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Dynamic Computational Topology for Piecewise Linear Curves ∗
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Abstract

A piecewise linear (PL) approximation often serves as
the graphics representation for a parametric curve. Al-
gorithms for preserving correct topology for a single
static image are available, but significant challenges re-
main to ensure correct topology when the PL curve is
changing shape during synchronized visualization with
an ongoing simulation, such as a molecule writhing over
time. A tubular neighborhood of the curve is defined to
preserve topology under perturbation, but as the per-
turbed geometry approaches the boundary of that tubu-
lar neighborhood, any required update of the neighbor-
hood should maintain the synchronization. The algo-
rithimic performance of these updates is directly de-
pendent upon the number of approximating edges and
the techniques presented here decrease that data volume
versus previous methods, as shown by a comprehensive
comparative analysis and a representative example.

1 Introduction & Related Work

Molecules undergoing computer simulations are often
represented by parametric curves. The simulation code
describes how points on the curve move under changes
in critical variables such as temperature, pressure and
acidity. For graphics display, PL approximations are in-
voked [11]. The literature on ensuring that a static PL
approximation retains crucial topological characteristics
of the model is relatively well developed for both curves
[14] and surfaces [1, 2, 10]. The more subtle challenge
of maintaining topological fidelity during perturbations
of PL approximations [3] is addressed here, with inno-
vations for efficient update of topological constraints
during visualization that is synchronized to an ongo-
ing molecular simulation. These perturbations are con-
strained within a tubular neighborhood of c, as shown
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in Figure 1. This tubular neighborhood has a bounding
pipe surface [14] of radius r, which depends upon two
properties of c,

• the mimimal Euclidean distance between points of
c that are distant in arc-length, and

• maximal curvature.

Figure 1: A tubular neighborhood about c.

For polynomial curves, the maximal curvature can be
easily computed and will not be discussed further. Our
attention is devoted to the first value, known as the min-
imum separation distance for c, abbreviated as MSDc.
A double normal is defined to be a line segment which is
normal to c at both end points of the line segment. We
define MSDc to be the minimum length of all double
normal line segments of c. Even for polynomial curves,
the computation of MSDc entails some subtlety. We
show that an approximant of MSDc, denoted as λc can
be computed, within user-specified error bounds, from
a PL approximation of c. More importantly, we provide
a comprehensive comparative analysis and a represen-
tative example to justify our efficient updates of λc, as
the geometry continues to perturb beyond the original
constraints imposed by λc.

For graphics, once a PL curve has been shown to
preserve the topological embedding of the parametric
curve, then perturbations of the PL approximation are
used to generate subsequent graphical images. By obvi-
ous extensions of previous methods [13], the originally
calculated λc serves as a bound to continue to preserve
the desired topological embedding. However, as the lim-
iting value of λc is approached, with a perturbed PL
curve `, then computation of the updated limit can pro-
ceed purely on `.

A concept closely related to these pipe surfaces is the
thickness of a knot [5, 6]. Applications to molecular
modeling [19] and detailed numeric algorithmic devel-
opment [4, 7] have appeared, but these algorithms do
not address the crucial update efficiencies considered
here, even while their definition of doubly-critical self-
distances is the same as MSDc.
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2 Preliminaries

We present the curve and topological definitions that
are central to this work.

2.1 Class of Parametric Curves

As often occurs, this investigation is first restricted to
the class of Bézier curves, as their polynomial repre-
sentation avoids many cumbersome details, while still
supporting theoretical inisights that can easily be gen-
eralized to the wider class of non-uniform rational B-
spline (NURBS) curves. A degree n Bézier curve with
control points, P = {p0, · · · , pn} is given by

c(t) =

n∑
i=0

(
n

i

)
(i− t)n−ipi, t ∈ [0, 1],

where the PL curve formed by consecutively connecting
p0, · · · , pn is called the control polygon of c [18]. A
subdivision algorithm operates on P to generate two PL
curves, each having n+1 vertices, denoted, respectively
as PL and PR, as shown in Figure 2. The union PL∪PR
is also a control polygon for c but lies closer to c than the
original control polygon. This process can be repeated
to obtain a PL graphical approximation that is within
a prescribed distance of the curve c. This is only an
initial static approximation and the focus here is for
methods to ensure that this approximant retains crucial
topological characteristics as it changes over time.

Figure 2: Initial & subdivided control polygons of c.

For ease of exposition1, we assume that the subdivi-
sion parameter is 1/2, so that the fundamental subdivi-
sion operation is to find midpoints of line segments. We
remark that the statement, proof and use of Lemma 1
directly depend upon a subdivision parameter of 1/2.

2.2 Crucial Topological Characteristics

The traditional measure of topological equivalence is
homeomorphism. A homeomorphism is a mapping,
f : X −→ Y , between two subsets X and Y of Rn such
that:

1. f is bijective,

2. f and f−1 are continuous.

1The reader can modify our results for other parameters.

Homeomorphic equivalence does not capture the em-
bedding of a curve within R3. In Figure 3 the right
image is an unknot and the left is a trefoil. These struc-
tures are homeomorphic even though they are embed-
ded differently in R3.

Figure 3: PL knots in R3

We use the stronger equivalence of ambient isotopy to
also preserve embedding of c in R3. The knots in figure
3 are not ambient isotopic. Two subspaces, X and Y ,
of Rn are said to be ambient isotopic if there exists a
continuous function H : Rn × [0, 1] −→ Rn such that

1. H(·, 0) is the identity on Rn,

2. H(X, 1) = Y , and

3. ∀t ∈ [0, 1], H(·, t) is a homeomorphism.

Figure 4: An isotopic deformation of X into Y .

The parameter t can be considered as variable repre-
senting time for application to animation and dynamic
visualization as illustrated in Figure 4.

3 Background and Notation

In this section we state some previously established re-
sults and define notation to be used throughout this
paper. Let c(t) be a Bézier curve with control points
P = {p0, · · · , pn}. The PL approximations presented
will converge to c in both distance and derivative.

3.1 Approximation of c in Distance

Given the polygon generated by P the second centered
difference of pi is given by

∆2pi = pi−1 − 2pi + pi+1.
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We define ∆2p0 = ∆2pn = 0. The maximal second cen-
tered difference of the polygon generated by P is given
by

‖∆2P‖∞ = max
0≤i≤n

‖∆2pi‖∞.

For a degree n Bézier curve c(t) with control points
P = {p0, · · · , pn}, after m uniform subdivisions the
maximal Hausdorff distance between the control poly-
gon and the curve is given by [17](

1

2

)2m

‖∆2P‖∞N∞(n).

Here N∞(n) =
dn/2ebn/2c

2n
. Note that this distance is

actually attained. So subdividing m1 times guarantees
that the PL structure is within a specified tolerance ε
where

m1 =

⌈
−1

2
log2

(
ε

‖∆2P‖∞N∞(n)

)⌉
(1)

3.2 PL Approximation of c in Derivative

Define the derivative operator ∆ on the control points
P as follows [12],

∆P = {∆p0,∆p1, · · · ,∆pn−1}
= n{p1 − p0, p2 − p1, · · · , pn − pn−1}.

The curve generated by the control points ∆P is called
the hodograph or derivative curve of c.

Define L(P, [0, 1]) to be the uniform parameterization
of the control polygon P = {p0, p1, · · · , pn}. So

L(P, [0, 1])

(
j

n

)
= pj

and L(P, [0, 1]) is linear on the intervals
[
j
n ,

j+1
n

]
. For

a Bézier curve c(t) defined on [0, 1] with control points
P = {p0, · · · , pn} the discrete derivative is defined as
[16]

D[c(t)] = L(∆P, [0, 1]).

In other words, the discrete derivative is the uniform pa-
rameterization of the control polygon of the hodograph.

After applying m subdivisions to c(t) 2m

curves are generated with control points{
pm,10 , · · · , pm,1n , pm,20 , · · · , pm,2n , · · · , pm,2

m

0 · · · , pm,2mn

}
.

Subdividing m times divides [0, 1] into the intervals[
k
2m ,

k+1
2m

]
for k = 0, 1, · · · , 2m − 1. Each interval is

associated with a unique subcurve. Now define

P ′ = n
{

∆pk,10 ,∆pk,11 , · · · ,∆pk,1n−1,∆p
k,2
0 , · · · ,∆pm,2

m

n−1

}
.

Now write
P ′ = {p′0, · · · , p′n2i}

The discrete derivative of c(t) after m subdivisions is

Dm[c(t)] = L(P ′, [0, 1]).

For a degree n curve subdivided m times we have [8]

‖Dm[c(t)]− d

dt
c(t)‖∞ ≤

(
1

2

)2m+1

N∞(n−1)n‖∆2(∆P )‖∞.

Subdividing m2 times ensures that we can approxi-
mate the derivative within a specified εd where

m2 =

⌈
−1

2

(
1 + log2

εd
N∞(n− 1)n‖∆2(∆P )‖∞

)⌉
(2)

3.3 Establishing Double Normals

For a Bézier curve c and distinct s, t ∈ [0, 1] define the
quadratic form

〈c(s), c(t)〉D =
[c(s)− c(t)] · c′(s)
‖c(s)− c(t)‖

.

Notice that c(s) and c(t) establish a double normal if
and only if

〈c(s), c(t)〉D = 〈c(t), c(s)〉D = 0.

The subscript D here denotes the fact that we are using
the continuous derivative.

4 Using PL Structure to Calculate MSDc

In the previous section we presented a PL approxima-
tion to a Bézier curve and its derivatives. Also we de-
fined a quadratic form that we can use to test if given
points on the curve form a double normal. The tran-
sition to use of the discrete derivative is established
through the modified quadratic form

〈c(s), c(t)〉d =
[c(s)− c(t)] ·Dm[c(s)]

‖c(s)− c(t)‖
.

The subscript d here indicates that we are using the
discrete derivative.

4.1 Testing for Candidate Double Normals

Assume that the user has provided some ε > 0 and that
we have refined the PL structure with m subdivisions,
so it is within ε

2 of the curve and the derivative is ap-
proximated by the discrete derivative within ε

2 .
Define ~γ ∈ R3 so that Dm[c(s)] = c′(s)+~γ. Note that

‖~γ‖ ≤ ε
2 . Also, notice that if c(s) and c(t) establish a

double normal, i.e. 〈c(s), c(t)〉D = 0, then

〈c(s), c(t)〉d =
[c(s)− c(t)] ·Dm[c(s)]

‖c(s)− c(t)‖

=
[c(s)− c(t)] · [c′(s) + ~γ]

‖c(s)− c(t)‖

=
[c(s)− c(t)] · ~γ
‖c(s)− c(t)‖
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The Cauchy-Schwarz inequality states that for all vec-
tors x and y of an inner product space it is true that

|〈x, y〉| ≤ ‖x‖‖y‖.

So applying the Cauchy-Schwarz inequality yields

|〈c(s), c(t)〉d| ≤
ε

2

Consider two line segments from the PL representa-
tion of c and calculate the minimum distance between
the segments. Suppose this minimum distance is real-
ized by the line segment with end points L(P, [0, 1])(t0)
and L(P, [0, 1])(s0). Then, if

|〈c(s0), c(t0)〉d| ≤
ε

2
and |〈c(t0), c(s0)〉d| ≤

ε

2

we consider the line to be a good approximation of a
double normal.

4.2 Estimating MSDc

Denote the exact MSDc by σ. There exist distinct
points c(s) and c(t), such that d(c(s), c(t)) = σ. We
compute λc, our estimate for σ as the minimum of the
distance between all pairs of disjoint edges of the ap-
proximating control polygon. There will exist distinct
points p and q from those edges such that d(p, q) = λc.

Lemma 1 Let `0 be the length of the longest edge of
a given control polygon before any subdivision has oc-
cured and `m be the length of the longest edge after m
subdivisions. Then

`m ≤
`0
2m

.

Proof. This follows from the definition of subdivision
with subdivision parameter of 1/2. �

Applying the triangle inequality we see that

σ = d(c(s), c(t)) ≤ d(c(s), p) + d(p, q) + d(q, c(t))

Let L1 be the line segment in the PL approximation
that contains the point p, and L2 be the line segment
passing through c(s) with the same length as L1 so that
L1 and L2 form opposite sides of a rectangle (see figure
5). Let d1 denote the diagonal of the rectangle.

We note that d1 < d21, unless d1 < 1. In the ensuing
analyses, we wish to consider specific numeric bounds on
epsilon, where we will typically assume that ε << `m.
To do so, we will make the further simplifying assump-
tion that `m ≥ 1. Theoretically, the length of each of
the finitely many edges could be divided by `m > 0,
normalizing the measuring scale. Pragmatically, this
ensures that the user can conveniently choose values of
ε and εd that are small relative to 1.

Figure 5: Estimating distance with right triangle

Note that

|L1| = |L2| ≤
`0
2m

and
d(c(s), p) ≤ d1.

Applying the Pythagorean theorem we have

d1 ≤ d21 ≤
( ε

2

)2
+

(
`0
2m

)2

=
ε2

4
+

`20
22m

.

So
d(c(s), p) ≤ ε2

4
+

`20
22m

.

Similarly

d(c(t), q) ≤ ε2

4
+

`20
22m

.

So we have

σ ≤ 2

(
ε2

4
+

`20
22m

)
+ λc

=
ε2

2
+

`20
22m−1

+ λc.

Also,

λc = d(p, q)

≤ d(p, c(s)) + d(c(s), c(t)) + d(c(t), q)

≤ ε2

2
+

`20
22m−1

+ σ

So,

σ ∈ [λc − E, λc + E], where E =
ε2

2
+

`20
22m−1

.

In order to choose a number of subdivisions to mini-
mize E, recall that(

1

2

)2m

‖∆2P‖∞N∞(n) ≤ ε,

and the fact that ε depends on m. Let δ denote our
maximum error tolerance, and establish E ≤ δ. Let
K = ‖∆2P‖∞N∞(n). Then(

1

2

)2m

K < ε and E = 2

(
ε2

4
+

`20
22m

)
. So
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E < 2

(
ε2

4
+
ε`20
K

)
=
ε2

2
+

2ε`20
N∞(n)‖∆2P‖∞

So if we choose ε so that

ε2

2
+

2ε`20
N∞(n)‖∆2P‖∞

≤ δ,

then clearly E ≤ δ. This involves solving the following
quadratic in ε,

(1/2)ε2 +
2`20ε

N∞(n)‖∆2P‖∞
− δ ≤ 0. (3)

Choose half the smallest positive root of this
quadratic to substitute for ε in equation (1).

MSDc Estimation Algorithm

Input: δ, c, εd
0. Calculate m1,m2 and let m = max{m1,m2}.
1. Subdivide m times to get PL approximation of c.

2. Compute d(li, lj), the distances between line
segments in the PL structure, where L(P, [0, 1])(t0)
and L(P, [0, 1])(s0) realize d(li, lj).

3. If |〈c(s0), c(t0)〉d| ≤ εd and |〈c(t0), c(s0)〉d| ≤ εd
then keep as double normal.

4. Take minimum from Step 3. as λc.

Output: λc

Figure 6: Algorithm for estimating MSDc

4.3 Efficient Updates by Data Reduction

The previous approach [15] constructed a PL approxi-
mation of c by uniformly partitioning [0, 1] as

0 = s0 < s1 < · · · < sv−1 < sv = 1,

where

|si+1 − si| < min

{
ε√

3K0

,
sin
(
ε
2

)
µ0

K1

}
.

Here K0 is the maximum value of ‖c′(t)‖∞, K1 is the
maximum value of ‖c′′(t)‖∞ and µ0 is the minimum
value of ‖c′(t)‖∞. The points in the partition are the
end points of the curves resulting from subdivision. The
number of subdivisions required, m̃, is given by m̃ =
max {m̃1, m̃2} where

m̃1 =

⌈
− log2

(
ε√

3K0

)⌉
and

m̃2 =

⌈
− log2

(
sin
(
ε
2

)
µ0

K1

)⌉

Our algorithm will use fewer subdivisions when m < m̃,
given by our comprehensive analysis of 4 cases:
Case 1: m1 < m̃1. This is true if

−1

2
log2

(
ε

‖∆2P‖∞N∞(n)

)
< − log2

(
ε√

3K0

)
+ 1.

In other words if

3K2
0

‖∆2P‖∞N∞(n)ε
>

1

4
(4)

then m1 < m̃1. If there is no restriction on ε then clearly
we can choose ε small enough so (4) holds. Otherwise
(4) will hold unless K0 is small, the degree of the curve is
very large or ‖∆2P‖∞ is large (i.e. the control polygon
has a narrow spike). So for example if ε = 0.01 and the
curve is cubic

3K2
0

‖∆2P‖∞N∞(n)ε
= 300

(
M2

0

‖∆2P‖∞

)
.

So the ratio on the right would need to be less than 1
1200

for the above inequality to be reversed.
Case 2: m2 < m̃2 when

sin
( ε

4

)
µ0

√
n‖∆2(∆P )‖∞N∞(n− 1)
√
εK1

<
√

8

This holds unless K1 is small, µ0 is large, ‖∆2(∆P )‖∞ is
large, or the degree is large. So for a cubic with ε = 0.01

for this inequality to be false
µ0

K1
> 130.6.

Case 3: m1 < m̃2 if

sin
( ε

2

)
µ0

√
‖∆2P‖∞N∞(n)

K1
√
ε

< 2.

This will not hold for large µ0, small K1 or curves of
large degree. Note that ‖∆2P‖∞ is an approximation
of K1.
Case 4: m2 < m̃1 if

N∞(n− 1)‖∆2(∆P )‖∞nε
K2

0

<
8

3
,

which holds unless K0 is small, ‖∆2(∆P )‖∞ is large or
the degree is large. So outside of the circumstances de-
scribed above m < m̃. The analysis suggests avoiding
‘high degree’ curves, as can generally be done in graph-
ics [11]. The other characteristics in the shape of the
curve will be assessed in problem specific contexts. Re-
call, also that the number of approximating segments
is exponential in m and m̃, so that even modest differ-
ences here can have a significant effect on performance
of the topological updating, which depends directly on
the number of approximating segments. This is now
shown with a representative example.
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5 Representative Example

Consider a composite cubic Bézier curve, consisting of
five sub-curves, that forms a trefoil knot (figure 7). The
control points and calculations are given in the extended
version of this paper [9]. Choosing δ = 0.25 and εd =
0.01, gives ε = 0.01, so m = 6. The maximum error is
given by E = 0.0034415. This gives a maximum relative
error of approximately 0.0078. Note that 6 subdivisions
yields 960 line segments. Comparatively the previous
approach involved 10,240 line segments [15].

Figure 7: Composite Bézier Curve

6 Conclusion and Future work

We present theory, accompanied by an illustrative ex-
ample, for efficient updates to constraints for preserv-
ing the topological embedding of curves during dynamic
visualization of molecular simulations. In high perfor-
mance computing applications, an accompanying visu-
alization could have millions of frames, so it also be-
comes important to assess accumulated numerical er-
rors over the total time interval upon realistically chal-
lenging data sets. In principle, the dynamic topological
results presented here for curves should extend to sur-
faces, but practical testing on surface data remains a
future consideration.
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