Edge Guards for Polyhedra in Three-Space

Javier Cano* ${ }^{*} \quad$ Csaba D. Tóth ${ }^{\dagger} \quad$ Jorge Urrutia ${ }^{\ddagger}$

Abstract

It is shown that every polyhedron in \mathbb{R}^{3} with m edges can be guarded with at most $\frac{27}{32} m$ edge guards. The bound improves to $\frac{5}{6} m+\frac{1}{12}$ if the 1 -skeleton of the polyhedron is connected. These are the first non-trivial upper bounds for the edge guard problem for general polyhedra in \mathbb{R}^{3}.

1 Introduction

A polyhedron P in \mathbb{R}^{3} is a compact set bounded by a piecewise linear manifold. Two points, a and b, are visible in a polyhedron P if the closed line segment $a b$ is contained in P. For the edges of a polyhedron P, we adapt the notion of weak visibility: an edge e of P is visible from a point p if there is a point $q \in e$ such that p and q are visible in P. A set S of edges jointly guard P if every point $a \in P$ is visible from some edge in S. It is possible that a point $a \in P$ does not see any vertex of P [11], however, it is not difficult to show that every point $a \in P$ sees at least six edges of P. It follows that every polyhedron with m edges can be guarded by at most $m-5$ edges.
It was conjectured [14] that any polyhedron of genus zero with m edges can be guarded with at most $\frac{m}{6}$ edge guards. This bound would be optimal apart from an additive constant: for every $k \in \mathbb{N}$, there are polyhedra P_{k} in \mathbb{R}^{3} with $6(k+1)$ edges that require at least k edge guards [14], see Figure 1. The polyhedron P_{k} is the union of a flat tetrahedron T and k pairwise disjoint small tetrahedra attached to one facet of T such that their interiors cannot be seen from any of the edges of T. Since each small tetrahedron has to be guarded by one of its edges, P requires k edge guards.
In this paper, we prove that every polyhedron with m edges (and arbitrary genus) in \mathbb{R}^{3} can be guarded by at most $c m$ edges, where $c>0$ is a constant strictly smaller than 1 . This is the first nontrivial upper bound for the edge guard problem for general polyhedra. For every polyhedron P in \mathbb{R}^{3}, we choose a set of edges that

[^0]

Figure 1: A polyhedron with m edges that requires $m / 6-1$ edge guards.
jointly guard P as the union of two sets: (1) a set of edges that cover all vertices of P, and (2) at most $3 / 4$ of the remaining edges.

The 1 -skeleton of a polyhedron P is the graph defined by the vertices and edges of P. An edge cover of a graph $G=(V, E)$ is a set of edges $E_{1} \subseteq E$ such that every vertex $v \in V$ is incident to an edge in E_{1}. By placing guards at every edge in an edge cover of the 1 -skeleton of P, we ensure that every point in P that sees a vertex is guarded. Note that the 1 -skeleton of P is not necessarily connected (see Figure 1), even if P has genus zero. However, every connected component of the 1 -skeleton is 3 -connected. In Section 2, using classical matching theory, we give upper bounds for the size of a minimal edge cover in a 3 -connected graph, and in a graph formed by the disjoint union of 3 -connected components.

In Section 3, we 4 -color the edges of P, and show that if a point $a \in P$ does not see any vertex of P, then it sees two edges of different colors. It follows that an edge cover $E_{1} \subset E$ and the three smallest color classes of $E \backslash E_{1}$ jointly guard the entire polyhedron P.

Related work. Most of the previous research on art gallery problems focused on polygons in the plane. For example, it is well known that every simple polygon with n vertices can be guarded by at most $\left\lfloor\frac{n}{3}\right\rfloor$ point guards [3], and that every orthogonal polygon with n vertices can be guarded by $\left\lfloor\frac{n}{4}\right\rfloor$ point guards [7]. It is widely believed that every simple polygon with n vertices can be guarded by at most $\left\lfloor\frac{n+1}{4}\right\rfloor$ of its edges [10].

Everett and Rivera-Campo [6] showed that every triangulated polyhedral terrain in \mathbb{R}^{3} with n vertices can be guarded by $\left\lfloor\frac{n}{3}\right\rfloor$ edges, as $\left\lfloor\frac{n}{3}\right\rfloor$ edges can cover all faces of a plane triangulation with n vertices. They also proved that the faces of every plane graph with n vertices can be guarded by $\left\lfloor\frac{2 n}{5}\right\rfloor$ edges. See also [2] for
other variants of guarding polyhedral terrains in \mathbb{R}^{3}
For orthogonal polyhedra with m edges in \mathbb{R}^{3}, it was conjectured that $\frac{m}{12}$ edge guards are always sufficient [14]. For every $k \in \mathbb{N}$, there are orthogonal polyhedra P_{k} in \mathbb{R}^{3} with $12(k+1)$ edges that require at least k edge guards [14]. Recently, Benbernou et al. [1] showed that $\frac{11 m}{72}$ edges are always sufficient.

Benbernou et al. [1] also introduced a variant of the problem with open edge guards. An open edge e of P is visible from a point p if there is a point q in the relative interior of e such that p and q are visible in P. They showed that every orthogonal polyhedron of genus g with m edges can be guarded with $\frac{11 m}{72}-\frac{g}{6}-1$ open edge guards.

2 Edge covers in 3-connected graphs

An edge cover of a graph $G=(V, E)$ is a set of edges $E_{1} \subseteq E$ such that every vertex $v \in V$ is incident to an edge in E_{1}. A minimum edge cover is the union of a maximum matching $M \subset E$ and one extra edge for each vertex not covered by M. Hence the size of a minimum edge cover is $|V|-|M|$.

Nishizeki and Baybars [2, 9] proved that the maximum matching in a 3 -connected planar graph with n vertices has at least $(n+4) / 3$ edges; and so every such graph has an edge cover of size at most $(2 n-4) / 3$. An edge cover of this size can be computed in $O(n)$ time [12]. If G is a maximal planar graph (a triangulation) with $n \geq 3$ vertices and $m=3 n-6$ edges, then G has an edge cover of size at most $\frac{2}{9} m$. However, we are interested in the minimum edge cover of an arbitrary 3connected graph in terms of the number of edges, rather than the number of vertices of the graph.

We recall a few technical terms and the EdmondsGallai Structure Theorem for maximal matchings [8, 15]. Let $G=(V, E)$ be a simple graph. A matching $M \subset E$ is perfect if it covers all vertices of G; it is near perfect if it covers all but one vertex of G. According to the Edmonds-Gallai Structure Theorem, if $M \subset E$ is a maximum matching of G, then there is a vertex set $U \subseteq V$ (a Berge-Tutte witness set) with the following properties:

- M contains a perfect matching on every even component of $G[V \backslash U]$;
- M contains a near perfect matching on every odd component of $G[V \backslash U]$;
- M matches all vertices of U to vertices in distinct odd components of $G[V \backslash U]$.

A minimum edge cover of G can be obtained by augmenting the maximum matching M with one extra edge for each odd component of $G[V \backslash U]$ that is not fully covered by M. We are now in the position to prove the following lemma.

Lemma 1 Every 3-connected graph with $n \geq 4$ vertices and m edges contains an edge cover of size at most $\lfloor(m+1) / 3\rfloor$. This bound is the best possible.

Proof. Let $G=(V, E)$ be a 3-connected planar graph $|V| \geq 4$ vertices and $m=|E|$ edges. Let $M \subseteq E$ be a maximum matching of G. The Edmonds-Gallai Structure Theorem yields a Berge-Tutte witness set $U \subset V$.

If $U=\emptyset$, then $G[V \backslash U]=G$ has a unique connected component, in which M is a perfect or near perfect matching with at least $\lfloor|V| / 2\rfloor$ edges. In this case, G has an edge cover of size $\lceil|V| / 2\rceil$. Since G is 3-connected, the minimum vertex degree is 3 , and $m \geq\left\lceil\frac{3}{2}|V|\right\rceil$. Then G has an edge cover of size at most $\lfloor(m+1) / 3\rfloor$.

Assume now that $U \neq \emptyset$. Denote the components of $G[V \backslash U]$ by $G_{i}=\left(V_{i}, E_{i}\right)$, for $i=1,2, \ldots, \ell$. Let $\bar{E}_{i} \subset E$ denote the set of all edges incident to vertices in V_{i}, that is, all edges in E_{i} and edges between U and V_{i}. The edge sets $E_{i}, i=1, \ldots, \ell$, are pairwise disjoint. Since G is 3 -connected, the minimum vertex degree is 3 , and so the sum of degrees of the vertices in V_{i} is at least $3\left|V_{i}\right|$. Also, at least 3 edges in \bar{E}_{i} are incident to some vertices in U. Hence $\left|\bar{E}_{i}\right| \geq \frac{3}{2}\left(\left|V_{i}\right|+1\right)$.

If $\left|V_{i}\right|$ is even, then M contains a perfect matching on G_{i}, with $\frac{1}{2}\left|V_{i}\right|$ edges. Hence, the maximum matching M contains less than one third of the edges of \bar{E}_{i}.

If $\left|V_{i}\right|$ is odd, then M contains a near perfect matching on G_{i}, with $\frac{1}{2}\left(\left|V_{i}\right|-1\right)$ edges. A minimum edge cover of G contains one more edge of \bar{E}_{i} between U and V_{i}. Altogether, a minimum edge cover of G contains at most $\frac{1}{2}\left(\left|V_{i}\right|+1\right)$ edges of \bar{E}_{i}. On the other hand, $\left|\bar{E}_{i}\right| \geq$ $\frac{3}{2}\left(\left|V_{i}\right|+1\right)$. Hence, a minimum edge cover contains at most a third of the edges of \bar{E}_{i}. Altogether, an upper bound $m / 3$ follows in this case.

The bound $\lfloor(m+1) / 3\rfloor$ is the best possible. If $m \equiv 0$ or $m \equiv 1 \bmod 3$, then the lower bound construction is a bipartite graph with vertex classes U and $V \backslash U$, where every vertex in $V \backslash U$ has degree 3 . If $m \equiv 2 \bmod 3$, then the lower bound construction is the 1 -skeleton of a pyramid with a square base with 5 vertices and 8 edges (Figure 2). The base of the pyramid can be extended to a ladder for larger values of m.

Figure 2: Lower bound constructions for $m \equiv 2 \bmod 3$.
The 1 -skeleton of a polyhedron in \mathbb{R}^{3} is not necessarily connected (see Figure 1). However, each component of
the 1 -skeleton is 3 -connected and has at least 4 vertices. For the edge cover of the 1 -skeleton of a polyhedron, we derive the following corollary.

Corollary 2 Let G be a graph such that every connected component of G is 3-connected and has at least 4 vertices. Then G has an edge cover with at most $\left\lfloor\frac{3 m}{8}\right\rfloor$ edges. This bound is the best possible.

Proof. Let G_{1}, \ldots, G_{k} be the connected components of G, with m_{1}, \ldots, m_{k} edges each. By Lemma 1 , for each G_{i} we find an edge cover of size at most $\left\lfloor\frac{m_{i}+1}{3}\right\rfloor \leq$ $\left\lfloor\frac{m_{i}}{3}\right\rfloor+1$. Note that $\left\lfloor\frac{m_{i}+1}{3}\right\rfloor=\frac{m_{i}+1}{3}$ if $m_{i} \equiv 2 \bmod 3$, and $\left\lfloor\frac{m_{i}+1}{3}\right\rfloor \leq \frac{m_{i}}{3}$ otherwise. Since $\sum_{i=1}^{k} m_{i}=m$, then

$$
\sum_{i=1}^{k}\left\lfloor\frac{m_{i}+1}{3}\right\rfloor \leq \frac{m+k^{\prime}}{3}
$$

where k^{\prime} is the number of components with $m_{i} \equiv 2$ $\bmod 3$. Any such component has at least 8 edges, and so $k^{\prime} \leq\left\lfloor\frac{m}{8}\right\rfloor$. It follows that

$$
\frac{m+k^{\prime}}{3} \leq \frac{m+\lfloor m / 8\rfloor}{3} \leq \frac{m+m / 8}{3}=\frac{3 m}{8}
$$

as required. This bound is tight if each component of G is a square pyramid as in Figure 2(left).

3 Four-coloring of edges in a polyhedron

Let P be a polyhedron with m edges (and arbitrary genus). Let $G=(V, E)$ denote the 1-skeleton of P. We may assume, by rotating P if necessary, that no edge in E is parallel to any coordinate plane. This ensures that the two endpoints of each edge $e \in E$ have distinct x (resp., y - and z-) coordinates. We interpret above-below relation with respect to the z-axis (that is, a point a is above point b if a has a larger z-coordinate than b); and the left-right relation with respect to the y-axis. Recall that the boundary of P is a piecewise linear manifold, and so every edge $e \in E$ is incident to exactly two facets of P.

We distinguish between four types of edges in E as follows. For every edge $e \in E$, let H_{e} denote the plane spanned by e and a vertical line intersecting e. The plane H_{e} decomposes \mathbb{R}^{3} into two halfspaces, lying on the left and the right of H_{e}. We say that e is a left edge if both facets incident to e lie in the left halfspace of H_{e}; edge e is a right edge if both facets incident to e lie in the right halfspace of H_{e}. The edge e is an upper edge if the two facets incident to e are in opposite halfspaces of H_{e}, and the interior of P lies below both facets. Edge e is a lower edge if the two facets incident to e are in opposite halfspaces of H_{e}, and the interior of P lies above both facets. See Figure 3 for examples.

We can now 4-color the edges of P such that the color classes correspond to the left, right, upper, and lower

Figure 3: Top: An left edge e_{1}, a right edge e_{2}, a lower edge e_{3}, and an upper edge e_{4} in a polyhedron P. Bottom: The cross-section of the polyhedron P with a plane parallel to the $y z$-plane, which is stabbed by edges e_{1}, \ldots, e_{4}. Dotted lines indicate the vertical lines passing through the the stabbing points of e_{1}, \ldots, e_{4}.
edges, respectively. We prove the following property of the 4 -coloring.

Lemma 3 If a point $a \in P$ does not see any vertex of P, then a sees edges in at least two color classes.

Proof. Let $a \in P$ be a point in the polyhedron P that does not see any vertex of P. Suppose that a sees edges of at most one color class. We distinguish four cases based on the color of the edges visible from a. By symmetry, it is enough to consider two out of four cases: left edges (the case of right edges is analogous), and upper edges (the case of lower edges is analogous).

Left edges. Suppose that every edge visible from a is a left edge. Consider the cross section of the polyhedron P with a plane H_{a} containing a and parallel to the $y z-$ plane. Refer to Figure 4. The intersection $H_{a} \cap P$ may have several components, let P_{a} denote the component that contains a. Note that P_{a} is a 2 -dimensional polygon, with possible holes. The vertices of P_{a} correspond to edges of P : each vertex of P_{a} is the intersection point of an edge of P with the plane H_{a}. Let V_{a}^{*} denote the set of reflex vertices of P_{a} that correspond to left edges of P. If $v \in V_{a}^{*}$, then the two edges of P_{a} incident to v lie on the left of v, and so the angle bisector of v is on the right side of a.

Decompose the polygon P_{a} as follows. Consider the vertices in V_{a}^{*} in an arbitrary order. From each vertex $v \in V_{a}^{*}$ successively shoot a ray along its angle bisector, and draw a segment along the ray from v to the first point where the ray hits the boundary of P_{a} or a previously drawn segment. If a ray hits a vertex, perturb the ray slightly so that it does not end at any vertex.

Figure 4: The polygon P_{a} is the cross-section of the polyhedron P with the plane H_{a} containing a and parallel to the $x z$-plane. The vertices in V_{a}^{*} are marked with large dots. P_{a} is decomposed into subpolygons by rays emitted by the vertices in V_{a}^{*}. The subpolygon Q_{a} contains a. Since Q_{a} is convex, a sees the leftmost vertex v_{0} of Q_{a}.

The segments decompose P_{a} into subpolygons. Denote by $Q_{a} \subseteq P_{a}$ a subpolygon containing the point a, and let v_{0} be the leftmost vertex of Q_{a}. Note that Q_{a} is a convex polygon, otherwise a sees a reflex vertex of Q_{a} which does not correspond to a left edge, since it would have no segment drawn along its bisector, contradicting the assumption that a only sees left edges. Since Q_{a} is convex, we have $a v_{0} \subset Q_{a} \subset P_{a}$, that is, v_{0} is visible from a. Since all bisector rays are directed from left to right, v_{0} has to be a vertex of the polygon P_{a}. Both edges of Q_{a} incident to v_{0} are on the right side of v_{0}, as it is the leftmost vertex; and at least one of them has to be an edge of P_{a}, since every vertex of P_{a} emits at most one ray along its bisector. Therefore, v_{0} does not correspond to a left edge of P. We have shown that a sees a non-left edge of P, contradicting our initial assumption.

Upper edges. Suppose that every edge visible from a is an upper edge. We decompose the polyhedron P into polyhedral cells such that each cell has exactly two nonvertical facets, which bound the cell from above and from below, respectively. We use (the first phase of) the standard vertical decomposition method $[4,13]$. For every point p in every edge $e \in E$, erect a maximal vertical segment s_{p} such that $p \in s_{p} \subset P$. For an edge $e \in E$, the segments $s_{p}, p \in e$, form a vertical simple polygon A_{e} (which we call a vertical wall) whose upper and lower boundaries are contained in the boundary of P. The polygons $A_{e}, e \in E$, jointly decompose P into cells. Each cell has exactly two nonvertical facets, bounding the cell from above and below, respectively, and are contained in some facets of P; all other facets are contained in vertical walls corresponding to some edges of E. Due to the vertical walls $A_{e}, e \in E$, every cells has convex dihedral angles along the edges of the polyhedron P. A
cell may still have a reflex dihedral angle at a vertical edge (e.g., consider the vertical decomposition of the polyhedron in Figure 1).

Denote by T_{a} a cell containing a. If point a sees some point p in a vertical wall A_{e} on the boundary of T_{a}, for some $e \in E$, then a sees the point $q \in e$ vertically above or below p. Recall that only upper edges of P are visible from a, hence every vertical wall A_{e} on the boundary of T_{a} visible from a corresponds to an upper edge $e \in E$.

We show that a sees some vertex of P. Assume first that T_{a} is nonconvex and so a sees some reflex edge e_{r} of T_{a}. Then e_{r} is a point p in a vertical edge of T_{a}, which lies on the boundary of two vertical walls, as noted above. Necessarily, a also sees a point vertically above p on the boundary of P, which is a vertex of P. Next assume that T_{a} is convex. Then every edge corresponding to a vertical wall on the boundary of T_{a} is incident to the top facet of T_{a}. Therefore, the top facet of T_{a} is bounded by edges of E, and hence it is a facet of P. Any vertex of the top facet of T_{a} is a vertex of P, and visible from a by convexity. We have shown in both cases that a sees some vertex of P. This contradicts our assumption that a does not see any vertex of P, and completes the proof.

4 Obtaining the set of guards

The combination of the results in Sections 2 and 3 leads to the following bound on the minimum number of edge guards in a polyhedron.

Lemma 4 Let P be a polyhedron with m edges in \mathbb{R}^{3} (with arbitrary genus), and let E_{1} be an edge cover of the 1 -skeleton of P. Then P can be guarded by at most $\left(3 m+\left|E_{1}\right|\right) / 4$ edge guards.

Proof. Four-color the edges of the 1-skeleton of P as described in Section 3. Place guards at all edges of E_{1}, and at the three smallest color classes of the remaining edges. Altogether, we use at most

$$
\left|E_{1}\right|+\frac{3}{4}\left(m-\left|E_{1}\right|\right)=\frac{3 m+\left|E_{1}\right|}{4}
$$

edge guards. If a point $a \in P$ sees a vertex v, then it is guarded by an edge in E_{1} that covers v. If a point $a \in P$ does not see any vertex of P, then it sees edges in at least two color classes by Lemma 3, and so it is guarded by an edge in one of the three smallest color classes.

Finally, we prove our main results.
Theorem 5 Every polyhedron in \mathbb{R}^{3} with m edges (and arbitrary genus) can be guarded with at most $\frac{27}{32} m$ edge guards.

Proof. Let P be a polyhedron with m edges in \mathbb{R}^{3} with arbitrary genus. Let G be the 1 -skeleton of P, and note that every connected component of G is 3 -connected with at least 4 vertices. By Corollary $2, G$ has an edge cover E_{1} of size $\left|E_{1}\right| \leq \frac{3 m}{8}$. By Lemma $4, P$ can be guarded by at most

$$
\frac{3 m+\left|E_{1}\right|}{4} \leq \frac{3 m+\frac{3 m}{8}}{4}=\frac{27 m}{32}
$$

edges, as claimed.
If the 1 -skeleton of P is connected, we can establish a better upper bound.

Theorem 6 Every polyhedron in \mathbb{R}^{3} with m edges (and arbitrary genus) and a connected 1-skeleton can be guarded with at most $\frac{5}{6} m+\frac{1}{12}$ edge guards.

Proof. Let P be a polyhedron with m edges in \mathbb{R}^{3} with arbitrary genus. Let G be the 1 -skeleton of P. By Lemma $1, G$ has an edge cover E_{1} of size $\left|E_{1}\right| \leq \frac{m+1}{3}$. By Lemma $4, P$ can be guarded by at most

$$
\frac{3 m+\left|E_{1}\right|}{4} \leq \frac{3 m+\frac{m+1}{3}}{4}=\frac{10 m+1}{12}
$$

edges, as claimed.
Using the same technique, one can also show that if the 1-skeleton of P is a triangulation with m edges, then it has an edge cover of size at most $\frac{2}{9} m$, and it can be guarded by at most $\frac{29 m}{36}$ edge guards.

References

[1] N. M. Benbernou, E. D. Demaine, M. L. Demaine, A. Kurdia, J. O'Rourke, G. Toussaint, J. Urrutia, and G. Viglietta, Edge-guarding orthogonal polyhedra, in 23rd Canadian Conf. Comput. Geom., Toronto, 2011.
[2] P. Bose, D. Kirkpatrick, and Z. Li. Worst-case-optimal algorithms for guarding planar graphs and polyhedral surfaces, Comput. Geom. 26 (2003), 209-219.
[3] V. Chvátal, A combinatorial theorem in plane geometry, J. Combin. Theory Se. B 18 (1976), 39-41.
[4] K. L. Clarkson, H. Edelsbrunner, L. J. Guibas, M. Sharir, and E. Welzl, Combinatorial complexity bounds for arrangements of curves and spheres, Discrete Comput. Geom. 5 (1) (1990), 99-160.
[5] S. Devadoss and J. O'Rourke, Discrete and Comptuational Geometry, Princeton University Press, 2011.
[6] H. Everett and E. Rivera-Campo, Edge guarding polyhedral terrains, Comput. Geom. 7 (3) (1997), 201-203.
[7] J. Kahn, M. Klawe, and D. Kleitman, Traditional galleries require fewer watchmen, SIAM J. Algebraic and Discrete Methods 4 (1983), 194-206.
[8] L. Lovász and M. D. Plummer, Matching Theory, vol. 29 of Ann. Discrete Math., North-Holland, Amsterdam, 1986.
[9] T. Nishizeki and I. Baybars, Lower bounds on the cardinalitiy of the maximum matchings of planar graphs, Discrete Math. 28 (1979), 255-267.
[10] J. O'Rourke, Galleries need fewer mobile guards: a variation on Chvátal's theorem, Geometriae Dedicata 14 (1983), 273-283.
[11] J. O'Rourke, Art Gallery Theorems and Algorithms, Oxford University Press, 1987.
[12] I. Rutter and A. Wolff, Computing large matchings fast, ACM Trans. Algorithms 7 (2010), article \# 1.
[13] M. Sharir and P. K. Agarwal, Davenport-Schinzel Sequences and Their Geometric Applications, Cambridge University Press, 1995.
[14] J. Urrutia, Art gallery and illumination problems, in Handbook of Computational Geometry, pp. 973-1027, North-Holland, Amsterdam, 2000.
[15] D. B. West, A short proof of the Berge-Tutte Formula and the Gallai-Edmonds Structure Theorem, European J. Combin. 32 (2011), 674-676.

[^0]: *Posgrado en Ciencia e Ingeniería de la Computación, Universidad Nacional Autónoma de México, D.F. México, j_cano@uxmcc2.iimas.unam.mx
 ${ }^{\dagger}$ Department of Mathematics and Statistics, University of Calgary, Calgary, AB, cdtoth@ucalgary.ca
 ${ }^{\ddagger}$ Instituto de Matemáticas, Universidad Nacional Autónoma de México, D.F. México, urrutia@matem.unam.mx

