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Edge Guards for Polyhedra in Three-Space

Javier Cano∗ Csaba D. Tóth† Jorge Urrutia‡

Abstract

It is shown that every polyhedron in R3 with m edges
can be guarded with at most 27

32m edge guards. The
bound improves to 5

6m + 1
12 if the 1-skeleton of the

polyhedron is connected. These are the first non-trivial
upper bounds for the edge guard problem for general
polyhedra in R3.

1 Introduction

A polyhedron P in R3 is a compact set bounded by a
piecewise linear manifold. Two points, a and b, are
visible in a polyhedron P if the closed line segment ab
is contained in P . For the edges of a polyhedron P , we
adapt the notion of weak visibility : an edge e of P is
visible from a point p if there is a point q ∈ e such that
p and q are visible in P . A set S of edges jointly guard
P if every point a ∈ P is visible from some edge in S.
It is possible that a point a ∈ P does not see any vertex
of P [11], however, it is not difficult to show that every
point a ∈ P sees at least six edges of P . It follows that
every polyhedron with m edges can be guarded by at
most m− 5 edges.

It was conjectured [14] that any polyhedron of genus
zero with m edges can be guarded with at most m

6 edge
guards. This bound would be optimal apart from an
additive constant: for every k ∈ N, there are polyhedra
Pk in R3 with 6(k+1) edges that require at least k edge
guards [14], see Figure 1. The polyhedron Pk is the
union of a flat tetrahedron T and k pairwise disjoint
small tetrahedra attached to one facet of T such that
their interiors cannot be seen from any of the edges of
T . Since each small tetrahedron has to be guarded by
one of its edges, P requires k edge guards.

In this paper, we prove that every polyhedron with
m edges (and arbitrary genus) in R3 can be guarded by
at most cm edges, where c > 0 is a constant strictly
smaller than 1. This is the first nontrivial upper bound
for the edge guard problem for general polyhedra. For
every polyhedron P in R3, we choose a set of edges that
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Figure 1: A polyhedron with m edges that requires
m/6− 1 edge guards.

jointly guard P as the union of two sets: (1) a set of
edges that cover all vertices of P , and (2) at most 3/4
of the remaining edges.

The 1-skeleton of a polyhedron P is the graph defined
by the vertices and edges of P . An edge cover of a
graph G = (V,E) is a set of edges E1 ⊆ E such that
every vertex v ∈ V is incident to an edge in E1. By
placing guards at every edge in an edge cover of the
1-skeleton of P , we ensure that every point in P that
sees a vertex is guarded. Note that the 1-skeleton of
P is not necessarily connected (see Figure 1), even if P
has genus zero. However, every connected component
of the 1-skeleton is 3-connected. In Section 2, using
classical matching theory, we give upper bounds for the
size of a minimal edge cover in a 3-connected graph, and
in a graph formed by the disjoint union of 3-connected
components.

In Section 3, we 4-color the edges of P , and show
that if a point a ∈ P does not see any vertex of P , then
it sees two edges of different colors. It follows that an
edge cover E1 ⊂ E and the three smallest color classes
of E \ E1 jointly guard the entire polyhedron P .

Related work. Most of the previous research on art
gallery problems focused on polygons in the plane. For
example, it is well known that every simple polygon
with n vertices can be guarded by at most bn3 c point
guards [3], and that every orthogonal polygon with n
vertices can be guarded by bn4 c point guards [7]. It is
widely believed that every simple polygon with n ver-
tices can be guarded by at most bn+1

4 c of its edges [10].
Everett and Rivera-Campo [6] showed that every tri-

angulated polyhedral terrain in R3 with n vertices can
be guarded by bn3 c edges, as bn3 c edges can cover all
faces of a plane triangulation with n vertices. They also
proved that the faces of every plane graph with n ver-
tices can be guarded by b 2n5 c edges. See also [2] for
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other variants of guarding polyhedral terrains in R3

For orthogonal polyhedra with m edges in R3, it was
conjectured that m

12 edge guards are always sufficient
[14]. For every k ∈ N, there are orthogonal polyhedra
Pk in R3 with 12(k + 1) edges that require at least k
edge guards [14]. Recently, Benbernou et al. [1] showed
that 11m

72 edges are always sufficient.
Benbernou et al. [1] also introduced a variant of the

problem with open edge guards. An open edge e of
P is visible from a point p if there is a point q in the
relative interior of e such that p and q are visible in P .
They showed that every orthogonal polyhedron of genus
g with m edges can be guarded with 11m

72 −
g
6 − 1 open

edge guards.

2 Edge covers in 3-connected graphs

An edge cover of a graph G = (V,E) is a set of edges
E1 ⊆ E such that every vertex v ∈ V is incident to
an edge in E1. A minimum edge cover is the union of a
maximum matching M ⊂ E and one extra edge for each
vertex not covered by M . Hence the size of a minimum
edge cover is |V | − |M |.

Nishizeki and Baybars [2, 9] proved that the maxi-
mum matching in a 3-connected planar graph with n
vertices has at least (n + 4)/3 edges; and so every such
graph has an edge cover of size at most (2n − 4)/3.
An edge cover of this size can be computed in O(n)
time [12]. If G is a maximal planar graph (a triangula-
tion) with n ≥ 3 vertices and m = 3n− 6 edges, then G
has an edge cover of size at most 2

9m. However, we are
interested in the minimum edge cover of an arbitrary 3-
connected graph in terms of the number of edges, rather
than the number of vertices of the graph.

We recall a few technical terms and the Edmonds-
Gallai Structure Theorem for maximal matchings [8,
15]. Let G = (V,E) be a simple graph. A matching
M ⊂ E is perfect if it covers all vertices of G; it is near
perfect if it covers all but one vertex of G. According
to the Edmonds-Gallai Structure Theorem, if M ⊂ E
is a maximum matching of G, then there is a vertex set
U ⊆ V (a Berge-Tutte witness set) with the following
properties:

• M contains a perfect matching on every even com-
ponent of G[V \ U ];

• M contains a near perfect matching on every odd
component of G[V \ U ];

• M matches all vertices of U to vertices in distinct
odd components of G[V \ U ].

A minimum edge cover of G can be obtained by aug-
menting the maximum matching M with one extra edge
for each odd component of G[V \ U ] that is not fully
covered by M . We are now in the position to prove the
following lemma.

Lemma 1 Every 3-connected graph with n ≥ 4 ver-
tices and m edges contains an edge cover of size at most
b(m + 1)/3c. This bound is the best possible.

Proof. Let G = (V,E) be a 3-connected planar graph
|V | ≥ 4 vertices and m = |E| edges. Let M ⊆ E be a
maximum matching of G. The Edmonds-Gallai Struc-
ture Theorem yields a Berge-Tutte witness set U ⊂ V .

If U = ∅, then G[V \ U ] = G has a unique connected
component, in which M is a perfect or near perfect
matching with at least b|V |/2c edges. In this case, G has
an edge cover of size d|V |/2e. Since G is 3-connected,
the minimum vertex degree is 3, and m ≥ d 32 |V |e. Then
G has an edge cover of size at most b(m + 1)/3c.

Assume now that U 6= ∅. Denote the components
of G[V \ U ] by Gi = (Vi, Ei), for i = 1, 2, . . . , `. Let
Ei ⊂ E denote the set of all edges incident to vertices
in Vi, that is, all edges in Ei and edges between U and
Vi. The edge sets Ei, i = 1, . . . , `, are pairwise disjoint.
Since G is 3-connected, the minimum vertex degree is
3, and so the sum of degrees of the vertices in Vi is at
least 3|Vi|. Also, at least 3 edges in Ei are incident to
some vertices in U . Hence |Ei| ≥ 3

2 (|Vi|+ 1).
If |Vi| is even, then M contains a perfect matching on

Gi, with 1
2 |Vi| edges. Hence, the maximum matching

M contains less than one third of the edges of Ei.
If |Vi| is odd, then M contains a near perfect matching

on Gi, with 1
2 (|Vi| − 1) edges. A minimum edge cover

of G contains one more edge of Ei between U and Vi.
Altogether, a minimum edge cover of G contains at most
1
2 (|Vi| + 1) edges of Ei. On the other hand, |Ei| ≥
3
2 (|Vi| + 1). Hence, a minimum edge cover contains at

most a third of the edges of Ei. Altogether, an upper
bound m/3 follows in this case.

The bound b(m+ 1)/3c is the best possible. If m ≡ 0
or m ≡ 1 mod 3, then the lower bound construction is
a bipartite graph with vertex classes U and V \U , where
every vertex in V \ U has degree 3. If m ≡ 2 mod 3,
then the lower bound construction is the 1-skeleton of a
pyramid with a square base with 5 vertices and 8 edges
(Figure 2). The base of the pyramid can be extended
to a ladder for larger values of m. �

Figure 2: Lower bound constructions for m ≡ 2 mod 3.

The 1-skeleton of a polyhedron in R3 is not necessarily
connected (see Figure 1). However, each component of
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the 1-skeleton is 3-connected and has at least 4 vertices.
For the edge cover of the 1-skeleton of a polyhedron, we
derive the following corollary.

Corollary 2 Let G be a graph such that every con-
nected component of G is 3-connected and has at least 4
vertices. Then G has an edge cover with at most b 3m8 c
edges. This bound is the best possible.

Proof. Let G1, . . . , Gk be the connected components
of G, with m1, . . . ,mk edges each. By Lemma 1, for
each Gi we find an edge cover of size at most bmi+1

3 c ≤
bmi

3 c+ 1. Note that bmi+1
3 c = mi+1

3 if mi ≡ 2 mod 3,

and bmi+1
3 c ≤ mi

3 otherwise. Since
∑k

i=1 mi = m, then

k∑
i=1

⌊
mi + 1

3

⌋
≤ m + k′

3
,

where k′ is the number of components with mi ≡ 2
mod 3. Any such component has at least 8 edges, and
so k′ ≤ bm8 c. It follows that

m + k′

3
≤ m + bm/8c

3
≤ m + m/8

3
=

3m

8
,

as required. This bound is tight if each component of
G is a square pyramid as in Figure 2(left). �

3 Four-coloring of edges in a polyhedron

Let P be a polyhedron with m edges (and arbitrary
genus). Let G = (V,E) denote the 1-skeleton of P . We
may assume, by rotating P if necessary, that no edge in
E is parallel to any coordinate plane. This ensures that
the two endpoints of each edge e ∈ E have distinct x-
(resp., y- and z-) coordinates. We interpret above-below
relation with respect to the z-axis (that is, a point a is
above point b if a has a larger z-coordinate than b); and
the left-right relation with respect to the y-axis. Recall
that the boundary of P is a piecewise linear manifold,
and so every edge e ∈ E is incident to exactly two facets
of P .

We distinguish between four types of edges in E as
follows. For every edge e ∈ E, let He denote the plane
spanned by e and a vertical line intersecting e. The
plane He decomposes R3 into two halfspaces, lying on
the left and the right of He. We say that e is a left
edge if both facets incident to e lie in the left halfspace
of He; edge e is a right edge if both facets incident
to e lie in the right halfspace of He. The edge e is an
upper edge if the two facets incident to e are in opposite
halfspaces of He, and the interior of P lies below both
facets. Edge e is a lower edge if the two facets incident
to e are in opposite halfspaces of He, and the interior of
P lies above both facets. See Figure 3 for examples.

We can now 4-color the edges of P such that the color
classes correspond to the left, right, upper, and lower

x y

z

P

e4
e2

e3e1

e4e2
e3

e1

y

z

Figure 3: Top: An left edge e1, a right edge e2, a
lower edge e3, and an upper edge e4 in a polyhedron P .
Bottom: The cross-section of the polyhedron P with
a plane parallel to the yz-plane, which is stabbed by
edges e1, . . . , e4. Dotted lines indicate the vertical lines
passing through the the stabbing points of e1, . . . , e4.

edges, respectively. We prove the following property of
the 4-coloring.

Lemma 3 If a point a ∈ P does not see any vertex of
P , then a sees edges in at least two color classes.

Proof. Let a ∈ P be a point in the polyhedron P that
does not see any vertex of P . Suppose that a sees edges
of at most one color class. We distinguish four cases
based on the color of the edges visible from a. By sym-
metry, it is enough to consider two out of four cases: left
edges (the case of right edges is analogous), and upper
edges (the case of lower edges is analogous).

Left edges. Suppose that every edge visible from a is
a left edge. Consider the cross section of the polyhedron
P with a plane Ha containing a and parallel to the yz-
plane. Refer to Figure 4. The intersection Ha ∩ P may
have several components, let Pa denote the component
that contains a. Note that Pa is a 2-dimensional poly-
gon, with possible holes. The vertices of Pa correspond
to edges of P : each vertex of Pa is the intersection point
of an edge of P with the plane Ha. Let V ∗a denote the
set of reflex vertices of Pa that correspond to left edges
of P . If v ∈ V ∗a , then the two edges of Pa incident to v
lie on the left of v, and so the angle bisector of v is on
the right side of a.

Decompose the polygon Pa as follows. Consider the
vertices in V ∗a in an arbitrary order. From each vertex
v ∈ V ∗a successively shoot a ray along its angle bisector,
and draw a segment along the ray from v to the first
point where the ray hits the boundary of Pa or a pre-
viously drawn segment. If a ray hits a vertex, perturb
the ray slightly so that it does not end at any vertex.



24th Canadian Conference on Computational Geometry, 2012

a

Pa

v0
Qa

Figure 4: The polygon Pa is the cross-section of the
polyhedron P with the plane Ha containing a and par-
allel to the xz-plane. The vertices in V ∗a are marked
with large dots. Pa is decomposed into subpolygons by
rays emitted by the vertices in V ∗a . The subpolygon
Qa contains a. Since Qa is convex, a sees the leftmost
vertex v0 of Qa.

The segments decompose Pa into subpolygons. Denote
by Qa ⊆ Pa a subpolygon containing the point a, and
let v0 be the leftmost vertex of Qa. Note that Qa is a
convex polygon, otherwise a sees a reflex vertex of Qa

which does not correspond to a left edge, since it would
have no segment drawn along its bisector, contradicting
the assumption that a only sees left edges. Since Qa is
convex, we have av0 ⊂ Qa ⊂ Pa, that is, v0 is visible
from a. Since all bisector rays are directed from left to
right, v0 has to be a vertex of the polygon Pa. Both
edges of Qa incident to v0 are on the right side of v0, as
it is the leftmost vertex; and at least one of them has to
be an edge of Pa, since every vertex of Pa emits at most
one ray along its bisector. Therefore, v0 does not corre-
spond to a left edge of P . We have shown that a sees a
non-left edge of P , contradicting our initial assumption.

Upper edges. Suppose that every edge visible from
a is an upper edge. We decompose the polyhedron P
into polyhedral cells such that each cell has exactly two
nonvertical facets, which bound the cell from above and
from below, respectively. We use (the first phase of) the
standard vertical decomposition method [4, 13]. For ev-
ery point p in every edge e ∈ E, erect a maximal vertical
segment sp such that p ∈ sp ⊂ P . For an edge e ∈ E,
the segments sp, p ∈ e, form a vertical simple poly-
gon Ae (which we call a vertical wall) whose upper and
lower boundaries are contained in the boundary of P .
The polygons Ae, e ∈ E, jointly decompose P into cells.
Each cell has exactly two nonvertical facets, bounding
the cell from above and below, respectively, and are con-
tained in some facets of P ; all other facets are contained
in vertical walls corresponding to some edges of E. Due
to the vertical walls Ae, e ∈ E, every cells has convex
dihedral angles along the edges of the polyhedron P . A

cell may still have a reflex dihedral angle at a vertical
edge (e.g., consider the vertical decomposition of the
polyhedron in Figure 1).

Denote by Ta a cell containing a. If point a sees some
point p in a vertical wall Ae on the boundary of Ta, for
some e ∈ E, then a sees the point q ∈ e vertically above
or below p. Recall that only upper edges of P are visible
from a, hence every vertical wall Ae on the boundary of
Ta visible from a corresponds to an upper edge e ∈ E.

We show that a sees some vertex of P . Assume first
that Ta is nonconvex and so a sees some reflex edge
er of Ta. Then er is a point p in a vertical edge of
Ta, which lies on the boundary of two vertical walls, as
noted above. Necessarily, a also sees a point vertically
above p on the boundary of P , which is a vertex of
P . Next assume that Ta is convex. Then every edge
corresponding to a vertical wall on the boundary of Ta is
incident to the top facet of Ta. Therefore, the top facet
of Ta is bounded by edges of E, and hence it is a facet
of P . Any vertex of the top facet of Ta is a vertex of P ,
and visible from a by convexity. We have shown in both
cases that a sees some vertex of P . This contradicts our
assumption that a does not see any vertex of P , and
completes the proof. �

4 Obtaining the set of guards

The combination of the results in Sections 2 and 3 leads
to the following bound on the minimum number of edge
guards in a polyhedron.

Lemma 4 Let P be a polyhedron with m edges in R3

(with arbitrary genus), and let E1 be an edge cover of
the 1-skeleton of P . Then P can be guarded by at most
(3m + |E1|)/4 edge guards.

Proof. Four-color the edges of the 1-skeleton of P as
described in Section 3. Place guards at all edges of E1,
and at the three smallest color classes of the remaining
edges. Altogether, we use at most

|E1|+
3

4
(m− |E1|) =

3m + |E1|
4

edge guards. If a point a ∈ P sees a vertex v, then it
is guarded by an edge in E1 that covers v. If a point
a ∈ P does not see any vertex of P , then it sees edges
in at least two color classes by Lemma 3, and so it is
guarded by an edge in one of the three smallest color
classes. �

Finally, we prove our main results.

Theorem 5 Every polyhedron in R3 with m edges (and
arbitrary genus) can be guarded with at most 27

32m edge
guards.
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Proof. Let P be a polyhedron with m edges in R3 with
arbitrary genus. Let G be the 1-skeleton of P , and note
that every connected component of G is 3-connected
with at least 4 vertices. By Corollary 2, G has an edge
cover E1 of size |E1| ≤ 3m

8 . By Lemma 4, P can be
guarded by at most

3m + |E1|
4

≤
3m + 3m

8

4
=

27m

32

edges, as claimed. �

If the 1-skeleton of P is connected, we can establish
a better upper bound.

Theorem 6 Every polyhedron in R3 with m edges (and
arbitrary genus) and a connected 1-skeleton can be
guarded with at most 5

6m + 1
12 edge guards.

Proof. Let P be a polyhedron with m edges in R3 with
arbitrary genus. Let G be the 1-skeleton of P . By
Lemma 1, G has an edge cover E1 of size |E1| ≤ m+1

3 .
By Lemma 4, P can be guarded by at most

3m + |E1|
4

≤
3m + m+1

3

4
=

10m + 1

12

edges, as claimed. �

Using the same technique, one can also show that if
the 1-skeleton of P is a triangulation with m edges, then
it has an edge cover of size at most 2

9m, and it can be
guarded by at most 29m

36 edge guards.
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