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What makes a Tree a Straight Skeleton?∗

Oswin Aichholzer† Howard Cheng‡ Satyan L. Devadoss§ Thomas Hackl† Stefan Huber¶

Brian Li§ Andrej Risteski‖

Abstract

Let G be a cycle-free connected straight-line graph with
predefined edge lengths and fixed order of incident edges
around each vertex. We address the problem of decid-
ing whether there exists a simple polygon P such that
G is the straight skeleton of P . We show that for given
G such a polygon P might not exist, and if it exists it
might not be unique. For the later case we give an ex-
ample with exponentially many suitable polygons. For
small star graphs and caterpillars we show necessary
and sufficient conditions for constructing P .

Considering only the topology of the tree, that is,
ignoring the length of the edges, we show that any tree
whose inner vertices have degree at least 3 is isomorphic
to the straight skeleton of a suitable convex polygon.

1 Introduction

The straight skeleton S(P ) of a simple polygon P is a
skeleton structure like the Voronoi diagram, but consists
of straight-line segments only. Its definition is based
on a so-called wavefront propagation process that corre-
sponds to mitered offset curves. Each edge e of P emits
a wavefront that moves with unit speed to the interior
of P . Initially, the wavefront of P consists of parallel
copies of all edges of P . However, during the wavefront
propagation, topological changes occur: An edge event
happens if a wavefront edge shrinks to zero length. A
split event happens if a reflex wavefront vertex meets a

∗A preliminary version of this paper appeared at Eu-
roCG 2012. Research of O. Aichholzer partially supported
by the ESF EUROCORES programme EuroGIGA – Com-
PoSe, Austrian Science Fund (FWF): I 648-N18. T. Hackl
was funded by the Austrian Science Fund (FWF): P23629-
N18. S. Huber was funded by the Austrian Science Fund
(FWF): L367-N15. H. Cheng, S.L. Devadoss, B. Li, and A.
Risteski were funded by NSF grant DMS-0850577.
†Institute for Software Technology, Graz University of Tech-

nology, [oaich|thackl]@ist.tugraz.at
‡University of Arizona, Tucson, AZ 85721,

howardc@email.arizona.edu
§Williams College, Williamstown, MA 01267,

[satyan.devadoss|brian.t.li]@williams.edu
¶Department of Mathematics, Universität Salzburg, Austria,

shuber@cosy.sbg.ac.at
‖Princeton University, Princeton, NJ 08544,

risteski@princeton.edu

ef(e)

Figure 1: The straight skeleton (thin) of a simple poly-
gon (bold) is defined by the propagating wavefront (dot-
ted).

wavefront edge and splits the wavefront into pieces, see
Figure 1. The straight skeleton S(P ) is defined as the
set of loci that are traced out by the wavefront vertices
and it partitions P into polygonal faces. Each face f(e)
belongs to a unique edge e of P . Each straight-skeleton
edge belongs to two faces, say f(e1) and f(e2), and lies
on the bisector of e1 and e2.

Straight skeletons have many applications, like auto-
mated roof construction, computation of mitered offset
curves, topology-preserving collapsing of areas in geo-
graphic maps, or solving fold-and-cut problems. See [4]
and Chapter 5.2 in [3] for further information and de-
tailed definitions.

Although straight skeletons were introduced to com-
putational geometry in 1995 by Aichholzer et al. [1],
their roots actually go back to the 19th century. In
textbooks about the construction of roofs (see e.g. [6],
pages 86–122) using the angle bisectors (of the polygon
defined by the ground walls) was suggested to design
roofs where rainwater can run off in a controlled way.
This construction is called Dachausmittlung and became
rather popular. See [5] for related and partially more
involved methods to obtain roofs from the ground plan
of a house. In this book detailed explanations of the
constructions and drawings of the resulting roofs can
be found.

Maybe not surprisingly, none of this early work men-
tions the ambiguity of the non-algorithmic definition of
the construction. It can be shown that using solely bi-
sector graphs does not necessarily lead to a unique roof
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construction, and actually does not even guarantee a
plane partition of the interior of the defining boundary.
See [1] for a detailed explanation and examples.

An interesting inverse problem was motivated to us
by Lior Pachter and investigations started in [2]: Which
graphs are the straight skeleton of some polygon? In
other words, how can straight skeletons be characterized
among all graphs?

2 Finding straight skeletons of given topology

First of all, the straight skeleton S(P ) of a simple poly-
gon is known to be connected and cycle-free. Hence,
we can rephrase our question as follows: which trees T
are realized as straight skeletons of simple polygons? At
first we concentrate on the topological structure of trees
only and ignore their geometry.

Theorem 1 For any tree T , whose inner vertices have
at least degree 3, there exists a feasible (convex) polygon
P such that S(P ) possesses the same topology as T .

Note that within convex polygons the straight skele-
ton and the Voronoi diagram are identical. Hence, by
the above theorem, any tree is also isomorphic to the
Voronoi diagram of a suitable convex polygon.

Proof. We first choose any inner vertex v of T to be
the root of T . Then we construct a regular polygon P1

with d(v) sides, where d(v) denotes the degree of v. The
straight skeleton S(P1) is a star graph comprising one
inner node and d(v) incident edges, which correspond
to v and its incident edges in T . It remains to attach
the corresponding subtrees from T to each leaf vertex
of S(P1), if there are any.

In the remainder of the proof we describe an induc-
tive step by which we locally transform a polygon Pi to
Pi+1 in order to attach to a leaf vertex u of S(Pi) a miss-
ing number k = d(u) − 1 of incident edges, where d(u)

u

Pi

s1 s2

u′

Pi+1

e

C

e1 e2 ek

e

Figure 2: The induction step in order to add k edges to
a terminal vertex of S(Pi), with k = 3, by beveling the
corner u of Pi.

denotes the degree of the vertex of T that corresponds
to u. Applying this technique recursively — e.g., in a
breadth-first search fashion starting from v — gives us
finally a polygon Pm, where m denotes the number of
inner nodes of T , whose straight skeleton S(Pm) is topo-
logically equivalent to T by construction. Furthermore,
in our induction step we guarantee that all polygons
P1, . . . , Pm remain convex.

For the induction step, we consider a leaf vertex u in
S(Pi) and we denote by e the incident straight-skeleton
edge of u. As u is a leaf vertex of S(Pi) it is also a poly-
gon vertex of Pi. Hence, e lies on the straight-skeleton
faces f(s1) and f(s2) of the two incident polygon edges
s1 and s2 of u. Since Pi is convex by induction, all faces
of S(Pi) are convex, too. Hence, the projection lines of
the mid point u′ of e onto s1 and s2 are completely con-
tained in f(s1) and f(s2), respectively. Let us consider
the circular arc C that is centered at u′ and tangen-
tial to s1 and s2 such that C forms a round convex cap
of the corner u of Pi, see Figure 2. In the induction
step, we locally bevel the corner u of Pi by any convex
polygonal chain with k ≥ 2 vertices that is tangential
to C. By that the edge e is truncated to u′ and we ob-
tain k additional straight-skeleton edges e1, . . . , ek that
are incident to u′, as desired. The resulting polygon
Pi+1 is again convex and a locally beveled version of Pi.
Note that the remaining straight skeleton of Pi remains
unchanged for Pi+1. �

3 Abstract geometric trees

The original problem motivated by Lior Pachter and for
which investigations started in [2] does not only ask for
a specific topology of S(G), but also asks for certain
geometric requirements that are to be fulfilled by S(P ).
In particular, we want to find a polygon P for which (i)
S(P ) has a specific topology, (ii) the edges of S(P ) have
a specific length and (iii) the cyclic order of incident
edges at vertices of S(P ) is given.

To give a more formal problem definition we denote
with abstract geometric graphs the set of combinatorial
graphs, where the length of each edge and the cyclic or-
der of incident edges around every vertex is predefined
(and cannot be altered). Let G be the set of cycle-
free connected abstract geometric graphs. Denote with
E(G) an embedding of G ∈ G in the plane, that is,
the vertices of G are points in R2 and the edges of
G are straight-line segments of the predefined length,
connecting the corresponding points and respecting the
predefined cyclic order of incident edges around each
vertex. Further, denote with PE(G) the polygon result-
ing from connecting the leaves of G (with straight-line
segments) in cyclic order for the embedding E(G). We
call a simple polygon PE(G) suitable if its straight skele-
ton S(PE(G)) = E(G), for the embedding E(G). If there
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Figure 3: Example of a feasible cycle-free connected
abstract geometric graph G (leaves of G are shown as
white dots). Left: Arbitrary embedding E(G) and (non-
simple) polygon PE(G) (dotted). Right: Suitable poly-
gon PE′(G) for a different embedding E′(G), which is
equal to S(PE′(G)). A set of wavefronts of PE′(G) at
different points in time are depicted in gray.

exists a suitable polygon for a graph G ∈ G, we call G
feasible, see Figure 3.

The obvious questions which arise from these defini-
tions are: Which graphs of G are feasible? Are the suit-
able polygons for feasible graphs unique modulo rigid
motions? How can one construct a suitable polygon for
a feasible graph?

3.1 Star graphs

All polygon edges whose straight-skeleton faces con-
tain a common vertex u (of the straight skeleton) have
equal orthogonal distance t to u, because their wave-
front edges reach u at the same time t. That is, the
supporting lines of those polygon edges are tangential
to the circle with center u and radius t. Thus, in this
section we consider a subset of G, the so called star
graphs. A star graph Sn ∈ G, for n ≥ 3 has (n+ 1) ver-
tices, one vertex u with degree n and n leaves v1, . . . , vn
ordered counter-clockwise around u. The length of each
edge uvi, with 1 ≤ i ≤ n, is denoted by li. W.l.o.g. let
l1 = maxi li. Observe that the polygon PE(Sn) is star
shaped and vivi+1 (with vn+k := v1+(k−1) mod n) are its
edges.

Observation 1 If Sn ∈ G is a feasible star graph and
PE(Sn) is a suitable polygon of Sn, then (1) all straight-
skeleton faces are triangles, (2) two consecutive vertices
vi, vi+1 can not both be reflex, (3) li < li±1 for each re-
flex vertex vi of PE(Sn), and (4) all edges of PE(Sn) have
equal orthogonal distance t to u, with t ∈ (0,mini li].

As a given Sn ∈ G is possibly not feasible and a suit-
able polygon may not be known or might not exist, we
define a polyline LSn

(t, A): The vertices v1, . . . , vn+1 of
LSn

(t, A) are the leaves, v1, . . . , vn, of Sn, in the same
order as for Sn, and one additional vertex vn+1 suc-
ceeding vn. The vertices v1, . . . , vn, vn+1 have the cor-
responding distances (predefined in Sn) l1, . . . , ln, l1 to
u. A is an assignment for each vertex whether it should

v2 = vi−1vi

t

u

vn

li
αi

gi−1

v1
≡ vn+1

Figure 4: Construction of LSn
(t, A) (and E(Sn)) for a

given Sn and a fixed distance t and assignment A.

be convex or reflex, as seen from u. As l1 = maxi li,
v1 and vn+1 are always convex (fact (3) in Observa-
tion 1). For the remaining vertices any convex/reflex
assignment, which respects the facts (2) and (3) in Ob-
servation 1, can be considered. The edges of LSn

(t, A)
have equal orthogonal distance t to u. Of course, not all
possible combinations of t and an arbitrary embedding
E(Sn) allow such a polyline, but it is possible to con-
struct LSn(t, A) and E(Sn) simultaneously for a fixed
t ∈ (0,mini li].

For a fixed assignment A and a fixed t ∈ (0,mini li] we
construct LSn

(t, A) (and E(Sn)) in the following way.
Consider the circle C with center u and radius t. Start
with v1 at polar coordinate (l1, 0), with u as origin. For
each vi, i = 2 . . . (n + 1), consider a tangent gi−1 to C
(such that the vertices will be placed counter-clockwise
around the circle) through vi−1. If vi−1 is convex, then
there exist two points with distance li (l1 for vn+1) on
gi−1. If vi is assigned to be reflex, then vi is placed
on the point closer to vi−1, and if vi is assigned to be
convex, then vi is placed on the other point. If vi−1

is reflex, then there exists only one applicable point for
placing vi on gi−1. See Figure 4.

The LSn
(t, A) constructed this way is unique (for

fixed t and A), and may be not simple (e.g. when cir-
cling C many times), simple but not closed (vn+1 6≡ v1),
or simple and closed (vn+1 ≡ v1). In the latter case, the
construction reveals a witness pair (t, A) for the exis-
tence of some E(Sn), a suitable polygon PE(Sn), and
thus the feasibility of Sn.

It is easy to see that for each suitable polygon PE(Sn),
there exists a polyline LSn

(t, A) (just duplicate the ver-
tex v1). Hence, deciding feasibility of Sn is equivalent to
finding an assignment A and a t ∈ (0,mini li] such that
LSn(t, A) is closed and simple. For a polyline LSn(t, A)
and a corresponding embedding E(Sn), we denote with
αi, i = 1 . . . n, the counter-clockwise angle at u, spanned
by uvi and uvi+1. Note that for a suitable polygon
PE(Sn) αi can be defined the same way, with vn+1 ≡ v1.
It is easy to see that the sum of all αi is 2π if and only
if LSn

(t, A) is closed and simple.
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Lemma 2 Let Sn ∈G, distance t ∈ (0,mini li] and as-
signment A be fixed, and let LSn

(t, A) be the resulting
polyline. Then αA(t) :=

∑n
i=1 αi can be expressed as

αA(t) = 2

n∑
i=1

vi convex

arccos
t

li
− 2

n∑
i=1

vi reflex

arccos
t

li
. (1)

Proof. Recall that v1 and vn+1 are convex by the as-
sumption l1 = ln+1 = maxi li. It is easy to see that
αi = arccos t

li
+arccos t

li+1
if vi is convex and vi+1 is con-

vex, αi = arccos t
li
− arccos t

li+1
if vi is convex and vi+1

is reflex, and αi = − arccos t
li

+ arccos t
li+1

if vi is reflex

and vi+1 is convex. If vi is reflex then αi−1 +αi sums up

to
(

arccos t
li−1

+ arccos t
li

)
+
(

arccos t
li

+ arccos t
li+1

)
−

4 arccos t
li

, because vi±1 are both convex (fact (2) in Ob-
servation 1). Thus, summing over all αi results in the
claimed formula. �

We define a suitable polygon to be unique if it is the
only suitable polygon modulo rigid motions. For the
following result we use the first derivative of αA:

α′A(t) = 2

n∑
i=1

vi reflex

1√
l2i − t2

− 2

n∑
i=1

vi convex

1√
l2i − t2

. (2)

Lemma 3 A suitable convex polygon for a star graph
Sn exists if and only if

∑
i arccos mini li

li
≤ π. If a suit-

able convex polygon exists then it is unique.

Proof. As all vertices are assumed to be convex, we
obtain αA(0) = nπ > 2π. Furthermore, we observe
that αA(t) is monotonically decreasing since α′A(t) < 0
for all t ∈ (0,mini li]. Hence, there is a t ∈ (0,mini li]
with α(t) = 2π if and only if αA(mini li) ≤ 2π which is∑
i arccos mini li

li
≤ π. If this is the case the solution is

unique as α(t) is monotonic. �

For n = 3, αA(0) = 3π and αA(mini li) < 2π, and
thus we immediately get the following corollary.

Corollary 4 For every S3 there exists a unique suitable
convex polygon.

Considering star graphs with n = 5, we show in the
following lemma that they are not always feasible, and
that suitable polygons (if they exist) are not always
unique.

Lemma 5 There exist infeasible star graphs, Sn ∈ G.
Further, there exist feasible star graphs for which mul-
tiple suitable polygons exist.

Proof. To prove the first claim consider a star graph
with n = 5, l1 = l2 = l3 = l4 = 1, and l5 = 0.25. There
exist only two possible assignments: either all vertices

convex or all but v5 convex. It is easy to check that for
both assignments

∑
i αi > 2π, for every t ∈ (0,mini li].

To prove the second claim consider a star graph with
n = 5, l1 = l3 = 1, l2 = 0.6, l4 = 0.79, and l5 = 0.75.
Assign all vertices convex, except for v2. Then

∑
i αi

evaluates to 2π for t ≈ 0.537 and t ≈ 0.598. Hence,
there exist (at least) two different suitable polygons for
this star graph. �

Note that for the latter example two suitable polygons
exist that even share the same reflexivity assignment. In
the following we discuss sufficient and necessary condi-
tions for the feasibility of a star graph S4. By Lemma 3
we know in which cases suitable convex polygons exist.
The remaining cases are solved by the following lemma.

Lemma 6 Consider an S4 for which no suitable convex
polygon exists. A suitable non-convex polygon exists if
and only if 1

mini li
<
∑
j=1,lj 6=mini li

1
lj

.

Proof. First of all, if a polyline has two or more re-
flex vertices assigned then αA(t) < 2π, as each positive
summand in Equation (1) is bound by π/2. Hence, we
only need to consider polylines with exactly one reflex
vertex, which implies αA(0) = 2π.

For simplicity, we may reorder vi and li such that l4 =
mini li. We show that for suitable non-convex polygons
v4 needs to be reflex. Assume to the contrary that some
vk, with 1 ≤ k ≤ 3, is reflex. In this case we obtain
that α′A(t) < 0 as 1/

√
l24−t2 dominates 1/

√
l2k−t2 for all

t ∈ [0, l4). But since αA(0) = 2π we see that αA(t) < 2π
for all t ∈ (0,mini li].

Observe that the assumption in the lemma, that no
suitable convex polygon exists, is equivalent to αA(l4) >
2π. Recall that αA(0) = 2π. Hence, if α′A(0) < 0 then
there exists a t ∈ (0, l4) such that αA(t) = 2π, as αA is
continuously differentiable.

Finally, we show that if α′A(0) ≥ 0 then α′A(t) > 0
for all t ∈ (0, l4). Hence, there is no t ∈ (0, l4] such that
αA(t) = 2π. From Equation (2) we get that α′A(t) > 0
is equivalent to

1√
l24 − t2

>

3∑
i=1

1√
l2i − t2

⇔ 1 >

3∑
i=1

√
1− l2i − l24

l2i − t2

The right side of this equivalence is true since

1 ≥
3∑
i=1

√
1− l2i − l24

l2i
>

3∑
i=1

√
1− l2i − l24

l2i − t2
, (3)

where the first inequality is given by α′A(0) ≥ 0 and the
second inequality holds for all t ∈ (0, l4).

To conclude, we have shown that if no suitable convex
polygon exists for some S4, then a suitable non-convex
polygon exists for this S4 if and only if α′(0) < 0, which
is equivalent to 1

mini li
<
∑
j=1,lj 6=mini li

1
lj

, as claimed

in the lemma. �
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3.2 Caterpillar graphs

The techniques developed in the previous section can be
generalized to so-called caterpillar graphs. A caterpillar
graph G ∈ G is a graph that becomes a path if all its
leaves (and their incident edges) are removed. We call
this path the backbone of G. Figure 3 shows a caterpillar
graph whose backbone comprises three backbone edges.

In general, a caterpillar graph has m backbone ver-
tices, consecutively denoted by v1

0 , . . . , v
m
0 . We denote

the adjacent vertices of a backbone vertex vi0, with ki
incident edges, by vi1, . . . , v

i
ki

, such that viki = vi+1
0 for

1 ≤ i < m. Furthermore, we denote by lij the length of

the edge vi0v
i
j , see Figure 5. Let us consider a polygon P

whose straight skeleton S(P ) forms a caterpillar graph.

Observation 2 All edges of P whose straight-skeleton
faces contain the same backbone vertex vi0 have identical
orthogonal distance to vi0.

We denote this orthogonal distance by ri. Hence, the
supporting lines of the corresponding polygon edges are
tangents to the circle of radius ri centered at vi0, see
Figure 5.

Lemma 7 The radii r2, . . . , rm of a suitable polygon
PE(G) for some given caterpillar graph G are determined
by r1 and the predefined edge lengths of G according to
the following recursions, for 1 ≤ i < m:

ri+1 = ri + liki sinβi

βi = βi−1 + (1− ki/2)π+

ki−1∑
j=1

vij 6=vi−1
0

arcsin ri
lij

vij is convex

π − arcsin ri
lij

vij is reflex

For i = 1 we define that β0 = 0 and v1
j 6= v0

0 being true
for all 1 ≤ j < k1.

Proof. Denote with e one of the two edges of PE(G)

whose faces of S(PE(G)) contain the edge vi0v
i+1
0 . The

supporting line of e is tangential to the circles at vi0 and
vi+1

0 . Considering the shaded right-angled triangle in
Figure 5, we obtain ri+1 − ri = liki · sinβi.

Consider the polygon P ′i (bold in Figure 5) which
comprises the edges of PE(G) whose faces of S(PE(G))
contain vi0, trimmed by two additional edges orthogonal
to vi−1

0 vi0 and vi0v
i+1
0 , respectively. P ′i comprises ki+2

vertices (k1+1 for P ′1) and hence, the sum of inner angles
equals kiπ ((k1−1)π for P ′1). On the other hand, we can
express this sum as follows (also for P ′1), which implies
the second recursion:

kiπ = 2π + 2βi−1 − 2βi+

2

ki−1∑
j=1

vij 6=vi−1
0

arcsin ri
lij

vij is convex

π − arcsin ri
lij

vij is reflex
�

vi0

vi+1
0

liki

li1
li2

li3

liki

ri
ri+1

βi

ri+1 − ri

vi1

vi3

π
2
− βi

arcsin ri
li
j

vij

π
2
+ βi

e

P ′
i

Figure 5: A section of a polygon P for which S(P ) is a
caterpillar graph.

Corollary 8 The sum of the inner angles of PE(G) with
convexity assignment A is a function

αA(r1) = 2

n∑
j=1

{
arcsin

rvj
lj

vj is convex

π − arcsin
rvj
lj

vj is reflex
, (4)

where rvj denotes the radius of the circle at the backbone
vertex that is adjacent to vj and lj denotes the length of
the incident edge of G.

The previous corollary provides us with a tool in or-
der to find suitable polygons PE(G) for caterpillar graphs
G. We know that for any suitable polygon PE(G) the
identity αA(r1)=(n−2)π must hold. Hence, we can de-
termine all suitable polygons PE(G) as follows: for all
2n possible assignments A we determine all r1 such that
αA(r1)=(n−2)π.

For any such pair (A, r1) we construct a polyline
v1, . . . , vn, vn+1 by a similar method as outlined for star
graphs: shooting rays tangential to circles centered at
the backbone vertices vi0. In order to switch over from
vi0 to vi+1

0 , we consider the previously constructed ray,
which needs to be tangential to the two circles centered
at both, vi0 and vi+1

0 , respectively. As the length of the
edge vi0v

i+1
0 is given, the center vi+1

0 of the next cir-
cle is uniquely determined, cf. Figure 5. If there is any
non-backbone edge with length lij < ri then there is no
suitable polygon for that particular pair (A, r1). For
each candidate polyline we check whether it is closed,
simple and forms a suitable polygon. Note that all suit-
able polygons can be constructed by the above method.

Lemma 9 There is at most a finite number of suitable
polygons PE(G) for a caterpillar graph G.

Proof. As αA is analytic, there are no accumulation
points in the set {r1 : αA(r1) = (n− 2)π}. Otherwise,
αA would be identical to (n − 2)π. In other words,
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there is only a finite number of possible pairs (A, r1)
that correspond to a suitable polygon. �

Lemma 10 There exists a caterpillar graph with 3m
vertices having 2m−2 suitable polygons.

Proof. We consider a caterpillar graph with m back-
bone vertices, for which the two outer backbone ver-
tices are of degree three and the m− 2 inner backbone
vertices are of degree four. We set the length of the non-
backbone edges to

√
2/4 and the length of the backbone

edge ek = vk0v
k+1
0 to 3/4 · 2k−1. We embed the backbone

as a rectilinear path and at each vk0 , with 1 < k < m, we
either make a left or right turn from ek−1 to ek. This
gives us 2m−2 possible embeddings, see Figure 6. We
now consider the polygon P shown in Figure 6, which
forms a rectilinear hose (a mitered offset curve) around
the embedding of G with thickness 1

2 . It remains to
show that P is not self-overlapping.

For each edge ek we consider the axis-parallel square
Ak ⊇ ek with side length 2k that has vk+1

0 as a mid-
point of one of its sides. By our choice of edge lengths
we observe that Ak−1 ⊆ Ak and Ak−1 and Ak share a
common vertex. We say that a polygon edge belongs to
ei if ei is contained in its straight-skeleton face. Let s
denote a polygon edge that belongs to ek+1. By con-
struction, s cannot overlap with polygon edges belong-
ing to ek. Using an induction-type argument, all poly-
gon edges belonging to ei, with i < k, are contained in
the one axis-parallel half of Ak that does not contain
vk+1

0 . Hence, s does not intersect polygon edges that
belong to e1, . . . , ek. It follows by induction that P is
not self-overlapping. �

A1

Ak−1

ek

ek−1

e1
1

vk0

vk+1
0

ek+1

Ak

P

Figure 6: For the above caterpillar graph an exponential
number of polygons exist by making left or right turns
at backbone vertices.

4 Conclusion

In this work, we considered the inverse problem of com-
puting the straight skeletons of simple polygons. First,
we proved that each tree, whose inner vertices have de-
gree at least 3, can be realized as the straight skeleton
of a convex polygon. The constructive proof also pro-
vides the outline for an algorithm to construct a suitable
polygon.

Next, we considered a more restrictive version of
the original question by predefining the lengths of
the straight-skeleton edges and their circular orders at
straight-skeleton vertices. For star graphs we showed
that there exists a unique suitable convex polygon for
every S3. Further, we derived that for general star
graphs feasibility is neither guaranteed nor unique, and
we gave sufficient and necessary conditions for the ex-
istence of a suitable polygon for all S4. Furthermore,
we gave a simple necessary and sufficient condition that
tells us when a suitable convex polygon exists for a star
graph.

Concerning the more general caterpillar graphs we
provided a basic method for constructing all suitable
polygons and we proved that the number of suitable
polygons is finite. Furthermore, we showed that an
n-vertex caterpillar graph may possess 2n/3−2 suitable
polygons. Finding a tight upper bound on the number
of suitable polygons is an open question. Finally, the
major open questions concern arbitrary trees: How to
decide feasibility? Are there at most finitely many fea-
sible polygons or is there even an entire continuum of
feasible polygons? After all, a partial result is given in
[2]: there are at most 2n − 5 suitable convex polygons
for an arbitrary abstract geometric tree with n leaves.
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