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Common Developments of Three Different Orthogonal Boxes
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Abstract

We investigate common developments that can fold into
plural incongruent orthogonal boxes. It was shown that
there are infinitely many orthogonal polygons that fold
into two incongruent orthogonal boxes in 2008. In 2011,
it was shown that there exists an orthogonal polygon
that folds into three boxes of size 1 × 1 × 5, 1 × 2 × 3,
and 0×1×11. It remained open whether there exists an
orthogonal polygon that folds into three boxes of posi-
tive volume. We give an affirmative answer to this open
problem: there exists an orthogonal polygon that folds
into three boxes of size 7 × 8 × 56, 7 × 14 × 38, and
2 × 13 × 58. The construction idea can be generalized,
and hence there exists an infinite number of orthogo-
nal polygons that fold into three incongruent orthogonal
boxes.

1 Introduction

Since Lubiw and O’Rourke posed the problem in 1996
[5], polygons that can fold into a (convex) polyhedron
have been investigated. In the book on geometric fold-
ing algorithms by Demaine and O’Rourke in 2007, many
results about such polygons are given [4, Chapter 25].
Such polygons have many applications including toys
and puzzles. For example, the puzzle “cubigami” (Fig-
ure 1) is developed by Miller and Knuth, and it is a com-
mon development of all tetracubes except one (since the
last one has surface area 16, while the others have sur-
face area 18). One of the many interesting problems in
this area is whether there exists a polygon that folds into
plural incongruent orthogonal boxes. Biedl et al. gave
two polygons that fold into two incongruent orthogonal
boxes [3] (see also [4, Figure 25.53]). Later, Mitani and
Uehara constructed infinite families of orthogonal poly-
gons that fold into two incongruent orthogonal boxes
[6]. Last year, Abel et al. showed an orthogonal polygon
that folds into three boxes of size 1 × 1 × 5, 1 × 2 × 3,
and 0 × 1 × 11 [1]. However, the last “box” has vol-
ume zero; this is a so called “doubly covered rectangle”
(e.g., [2]). Therefore, it remains open to show whether
there is a polygon that can fold into three or more boxes
of positive volume.

We give an affirmative answer to this open problem;
there exists an orthogonal polygon that can fold into
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Figure 1: Cubigami.

three incongruent orthogonal boxes of size 7 × 8 × 56,
7 × 14 × 38, and 2 × 13 × 58 (Figure 2)1.

The construction idea can be generalized. Therefore,
we conclude that there exist infinitely many orthogonal
polygons that can fold into three incongruent orthogo-
nal boxes.

2 Construction of the common development

The definition of the development of a solid can be found
in [4, Chap. 21]. Roughly, the development is the un-
folding obtained by slicing the surface of the solid, and
it forms a single connected simple polygon without self-
overlap. The common development of two (or more)
solids is the development that can fold into the solids.
In this paper, as developments, we only consider orthog-
onal polygons that consist of unit squares.

Intuitively, the basic construction idea is simple. We
first choose a common development of two different
boxes of size a × b × c and a′ × b′ × c′. We select one
of these two boxes; let it have size a × b × c. We cut
the two rectangles of size a× b (one at the top, and an-
other at the bottom of the box) into two pieces of size
a × b/2 each. Then we squash the box and make these
two rectangles of size a × b into two rectangles of size
(a + b/2) × b/2 = 2a × b/2 (Figure 3). However, this
simple idea immediately comes to a dead end; this op-
eration can be done properly if and only if a = b/2, and
hence we only change the rectangle of size 1×2 into the

1This figure is also available at http://www.jaist.ac.jp/

~uehara/etc/puzzle/nets/3box.pdf for ease to cut and fold.
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Figure 2: A common development of three different boxes of size 7 × 8 × 56, 7 × 14 × 38, and 2 × 13 × 58.
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Figure 3: Basic idea: squash the box.

other rectangle of size 2 × 1, which are congruent.
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Figure 4: Squash the box: cut and fold.

The main trick to avoid this problem is to move pieces
of the rectangles of size a × b of the box to the side
rectangles of size b×c and a×c. That is, after the squash
operation above, the surface areas of the resultant top
and bottom rectangles decrease, and the side rectangles
grow a little. A specific example is given in Figure 4;
in this example, the rectangle of size 8 × 7 is split into
two congruent pieces by a mid zig-zag line; each piece
in turn is divided into one central piece (labeled A, B
in Figure 4). The result is a rectangle of size 13×2. (In
Figure 4(a), the bold lines are cut lines, and dotted lines
are folding lines to obtain (b). The lines a, b, c, and d
are corresponding, and the gray triangles indicate how
two squares are arranged by the operation.) Among

the 56 squares, 56 − 26 = 30 squares are moved to the
four sides. We note that the perimeter of these two
rectangles is not changed since 7 + 8 + 7 + 8 = 2 + 13 +
2 + 13 = 30.
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Figure 5: The base common development of two boxes
of size a × b × 8a and a × 2a × (2a + 3b).

To apply this idea, we choose a common development
of two boxes of size a × b × 8a and a × 2a × (2a +
3b) in Figure 5. This is a modification of the common
development of two boxes of size 1 × 1 × 8 and 1 × 2 ×
5 in [6, Figure 5]. To apply the idea, we cut each of
the top and bottom rectangles of size a × b into two
congruent rectangles of size a/2 × b. For any integers a
and b, the orthogonal polygon in Figure 5 is a common
development of two boxes of size a× b×8a and a×2a×
(2a + 3b) (the two folding ways are drawn in bold lines
in Figure 6).

The development in Figure 5 has useful properties for
applying the idea in Figure 3: (1) we can adjust the size
of the top and bottom rectangles to an arbitrary size,
and (2) two folding ways share several folding lines. Es-
pecially, in Figure 6, each of the two connected gray
areas is folded in the same way in both folding ways.
Thus we attach the gadget from Figure 3 at this area
letting a = 7 and b = 8. That is, we replace the rectan-
gles of size a/2×b by the rectangles A and B surrounded
by the zig-zag lines in Figure 4.
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Figure 6: Some properties of the common development
of two boxes of size a × b × 8a and a × 2a × (2a + 3b).

The only problem when applying the gadget is that
the zig-zag lines propagate themselves according to the
folding ways. That is, the zig-zag lines are glued to
the different edges in some folding. For example, a zig-
zag line at black triangle in Figure 6(a) is attached to
the edge at black triangle in the folding way in Fig-
ure 6(b). Thus, these edges must consist of the same
zig-zag pattern. On the other hand, this edge is at-
tached to the edge at the black square in the folding way
in Figure 6(a), which is attached to the black square in
Figure 6(b). Thus, they also must have the same zig-
zag pattern. Then the last edge is again attached to
the edge with the black circle in Figure 6(a), and this
is attached to the two edges with the smaller black cir-
cles in Figure 6(b). Then the loop of the propagation is
closed, and we obtain the set of the edges that have to
be represented by the zig-zag pattern.

Checking all the propagations, we finally obtain a

common development of three different boxes of size
7 × 8 × 56, 7 × 14 × 38, and 2 × 13 × 58 in Figure 2.

3 Generalization
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Figure 7: Generalization of the zig-zag cut.

In Section 2, we set a = 7 and b = 8, and change the
rectangle of size 7 × 8 into 2 × 13. It is straightforward
to generalize this method. For example, setting a = 11
and b = 10, we can change the rectangle of size 11 × 10
into 4 × 17 (see Figure 7). In general, for each integer
k = 0, 1, 2, . . ., setting a = 4k+7 and b = 2(k+4), we can
change the rectangle of size a× b to 2(k +1)× (4k +13)
in the same way as in Figure 4. The difference here
from Figure 2 is in the number of turns of the zig-zags.
Therefore, we have the following theorem immediately:

Theorem 1 For each integer k = 0, 1, 2, . . ., there is a
common development that can fold into three different
boxes of size (4k+7)×2(k+4)×8(4k+7), (4k+7)×2(4k+
7)× 2(7k + 19), and 2(k + 1)× (4k + 13)× 2(16k + 29).

That is, there exists an infinite number of orthogonal
polygons that can fold into three incongruent orthogo-
nal boxes.

4 Concluding remarks

It is an open question if a polygon exists that can fold
into four or more orthogonal boxes such that all of them
have positive volume.

When two boxes of size a× b× c and a′× b′× c′ share
a common development, they satisfy a simple necessary
condition ab+ bc+ ca = a′b′ + b′c′ + c′a′ since they have
the same surface area. According to the experiments
in [6], this necessary condition seems also sufficient for
two boxes: for each pair of 3-tuples of integers satisfying
the condition, there exist many common developments
of two boxes of these size [6]. In this sense, the smallest
possible surface area that can fold into three different
boxes is 46; the area can produce three boxes of size
(1, 1, 11), (1, 2, 7), and (1, 3, 5). On the other hand, our
construction produces a polygon of large surface area.
The polygon in Figure 2 has area 1792. Applying the
same idea to the different common development in [6],
we also construct another smaller development of area
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Figure 8: Another polygon that can fold into three boxes of size 7 × 8 × 14, 2 × 4 × 43, and 2 × 13 × 16.

532 (Figure 8). Comparing to the results for two boxes,
finding much smaller polygons would be a future work.
Especially, is there a common development of area 46
that can fold into three boxes of size (1, 1, 11), (1, 2, 7),
and (1, 3, 5)?
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