φ′ lies on e. Thus, if the line `
extending e intersects C(z) but e does not, then either
Step 20 or 22 is executed. However, nothing will change
in these steps and the algorithm will loop. In order to
avoid that, we check in Step 8 if only one edge e of ϕ
remains. If this is the case, we know by our invariant
that φ′ belongs to e and therefore we continue the search
computing the distance to e instead of computing the
distance to the line extending it. This way, the search
on ϕ stops but it continues on πs until the edge of V(P )
containing c∗ is found.

Since we ensured that every edge in V(P ) has point-
ers to the points in P that defined it, every step in
the algorithm can be executed in O(1) time. Thus, we
conclude that Algorithm 1 finishes in O(log n + logm)
time. Since both invariants are preserved during the
execution, Lemma 6 implies that the algorithm returns
segments [u, v] from πs containing c∗, and [qa, qb] from
ϕ containing φ′. �

From the output of Algorithm 1 it is trivial to obtain
c∗ in constant time.

Corollary 8 After preprocessing a set P of n points
in O(n log n) time, the minimum separating circle be-
tween P and any query convex m-gon can be found in
O(log n+ logm) time.
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