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Finding Shadows among Disks
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Abstract

Given a set of n non-overlapping unit disks in the plane,
a line ` is called blocked if it intersects at least one of
the disks and a point p is called a shadow point if all
lines containing p are blocked. In addition, a maximal
closed set of shadow points is called a shadow region.
We derive properties of shadow regions, and present an
O(n4) algorithm that outputs all shadow regions. We
prove that the number of shadow regions is Ω(n4) for
some instances, which implies that the worst-case time
complexity of the presented algorithm is optimal.

1 Introduction

Let D be a set of n closed and non-overlapping unit
disks, i.e., disks with radius 1, in the two-dimensional
plane. A line ` is called blocked if it intersects at least
one of the disks in D. A point p is called a shadow point,
if all lines containing p are blocked. A point that is not
a shadow point, is called a light point.

For a light point p it holds that there is at least one
line in the plane that does not intersect any of the disks
in D. It follows that all the points outside the convex
hull spanned by the disks are light points. In other
words, all shadow points defined by the disks in D are
inside the convex hull spanned by the disks, denoted as
H(D).

A closed shape S in the plane is a shadow region if
each point in S is a shadow point and if S is maximal
in the sense that there is no shape S′ containing only
shadow points for which S ⊂ S′. It follows that the
collection of shadow regions partitions the set of shadow
points. By definition, each disk δ ∈ D is contained in a
shadow region.

Shadow Regions Problem. Given D, determine
the set S of shadow regions in the plane.

In other words, we are interested in designing an ef-
ficient algorithm that outputs the set of all shadow re-
gions, for a given set D of disks. Figure 1 illustrates a set
of 17 shadow regions defined by 14 randomly positioned
unit disks.

Motivation. Hollemans et al. [4] describe a method
for detecting objects. It uses light emitters and sensors
placed on the boundary of a rectangular detection area.

∗Eindhoven University of Technology, n.jovanovic@tue.nl
†Philips Research Eindhoven, jan.korst@philips.com

Figure 1: The shadow regions defined by 14 unit disks.

The shadow regions problem is related to the accuracy
of the method in the following way. Each sensor con-
tinuously determines the set of emitters from which it
receives light and the set of emitters from which it does
not receive light because the line of sight is blocked by
an object. Using this information, one can determine
the set of shadow regions. As each object is located in a
shadow region, this gives an approximation of the place-
ment of the objects. Ideally, we have n shadow regions,
each with a size that is exactly equal to the object it
contains. However, this ideal situation will not occur
since, besides being part of an object, a point can also
be a shadow point because: (1) the density of emitters
and sensors is too low, and (2) all lines going through
the point can be blocked by surrounding objects. The
shadow points resulting from the latter cause are an in-
trinsic shortcoming of the method. By subtracting the
objects from the solution of the shadow regions prob-
lem we get the shadow areas where detection fails due
to this occlusion.

Related work. The problem considered by Du-
mitrescu and Jiang in [3] is to some extent related to
the shadow regions problem. The authors show the ex-
istence of dark points [10] in maximal disk packings. A
point is called dark within a set of disks if any ray with
apex in that point intersects at least one of the disks.
Note that any dark point is by definition a shadow point,
but not vice versa. In addition, they present an algo-
rithm for finding all of the dark points that are on the
boundary of disks in a given set. While these authors’
interest is in the dark points, we focus on the shadow
points. Furthermore, we present an optimal algorithm
to determine all shadow points in the plane defined by
the disks, not only the ones on the disk boundaries. The
problem of detecting circular objects in the plane is con-
sidered by Jovanović, Korst and Pronk in [5], where the
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authors present two algorithms to approximate the ob-
jects by convex polygons, using a finite set of line seg-
ments, defined by a given set of emitters and sensors.
More remotely related problems are the problems on
illumination of convex bodies [9, 11] and the visibility
problems concerning hiding or blocking points and unit
disks by a set of unit disks [6, 7, 8].

2 Introducing shadow regions

Let ` be a line in the plane such that it intersects the
convex hull H(D) of disks. The line ` is called a defining
line for a shadow region S if it contains an edge of S.
One can prove the following lemma.

Lemma 1 Let ` be a defining line for a shadow region
S. Then the following holds:

• ` does not intersect any disk in D in more than one
point

• ` is tangent to at least two disks in D

• ` is not tangent to any three disks δ1, δ2 and δ3,
where δ1 and δ2 are on the same side of ` and δ3
is such that its point of tangency with ` is between
the points of tangency of δ1 and δ2 with `.

Now, let us take a look at a small example of D con-
sisting of only three disks, so that we can get a notion
on the size, shape and the number of shadow regions
defined by the disks. Each two non-tangent disks define
four common tangent lines: a pair of parallel tangent
lines and a pair of crossing (intersecting) tangent lines.
The four tangent lines define four shadow areas that are
attached to the disks; see Figure 2. By definition, a disk
and all its attached shadow areas represent one shadow
region. Note that the size of these shadow regions de-
pends on the distance between the disks: the closer the
disks, the larger the shadow regions. Depending on the

Figure 2: The shadow regions defined by 3 unit disks;
the arrows point at the free shadow areas.

mutual distance, the three disks may define one or more
free shadow regions, i.e., shadow regions that are not at-
tached to any of the disks; see Figure 2. A free shadow
region is bounded by line segments only, thus, it has the
shape of a polygon. It can be shown that three disks

can define at most 4 free shadow regions, which implies
that they can define 1 to 7 shadow regions in total.

A shadow region can be formally represented by a
cyclic sequence of points p0, p1, . . . , pk, where each two
neighboring points are connected by either a line seg-
ment or a circular arc of radius 1.

Generally, n disks define at most 2n(n − 1) common
tangent lines, which can partition the plane into O(n4)
non-overlapping convex polygons that contain either
shadow points only or light points only. In Section 5, we
will prove that there are instances for which the number
of shadow regions defined by n disks is Ω(n4).

Lemma 2 A shadow region is convex.

Proof. We prove the lemma by contradiction. Hence,
assume that a shadow region S is not convex. Let p
be a light point inside the convex hull H(S) of S and
outside S. Each line containing p intersects the shadow
region S, which implies that it is blocked. This implies
that p is a shadow point, which is in contradiction with
the assumption of p being a light point. �

As a consequence of Lemma 1, in the process of deter-
mining the shadow regions, we consider only the set T
of defining lines.

Let t ∈ T be a line tangent to two disks δ1 and δ2
in D. The points of tangency between the line t and
the disks δ1 and δ2 divide t into three parts: one line
segment denoted by s, and two rays denoted by r and
r′. One can prove the following lemma.

Lemma 3 If disks δ1 and δ2 are not on the same side
of t, line segment s does not define a shadow region. If
disks δ1 and δ2 are on the same side of t, the rays r and
r′ do not define a shadow region.

Figure 3: Parts of the tangent lines that define the
shadow regions.

From Lemma 3, each crossing tangent line may be in-
volved in the definition of shadow regions through the
pair of rays with apices in the points of tangency. The
parallel tangent lines are involved in the definition of
shadow regions through the line segments connecting
the points of tangency; see Figure 3.
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3 Modelling light corridors

Let L be the set of all lines in the plane that do not
intersect any disk, hence, L is the set of lines that only
contain light points. Set L can be partitioned into two
subsets, dividing lines and non-dividing lines. For a non-
dividing line all disks are on the same side of that line.
Each dividing line specifies a bipartition of the set of
disks into non-empty sets. All dividing lines specifying
the same bipartition of disks in D form a light corridor;
see Figure 4. Note that each light point is contained
in one or more light corridors. This means that the
collection of shadow regions is given by the difference
between H(D) and the union of all light corridors.

Let T be the set of all defining lines. A light corridor
can be characterized by its two crossing tangent lines t
and t′ in T that are clockwise fixed and counterclockwise
fixed, respectively; see Figure 4. For t this means that
it cannot be rotated in clockwise direction around any
point on the line over any angle θ such that it does
not intersect at least one of the disks in more than one
point. An analogous interpretation holds for t′. These
lines define the “in” and “out” of the corridor through
H(D). Inside the convex hull H(D), each light corridor
is an open non-convex area, bounded by a set of line
segments and a set of circular arcs of radius 1.

Figure 4: An example of a light corridor.

Lemma 4 The number of light corridors defined by n

non-overlapping unit disks is at most n(n−1)
2 .

Proof. The n disks define at most n(n−1) crossing tan-
gent lines in T . Each crossing tangent line in T defines
one bipartition of disks, which corresponds to exactly
one light corridor. Hence, the number of light corridors
is not larger than the number of crossing tangent lines
in T . Moreover, each light corridor is characterized by
a pair of crossing tangent lines, which implies that the
number of light corridors is at most n(n− 1)/2. �

4 Algorithm

In this section, we present an algorithm for determin-
ing the set of all shadow regions defined by n non-
overlapping unit disks. We give the algorithm in a step-
by-step manner and discuss its overall time complexity.

The algorithm for determining all shadow regions de-
fined by n unit disks consists of the following four main
steps:

1. Determine the convex hull H(D);

2. Determine the set T of all defining tangent lines;

3. Determine all light corridors inside H(D);

4. Determine the union U of all light corridors and
next, the set of all shadow regions, by finding the
set difference between H(D) and U .

Let us now take a closer look at each step of the algo-
rithm and its worst-case time complexity. In the first
step, it is needed to compute first the convex hull of the
disk centers, and then to compute an offset polygon,
which can be done in O(n log n) time [2].

As defined in Section 2, the set T of defining lines are
the lines tangent to at least two disks in D that do not
intersect any of the disks in D in more than one point.
Now, we can determine the set T of all defining lines in
O(n2 log n) time, as follows. For each disk in D, we sort
radially the other n − 1 disks, which takes O(n log n)
time. This structure allows to find all defining lines of
one disk in linear time. In addition to each defining line
determined, we keep the information on tangent disks
and the tangency points, the type of the tangent line,
i.e., whether it is a crossing line or not, and the part(s)
of the line which are involved in the definition of the
shadow regions, i.e., the rays or the line segment, as
explained in Lemma 3. Hence, it takes O(n log n) time
to determine all defining lines of one disk and all the
additional properties. Therefore, finding the set T of
defining tangent lines for all n disks takes O(n2 log n)
time.

In order to determine the set of all light corridors,
for each of the disks we need the sorted list of all its
points of tangency, in a cyclic order. Such a list can
be determined in O(n2 log n) time since all the defining
lines are determined, hence, all the points of tangency
for each of the disks.

As mentioned in the proof of Lemma 4, a crossing tan-
gent line in T characterizes one light corridor. Starting
with a crossing line from T , we determine the corre-
sponding light corridor as follows. We start by includ-
ing one ray of the chosen crossing line. Then, we simply
look up the corresponding point of tangency on the tan-
gent disk and take the successor point of tangency from
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the sorted list of points for that disk. That point is a
starting point for either a line segment, or a ray of some
other tangent line. In the case of a starting point of a
line segment, we look up the ending point on the next
disk, etc. The computation of one side of the corridor is
finished when a ray occurs in the sequence. The other
side is determined in the same way, starting with the
other ray of the originally chosen crossing tangent line.

From Lemma 4, the number of light corridors is
O(n2). In addition, the number of all defining tangent
lines is also quadratic in the number of disks, which
implies that the total number of all rays (2 rays per
crossing tangent) and line segments (1 line segment per
parallel tangent) together is also O(n2). In this way,
amortized over all iterations, the light corridors can be
determined in O(n2) time, which implies that the total
time complexity of the third step of the algorithm is
O(n2 log n).

The problem of determining the union U of all light
corridors comes down to the problem of finding the in-
tersections of a set of line segments and circular arcs.
This is a well-known and extensively studied problem
[2]. Using the deterministic algorithm by Balaban [1],
the intersections of N line or curve segments can be
determined in O(N logN +K) time, where K is the
number of intersecting pairs. Given that we have O(n2)
line segments and circular arcs, the number K of inter-
secting pairs is O(n4). Therefore, using this algorithm,
the union U of all light corridors can be determined in
O(n4) time. The set of all shadow regions is then simply
determined as a complement set of U within the convex
hull H(D).

With the discussion above, we get to the following
result.

Theorem 5 The set of all shadow regions defined by n
non-overlapping unit disks can be determined in O(n4)
time.

5 Determining the number of shadow regions

In the previous section we presented an O(n4) algorithm
for deriving all shadow regions created by a set of n
disks. From this it follows that a set of n disks defines
O(n4) shadow regions. In this section we show that
this bound is tight, i.e., that problem instances exist
with Ω(n4) shadow regions. This implies the interesting
result that the O(n4) worst-case time complexity of the
presented algorithm is optimal.

To construct a problem instance with Ω(n4) shadow
regions, we place the disks in two ”columns”, where
each column contains n equidistant disks, such that each
disk of one column is directly opposite to a disk of the
other column. The idea behind the construction is to
obtain a quadratic number of thin light corridors that
pass between the disks of the two columns, i.e., in the

left to right direction. If these corridors do not intersect
within some finite area of width w, then adding another
2n disks that, in the same way, create quadratic number
of light corridors in the top-bottom direction, results in
Θ(n4) shadow regions; see an illustration in Figure 5. If
we need to add only linear number of mutually tangent
disks to block the light corridors that come from other
(e.g., diagonal) directions, we then have a linear number
of disks creating Θ(n4) shadow regions.

Figure 5: Constructing Ω(n4) shadow regions with a
linear number of disks - an illustration.

Let L be the line connecting the centers
O1, O2, . . . , On of the disks δ1, δ2, . . . , δn in the
left column and, in the same fashion, let R be the
line connecting the centers O′1, O

′
2, . . . , O

′
n of the

disks δ′1, δ
′
2, . . . , δ

′
n in the right column; see Figure 6.

Furthermore, let h denote the distance between the
columns, i.e., the distance between L and R, and let d
denote the distance between two neighboring disks in
one column, measured from center to center. Given h,
the distance d is chosen so that the top two disks of one
column and the bottom two disks of the other column
are all tangent to the same line. In this way, there
is no light corridor defined by these top-bottom pairs
of disks, however, there is exactly one light corridor
between any other two pairs of neighboring disks in
different columns. From the congruence of the two gray
triangles in Figure 6, the relation between the distances
d and h is given by

d =
2h√

h2 − 4(n− 2)2
(1)

For the time being, we only consider the light corri-
dors between pairs (δi, δi+1) of neighboring disks from
the left column and pairs (δ′j , δ

′
j+1) of neighboring disks

from the right column, where i, j ∈ {1, . . . , n− 1}.
The distance d between the neighboring disks deter-

mines the width of the corridors. From Equation (1),
we get that if h → ∞, then d → 2. Furthermore, us-
ing elementary calculus, it can be shown that increasing
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Figure 6: The columns of disks, each column containing
n disks.

the distance h between the columns results in decreas-
ing the width of the corridors. Note that the corridors
are not all of the same width, i.e., the longer corridors
are thinner than the shorter corridors.

It remains to be shown that there is an area between
the columns where no two corridors intersect. Further-
more, we want to show that for some h, the width w
of that area can be at least nd. In this way, overlap-
ping (or intersecting) this area containing the left to
right corridors with the area containing the top to bot-
tom non-intersecting corridors, results in creating Θ(n4)
shadow regions.

In Section 3 we showed that each light corridor is
characterized by a pair of two crossing tangent lines. In
this special case of disks being placed in two columns,
one can easily show that, between the columns, each
corridor is bounded by a pair of parallel line segments.
Considering the left column as the beginning and the
right column as the end of the corridors, among the
intersection points of the corridors’ bounding line seg-
ments, we can distinguish two subsets of points: the
splitting points and the meeting points; see Figure 7.
The splitting point of two light corridors that begin
between the same pair of disks is the common (inter-
section) point of these corridors furthest from L. In a
similar way, the meeting point of two corridors that do
not begin between the same pair of disks is the inter-
section point of these two corridors closest to L. Let Ps

denote the vertical line containing the splitting point(s)
furthest from L and let Pm denote the vertical line con-
taining the meeting point(s) closest to L. Clearly, if the
distance h̄s between Ps and L is smaller than the dis-
tance h̄m between Pm and L, the area between the two
vertical lines Ps and Pm, gives an area inside which no
two corridors intersect. In addition, the width w of the

Figure 7: The splitting points and the meeting points
of nine light corridors passing between eight disks in the
columns.

area is given by

w = h̄m − h̄s (2)

Next, we express the distance h̄s as a function of the
distance h between the columns of disks. Let us consider
only the n−1 light corridors that all begin between one
pair of neighboring disks in the left column. One can
show that among the splitting points of these corridors,
the splitting point furthest from L, is the splitting point
of two neighboring light corridors, i.e., the corridors that
end between the neighboring pairs of disks in the right
column. Let hs be the distance from the splitting point
P of an arbitrary pair of neighboring corridors to the
line L. By definition, h̄s is the maximum of all distances
hs of the splitting points of all neighboring corridors.
Using elementary calculus, one can prove the following
lemma.

Lemma 6 For an arbitrary pair of neighboring light
corridors Cj and Cj+1, it holds that

lim
h→∞

hs = 0.

In other words, for h large enough, all light corridors
split on distance ε from the line L and ”enter” the area
in which they do not intersect.

From Equation (2), to determine the width w of the
area where the light corridors do not intersect, besides
the distance h̄s, we also need to determine the distance
h̄m, i.e., the distance from the closest meeting point(s)
to the line L. We first determine the light corridors that
define the closest meeting point(s).

One can show that the light corridors that define the
closest meeting point(s) begin between two neighboring
pairs of disks; see Figure 7. More precisely, the bottom-
most corridor Cb of all corridors beginning between
the pair of disks (δj+1, δj) and the top-most corridor
Ct of all corridors beginning between the pair of disks
(δj , δj−1) define (one of) the closest meeting point(s) to
the line L. Let hm be the distance from the splitting
point P ′ of the corridors Cb and Ct to the line L. Note
that Cb ends between the bottom pair of disks (δ′1, δ

′
2)

and Ct ends between the top pair of disks (δ′n, δ
′
n−1) in
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the right column. In a similar way as Lemma 6, using
elementary calculus, one can prove the following lemma.

Lemma 7 For the distance hm, it holds that hm →∞,
when h→∞.

From Lemma 6 and Lemma 7 and Equation (2), we can
conclude that for h large enough, the width w of the area
where corridors do not intersect can be of size nd. Note
that the area is not in the middle between the columns.
Instead, we have two such areas of non-intersecting cor-
ridors adjacent to the left and to the right column, re-
spectively. In the next step of the construction, we add

Figure 8: A linear number of unit disks defining Θ(n4)
shadow regions - the thin light corridors pass between
the white disks; the black disks are mutually tangent,
hence, representing the blocking disks.

2n disks organized in two rows that are on the top and
the bottom side, as we mentioned earlier in this section,
and such that the areas of non-intersecting corridors
completely overlap. Each of the O(n2) light corridors
in the left to right direction intersects each of the O(n2)
light corridors in the top to bottom direction. Hence,
they partition the square area of size (nd)2 into Θ(n4)
regions. In order for these regions to be the shadow
regions, the light coming from directions different than
left, right, top or bottom must be blocked. Therefore,
in addition to the 4n disks used in this construction,
we “close the gaps” by extending, for example, the top
row and the left column by

⌈
n
2

⌉
tangent disks each and

the right column and the bottom row with 2n tangent
disks each; see Figure 8. These blocking disks ensure
that there are no additional corridors intersecting the
area partitioned into shadow regions by the constructed
light corridors.

6 Concluding remarks

We considered the problem of determining all shadow
regions defined by a set of n non-overlapping unit disks
in the plane. We discussed the basic properties of the
shadow regions and we presented an O(n4) algorithm
for determining them. We showed that the number of
shadow regions can be Ω(n4). Hence, the presented al-
gorithm determines all the shadow regions in worst-case
optimal time.
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