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The Complexity of Guarding Monotone Polygons
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Abstract

A polygon P is x-monotone if any line orthogonal to
the x-axis has a simply connected intersection with P .
A set G of points inside P or on the boundary of P is
said to guard the polygon if every point inside P or on
the boundary of P is seen by a point in G.
An interior guard can lie anywhere inside or on the

boundary of the polygon. Using a reduction fromMono-
tone 3SAT, we prove that interior guarding a monotone
polygon is NP-hard. Because interior guards can be
placed anywhere inside the polygon, a clever gadget is
introduced that forces interior guards to be placed at
very specific locations.

1 Introduction

The art gallery problem is perhaps one of the best
known problems in computational geometry. It asks
for the minimum number of guards to guard a space.
An instance of the art gallery problem takes as input
a polygon P . The polygon P is defined by a set of
points V = {v1, v2, ..., vn}. There are edges connect-
ing (vi, vi+1) where i = 1, 2, ..., n− 1. There is an edge
connecting (vn, v1). These edges give us two disjoint re-
gions: inside the polygon and outside the polygon. For
any two points p, q ∈ P , we say that p sees q if the line
segment pq does not go outside of P . We wish to find
a set of points G ⊆ P such that every point p ∈ P is
seen by a guard in G. We call this set G a guarding set.
The optimization problem is thus defined as finding the
smallest such G.
Art gallery problems are motivated by applications

such as line-of-sight transmission networks in terrains,
signal communications and broadcasting, cellular tele-
phony systems and other telecommunication technolo-
gies as well as placement of motion detectors and secu-
rity cameras.

1.1 Previous Work

The question of whether guarding simple polygons is
NP-hard was settled by Aggarwal [1] and Lee and Lin
[14] independently. They showed that the problem is
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NP-hard for both vertex guards and interior guards.
Along with being NP-complete, Brodén et al. and Ei-
denbenz [2, 7] independently prove that interior guard-
ing simple polygons is APX-hard. This means that
there exists a constant ǫ > 0 such that no polynomial
time algorithm can guarantee an approximation ratio of
(1 + ǫ) unless P=NP. Further results have shown that
guarding a restricted subclass of polygons is still NP-
hard [2, 15]. O’Rourke and Supowit show that several
polygon decomposition problems are NP-hard [17].

Ghosh provides a O(log n)-approximation for the
problem of vertex guarding an n-vertex simple polygon
in [11]. This result can be improved for simple polygons
using randomization, giving an algorithm with expected
running time O(nOPT 2

v log4 n) that produces a ver-
tex guard cover with approximation factor O(logOPTv)
with high probability, whereOPTv is the smallest vertex
guard cover for the polygon [6]. Whether a constant fac-
tor approximation can be obtained for vertex guarding a
simple polygon is a longstanding and well-known open
problem. Deshpande et al. [5] present a pseudopoly-
nomial randomized algorithm for finding a point guard
cover with approximation factor O(logOPT ). King and
Kirkpatrick provide an O(log log OPT )-approximation
algorithm for the problem of guarding a simple poly-
gon with guards on the perimeter in [12]. The point
guarding problem seems to be much more difficult and
precious little is known about it [5]. A constant fac-
tor approximation is given by Nilsson for the special
case of the problem when the polygon is x-monotone
[16]. Based on his result, Nilsson gives an O(OPT 2)-
approximation algorithm for rectilinear polygons.

The approximation complexity of guarding polygons
has been studied by Eidenbenz and others. Eidenbenz
[8] shows that polygons with holes cannot be efficiently
guarded by fewer than Ω(log n) times the optimal num-
ber of interior or vertex guards, unless P=NP, where n

is the number of vertices of the polygon.

Tight bounds for the number of guards necessary and
sufficient were found by Chvátal [4]. It is sometimes

necessary to place
n

3
guards to guard the entire polygon.

Fisk provided a simpler proof of [4] in [9] that broke up
any polygon into a set of triangles and showed that this

set of triangles can be 3-colored which implies that
n

3
guards are sufficient for guarding a simple polygon.
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1.2 Our Contribution

Chen et al. [3] claim that vertex guarding a monotone
polygon is NP-hard, however the details of their proof
were omitted and still to be verified. Krohn and Nilsson
[13] show that vertex guarding a monotone polygon is
NP-hard. However, a proof showing NP-hardness for
interior guards does not immediately follow from that
claim. Since guards can be placed anywhere inside the
polygon for interior guarding, moving a guard too far
away from a vertex causes the reduction to fail. This is
because too much of the polygon is seen by this guard.
Guarding a monotone polygon is very similar to the

terrain guarding problem. The question of whether or
not terrain guarding was NP-hard was an open problem
for many years. Recently, the terrain guarding problem
was shown to be NP-hard by King and Krohn [12]. De-
spite the similarities of guarding terrains and monotone
polygons, the NP-hardness result for terrain guarding
does not imply interior guarding a monotone polygon is
NP-hard. In order to obtain a hardness result for inte-
rior guarding a monotone polygon, additional observa-
tions had to be made about the properties of monotone
polygons. In doing so, we have developed a different re-
duction from Monotone 3SAT. Despite the very simple
structure of a monotone polygon, we were able to create
a new, intricate gadget that allows us to force guards to
be placed at very specific locations.
The remainder of this paper is organized as follows.

Section 2 contains the relevant section from [13] which
shows vertex guarding a monotone polygon is NP-hard.
Section 3 describes how to modify the reduction from
Section 2 to show NP-hardness for interior guarding a
monotone polygon. Section 4 provides a conclusion and
future work.

2 Vertex Guarding is NP-hard

In this section, we will show that vertex guarding
a monotone polygon is NP-hard. The reduction is
from Monotone 3SAT (M3SAT) [10, page 259 (prob-
lem L02)]. An M3SAT instance (X , C) contains a set
of Boolean variables, X = {x1, x2, . . . , xn} and a set
of clauses, C = {c1, c2, ..., cm}. Each clause contains
three literals, ci = xj ∨ xk ∨ xl, a positive clause, or
ci = x̄j ∨ x̄k ∨ x̄l, a negative clause, for 1 ≤ j, k, l ≤ n.
An M3SAT instance is satisfiable if a satisfying truth
assignment for C exists such that all clauses ci are true.
We show that any M3SAT instance is polynomially

transformable to an instance of vertex guarding a mono-
tone polygon. We construct a monotone polygon P from
the M3SAT instance such that P is guardable by K or
fewer guards if and only if the M3SAT instance is sat-
isfiable. We first present some basic gadgets to show
how the polygon is constructed. We then connect these
gadgets together to create a polygon.

Starting Pattern: The lower boundary of the polygon is
divided into two parts, the left and the right sides.
The first gadgets on the left side are the starting
patterns. The starting patterns are shown to the
left in Figure 1. In each pattern, the bottom of
the downward spike b(x) is the distinguished ver-
tex of the pattern. This area is only seen by x and
x̄ and must be guarded by one of these two ver-
tices. This pattern appears along the left side of
the lower boundary of the monotone polygon a to-
tal of n times, one corresponding to each variable.

x̄
x

Starting pattern

x
x̄

Negative

x
x̄

d(x)

Positiveb(x)

d(x̄)

b(x) d(x) d(x̄) b(x)

Variable patterns

Figure 1: The different types of variable patterns.

Variable Pattern: On the left and the right side of the
lower boundary we have variable patterns that ver-
ify the assigned truth value of each variable. This
pattern is shown to the right in Figure 1. Once
again, the bottom of the spike at b(x) must be
guarded by either x or x̄. The pattern has ad-
ditional distinguished vertices that we call ledges
d(x) and d(x̄) that must both be seen and this is
what forces the choice of guard placement at either
x or x̄.

Figure 2 shows how the starting patterns are con-
nected to variable patterns. If we choose xj in
the starting pattern, we are forced to continuing to
choose xj in each of subsequent variable patterns.
If we at some variable pattern would choose x̄j in-
stead of xj , the ledge d(x̄j) is not seen. Similarly,
if we in the starting pattern choose x̄j , we are, by
the same argument, forced to continuing to choose
x̄j in each of subsequent variable patterns.

Clauses: For each clause c in the boolean formula,
there is a sequence of variable patterns x1, . . . , xn

along either the left or the right side of the lower
boundary and a clause pattern along the upper
boundary of the polygon. On the left side of the
lower boundary the variable pattern sequence cor-
responds to negative clauses, on the right side to
positive clauses.

The clause pattern on the upper boundary consists
of three vertices in an upward spike such that the
top vertex of the spike is only seen by the variable
patterns corresponding to the literals in the clause;
see Figure 3. We denote the top vertex of the spike
by c to correspond to the clause.
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Figure 2: Variable patterns transferring logical values.
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Figure 3: A variable pattern sequence with its clause spike.

We choose our truth value for each variable in the
starting variable patterns. The truth values are then
mirrored in turn between variable patterns on the right
side, corresponding to positive clauses, and variable pat-
terns on the left side, corresponding to negative clauses,
of the lower boundary. Truth values do not change in
the mirroring process since a variable xj in clause ci
only sees the ledge d(xj) in the next variable pattern
and none of the other ledges. Similarly x̄j only sees
ledge d(x̄j) in the next variable pattern; see Figure 2.
In the example of Figure 3 the M3SAT clause cor-

responds to c = x̄1 ∨ x̄3 ∨ x̄5. Hence, a vertex guard
placement that corresponds to a truth assignment that
makes c true, will have at least one guard on x̄1, x̄3

or x̄5 and can therefore see vertex c without additional
guards.
We still have variables x2 and x4 in the clause, how-

ever none of them or their negations see the vertex c.
They are simply there to transfer their truth values in
case these variables are needed in later clauses.
The monotone polygon we construct consists of 4n+

(6n + 4)m + 2 vertices. Each starting variable pat-
tern having four vertices, each variable pattern six ver-
tices, the clause spike consists of three vertices plus one
blocking vertex at the start of each clause sequence on

the lower boundary and the two leftmost and rightmost
points of the polygon.

Consider an M3SAT instance (x1∨x2∨x3)∧(x̄1∨x̄3∨
x̄5)∧ (x3 ∨x4 ∨x5). Figure 4 shows how this instance is
transformed into a monotone polygon and a placement
of guards corresponding to the satisfying truth assign-
ment x1 = x2 = x4 = x5 = false , x3 = true.

Figure 4: Example reduction of (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄3 ∨
x̄5) ∧ (x3 ∨ x4 ∨ x5). Points with white centers mark the
guards.

Exactly K = n(m + 1) guards are required to guard
the polygon since there are K bottom vertices b(xj) at
downward spikes and no vertex in the polygon can see
more than one such b(xj) vertex.

If the M3SAT instance is satisfiable, then we place
guards at vertices in accordance to whether the variable
is true or false in each of the sequences of variable pat-
terns. Each clause vertex is seen since one of the literals
in the associated clause is true and the corresponding
vertex has a guard.

Suppose we have a vertex guard cover of size exactly
K. Since each bottom spike b(xj) is guarded there is
a guard at one of xj , x̄j , or b(xj) itself. They together
make up K guards so there can be no other guards.
Since each clause vertex ci is also seen, we can establish
which of the guards see this vertex and deduce a satis-
fying truth assignment from this guard placement. We
have proved the following theorem.

Theorem 1 Finding the smallest vertex guard cover
for a monotone polygon is NP-hard.

3 Interior Guarding is NP-hard

The hardness result for vertex guarding a monotone
polygon does not immediately generalize to interior
guards. For example, a guard placed slightly above a
variable pattern can ruin the mirroring of truth assign-
ments because this guard would see too many ledges.
The next section introduces a modified variable pattern
which forces the potential guard locations to be very
close to the guard locations from Section 2.
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3.1 Modified Variable Pattern

The following definition is used in this section: let
VP(p) denote the visibility polygon of P from the point
p, i.e., the set of points in P that can be connected with
a line segment to p without intersecting the outside of
P .

Modified Variable Pattern: Similar to the variable pat-
tern introduced in Section 2, this pattern is used
to verify the assigned truth value of each variable.
It is important to note that this modified pattern
does not move the x or x̄ vertices. This pattern re-
places the distinguished vertex b(x) at the bottom
of the spike with two distinguished vertices, namely
b(x) and b(x̄); see Figure 5. This pattern also in-
troduces six new distinguished vertices which are
placed directly above the original variable pattern
on the top of the polygon. We will call these eight
new vertices variable distinguished vertices. We will
call the six new vertices on the top of the polygon
upper distinguished vertices. Figure 5 shows the
complete modified variable pattern. Each of the
upper distinguished vertices can see at most two
guards from the following set: {x, x̄, b(x), b(x̄)}.

Lemma 2 Two guards are necessary and sufficient to
see all of the variable distinguished vertices in a modified
variable pattern.

Proof. At least two guards are needed to see all of the
distinguished vertices of this modified variable pattern.
VP(1) ∩ VP(6) = ∅; see Figure 5. Therefore, to see all
upper distinguished vertices, two guards are necessary.
Let us assume that the ledge d(x) is seen from a previ-

ous variable pattern. Two guards are sufficient for see-
ing all of the following variable distinguished vertices:
{1, 2, 3, 4, 5, 6, b(x), b(x̄)} and the unseen ledge d(x̄). A
possible solution would be to place a guard at x and also
at b(x). x would see {1, 2, b(x̄), d(x̄)} and b(x) would see
{3, 4, 5, 6}. If we assume that d(x̄) was seen from a pre-
vious variable pattern, then a possible solution would
be to place a guard at x̄ and b(x̄). �

Corollary 3 We need at least K = 2n(m + 1) guards
to see all of the variable distinguished vertices in P .

All potential guard locations for the upper distin-
guished vertices are located inside this vertical “strip”
as shown in Figure 5. In other words, no guard placed
to the left of VP(1) and no guard placed to the right of
VP(6) can see any of the upper distinguished vertices.
Said another way, no guard can see upper distinguished
vertices in more than one modified variable pattern.
We will now show that if all of the variable distin-

guished vertices are seen, 2 guards must be placed at
either (x, b(x)) or at (x̄, b(x̄)). Consider the horizon-
tal line L drawn in Figure 6. L is split up into several

b(x̄) b(x)

x

x̄

d(x)d(x̄)

1 2 63 4 5

Figure 5: A complete modified variable pattern. Point 1 sees
{x, b(x̄)}. Point 2 sees {x, b(x̄)}. Point 3 sees {b(x̄), b(x)}.
Point 4 sees {b(x̄), b(x)}. Point 5 sees {b(x), x̄}. Point 6 sees
{b(x), x̄}. The visibility polygons for points 1, 2, 5 and 6 are
displayed.

b d

eca L

Figure 6: A horizontal line L such that no guard placed on
or above L sees more than two upper variable distinguished
points.

segments. The endpoints of these segments are where
the edges of the visibility polygons of 1, 2, . . . , 6 hit L.
Any guard placed on or above L will see at most 2 up-
per distinguished vertices. A guard placed on segment
a will see vertices {1, 2}. A guard placed on segment
b will see only the vertex {2}. A guard placed on seg-
ment c will see vertices {2, 3}. A guard placed on seg-
ment d will see only the vertex {3}. A guard placed
on segment e will see vertices {3, 4}. The remaining
segments are not named but these are the upper dis-
tinguished vertices they see in order from left to right:
{{4}, {4, 5}, {5}, {5, 6}}. No guards placed above L will
be able to see more upper distinguished vertices than a
guard placed on L because of the monotonicity of the
polygon. Since there are no obstacles, such a guard
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could be moved down to L without losing visibility of
any of the upper distinguished vertices. It is important
to note that no guard placed on L sees any of the ledges
d(x) or d(x̄). A guard must be placed above L in order
for the unseen ledge to be seen.

Lemma 4 No one guard can see more than 4 upper
distinguished vertices.

Proof. We compare the visibility polygons of 1 and 2
with the visibility polygons of 5 and 6; see Figure 5.
(VP(1) ∪ VP(2)) ∩ (VP(5) ∪ VP(6)) = ∅. Any guard
that sees 1 or 2 cannot see 5 or 6. For a guard to see
more than 4 upper distinguished vertices, such a guard
must see all but 1 of the upper distinguished vertices.
This is not possible. �

Lemma 5 For all variable distinguished vertices and
one ledge from {d(x), d(x̄)} of a modified variable pat-
tern to be seen, guards must be placed at (x, b(x)) or
(x̄, b(x̄)).

Proof. Referring to Figure 5, let us assume that d(x̄)
is seen by a guard placed in a previous variable pattern.
A guard must be placed somewhere in P to see d(x).
However, any guard that sees d(x) must be placed above
L and therefore can see at most 2 upper distinguished
vertices. Because of Lemma 2, if we want to see all of
the upper distinguished vertices by using only 2 guards,
we are forced to place a second guard below L. To
determine where such a guard must be placed, consider
the VP(d(x)). No point in the visibility polygon of d(x)
sees upper variable distinguished points 1 or 2. From
Lemma 4, a guard that sees 1 or 2 cannot see 5 or 6.
Therefore, if we are only allowed to place 2 guards, a
guard that sees d(x) must see 5 and 6. This guard
location must be placed at x̄. Consider a vertical line
through x̄. A guard placed just slightly to the left of
this vertical line will not see 6. A guard placed slightly
to the right of this vertical line will not see 5. Draw a
horizontal line through x̄. If the guard is moved slightly
above this line, neither 5 nor 6 will be seen. Therefore
a guard must be placed at x̄. Placing a guard at x̄

leaves the following upper distinguished vertices unseen:
{1, 2, 3, 4}. For these vertices to be seen, a guard must
be placed below the line L. Such a guard placement
will not affect the mirroring of variable truth values.
The only region that sees the remaining upper variable
distinguished points is b(x̄). Similar arguments can be
made when d(x) has already been seen and the only
solution is to place guards at x and b(x). �

The introduction of this modified pattern allows us to
force guards to be in certain positions. The forced po-
sitions are the same guard locations from the construc-
tion in Section 2. The original construction remains
unchanged with 2 exceptions. The variable pattern is

replaced with a modified variable pattern. A modified
starting pattern replaces the original starting pattern.
A modified starting pattern is identical to a modified
variable pattern without the d(x) and d(x̄) ledges. Be-
cause there are no ledges, either (x, b(x)) or (x̄, b(x̄)) can
be chosen. This starting choice will then affect guard
locations for all future modified variable patterns.

3.2 Entire Polygon is Seen

The previous subsection showed that all distinguished
vertices are seen but it does not immediately follow that
the entire polygon is seen. We will make a few obser-
vations to show that the entire polygon is seen. We
will break the polygon into smaller pieces and show that
each of those pieces is seen by some subset of the guards
already placed. It can easily be seen that every point in
the interior of the polygon must fit into at least one of
these categories and therefore must be seen. The num-
bered boxes in Figure 7 correspond to the area we are
discussing in the list below.

4 32 5 71 6

clause pattern C2

clause pattern C1

Figure 7: A simplified diagram showing different areas of the
polygon.

1. All of the polygon in the vertical strip between a
modified starting pattern for xi and xi+1 is seen by
a guard placed at one of {xi, x̄i} ∈ C1.

2. All of the polygon in a vertical strip containing a
modified starting pattern for xi is seen by either
guards placed at (xi ∈ C0, b(xi) ∈ C0, xi ∈ C1) or
(x̄i, b(x̄i)).

3. A clause pattern is a grouping of modified variable
patterns that determine whether a clause is satis-
fiable or not. A clause pattern always contains n

modified variable patterns. Let us number clause
patterns from top to bottom in the order shown in
Figure 7. Consider any variable xi in any clause
Cj where j > 0 and j is even. The vertical strip
containing the modified variable pattern is seen by
either guards placed at (xi ∈ Cj , b(xi) ∈ Cj , xi ∈
Cj−1) or (x̄i ∈ Cj , b(x̄i) ∈ Cj , x̄i ∈ Cj−1). Similar
arguments can be made in the cases where j is odd.
One should consider the initial grouping of modi-
fied starting patterns as C0 when thinking about
clause pattern C1.
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4. Consider 3 consecutive clause patterns
Ci−1, Ci, Ci+1. The area of the polygon located in
a vertical strip between Ci−1 and Ci+1 can be seen
by a guard placed at either (x1, x̄1) ∈ Ci.

5. Consider 2 consecutive modified variable patterns
xi, xi+1 in some clause Ci where i is odd. The ver-
tical strip between them is seen by a guard placed
at either of (xi+1 ∈ Ci−1, x̄i+1 ∈ Ci). Similar argu-
ments can be made if i is even.

6. Consider the vertical strip between the modified
variable pattern for xn ∈ Cm−1 and the modified
variable pattern for xn ∈ Cm. In other words, this
is the vertical strip in the “middle” of the polygon.
This strip is seen by either x̄n ∈ Cm−1 or xn ∈ Cm.
Similar arguments can be made if Cm is to the left
of Cm−1.

7. Lastly, consider the upper corners of the polygon.
A guard placed at either (x1, x̄1) ∈ C0 will see both
of these areas.

Using the observations in this section that show the
entire polygon is seen and the modified patterns which
force guards to be in specific locations along with the
hardness result for vertex guarding from [13] with the
newK = 2n(m+1) given in Corollary 3, we have proved
the following theorem.

Theorem 6 Finding the smallest interior guard cover
for a monotone polygon is NP-hard.

4 Conclusions and Future Work

We have proved that interior guarding a monotone poly-
gon is NP-hard. Open problems include improving the
approximation bounds for monotone polygons. Since
a PTAS has not yet been found for guarding a mono-
tone polygon, an interesting open question is whether
or not one exists. If a PTAS cannot be found, can
guarding a monotone polygon be shown to be APX-
hard? Other open problems include finding approxi-
mation algorithms for other classes of polygons and ul-
timately finding better approximations for guarding a
simple polygon in general.
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