
CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Computing Motorcycle Graphs Based on Kinetic Triangulations∗

Willi Mann† Martin Held† Stefan Huber‡

Abstract

We present an efficient algorithm for computing general-
ized motorcycle graphs, in which motorcycles are allowed
to emerge after time zero. Our algorithm applies kinetic
triangulations inside of the convex hull of the input, while
a plane sweep is used outside of it. Its worst-case com-
plexity is O((n + f) log n), where f ∈ O(n3) denotes the
number of flip events that occur in the kinetic triangu-
lation. Outside of the convex hull it runs in O(n log n)
time. In order to reduce the number of flip events we
investigate the use of Steiner triangulations. We prove
the existence of Steiner triangulations that eliminate all
flip events and discuss heuristics for approximating such
a Steiner triangulation.

Extensive experiments with our C++ implementation
run on thousands of datasets of various characteristics
demonstrate a runtime of c · 10−6 · n log n seconds, with
c ≤ 4 for virtually all of our datasets. This constitutes
a significant practical improvement over the motorcycle
code Moca [Huber&Held 2011], which runs in O(n log n)
time only if the motorcycles are distributed uniformly
enough. In particular, our experiments yielded f ≤ 5n
flip events for all but very few datasets.

1 Introduction

1.1 Motivation and Definitions

A motorcycle is a point that moves with constant ve-
locity along a straight-line ray. Consider n motorcycles
m1, . . . ,mn, each of them having a start point pi ∈ R2

and a velocity vi ∈ R2, with 1 ≤ i ≤ n. (We assume that
at most a constant number of motorcycles share one start
point.) The track of motorcycle mi is defined by the ray
{pi + t · vi : t ≥ 0}. While a motorcycle moves it leaves
a trace behind. A motorcycle crashes when it reaches
the trace of another motorcycle: It stops driving but its
trace remains. A motorcycle escapes if it never crashes.
The motorcycle graph M(m1, . . . ,mn) is defined as the
arrangement of all motorcycle traces.

Motorcycle graphs were introduced by Eppstein and
Erickson [4] when investigating straight skeletons [1].

∗Work supported by Austrian FWF Grant L367-N15.
†FB Computerwissenschaften, Universität Salzburg, A–5020

Salzburg, Austria, {wmann,held}@cosy.sbg.ac.at
‡FB Mathematik, Universität Salzburg, A–5020 Salzburg, Aus-

tria, shuber@cosy.sbg.ac.at

The basic motivation behind the definition of the motor-
cycle graph was to extract the essential sub-problem of
computing straight skeletons and to cast it into a separate
problem. In fact, it turns out that motorcycle graphs and
straight skeletons share a strong relationship: (i) motor-
cycle graphs can be used to give a non-procedural char-
acterization of straight skeletons [9, 2], (ii) the straight-
skeleton algorithm by Huber and Held [9] and the algo-
rithm by Cheng and Vigneron [2] are based on motorcycle
graphs, and (iii) the P-completeness of straight skeletons
of polygons with holes follows from the P-completeness
of motorcycle graphs [7, 4]. In particular, the currently
fastest straight-skeleton code Bone [9] employs the mo-
torcycle graph in a preprocessing step.

In this paper, we present an algorithm for computing
the motorcycle graph M(G) that is induced by a planar
straight-line graph (PSLG) G. This requires a general-
ization of the original motorcycle graph, see Fig. 1.

First, we consider rigid walls formed by straight-line
segments. If a motorcycle meets a wall then it crashes,
too. Secondly, if two or more motorcycles m1, . . . ,mk

crash simultaneously into each other at the point p such
that the traces of m1, . . . ,mk lie in a half-plane whose
boundary contains p then a new motorcycle m is launched
from p in the complementary half-plane. In other words,
a local disc at p is tessellated into convex slices by the
traces of m,m1, . . . ,mk. To sum up, in generalized mo-
torcycle graphs a motorcycle is specified by a start point,
a velocity and a start time. A formal definition ofM(G)
involves concepts of straight skeletons, see [9] for further

(i)

(ii)

(iii)

Figure 1: A generalized motorcycle graph. The motor-
cycles’ velocities are depicted by (red) arrows. A motor-
cycle may crash against (i) another trace or (ii) a wall.
(iii) A Motorcycle may be launched after two or more
motorcycles crashed into each other.



24th Canadian Conference on Computational Geometry, 2012

details. For the reader to be able to follow this paper
it suffices to note that not all motorcycles are known a
priori, and that the motorcycles may crash into a total
of O(n) walls.

1.2 Prior Work

For the original setting of the motorcycle graph prob-
lem, the algorithm by Cheng and Vigneron [2] achieves
the best worst-case complexity: it runs in O(n

√
n log n)

time. In a preprocessing, they compute a 1/
√
n-cutting

on the supporting lines of the motorcycle tracks. How-
ever, this requires to know all motorcycles in advance and
hence their algorithm is not applicable to generalized mo-
torcycle graphs.

The algorithm by Eppstein and Erickson [4] is appli-
cable to generalized motorcycle graphs. It employs vari-
ous efficient closest-pair data structures in a hierarchical
fashion. By a clever trade-off between time and space
they achieve an O(n17/11+ε) time and space complexity.
However, their algorithm is far too complex for an actual
implementation.

A fairly simple recent algorithm by Huber and Held [8]
uses a

√
n×√n-grid to speed up computation. If the mo-

torcycles are distributed uniformly enough then a mo-
torcycle crosses only O(1) grid cells on average, which
leads to an O(n log n) runtime. The resulting motorcycle-
graph code Moca has become to be known as the fastest
implementation. While Moca works nicely for most
datasets, it requires up to O(n2

√
n log n) time for some

contrived inputs, and O(n2 log n) time for densely sam-
pled convex bodies.

1.3 Our Contribution

In Sec. 2 we present a novel motorcycle-graph algorithm
for the computation ofM(G) that consists of two phases.
The first phase computes M(G) within the convex hull
CH(G) of the walls and the start points of all motorcy-
cles. It is based on a kinetic triangulation, akin to [1].
Its worst-case time complexity is O((n+ f) log n), where
f ∈ O(n3) denotes the number of flip events that occur in
the kinetic triangulation. The second phase uses a plane-
sweep algorithm to computeM(G) outside of CH(G) in
time O(n log n). Thus, in the worst case the total com-
plexity is O(n3 log n). However, no input is known that
causes a runtime of more than O(n2 log n).

As the time complexity strongly depends on the num-
ber f of flip events, we investigate the use of Steiner tri-
angulations for reducing f . In fact, we prove that Steiner
triangulations exist for which no flip event occurs and for
which our algorithm would take O(n log n) time. This
motivates the search for practical heuristics to approxi-
mate such a Steiner triangulation.

We implemented our algorithm in C++ and report
on implementational and numerical aspects. Extensive

benchmarks on several thousand datasets clearly demon-
strate an O(n log n) runtime. In particular, our experi-
ments yielded f ≤ 5n flip events for virtually all datasets.
Additional experiments showed that our heuristics reduce
the number of flip events by 20% on average. As our al-
gorithm does not rely on a roughly uniform distribution
of the motorcycles this constitutes a major practical im-
provement compared to the algorithm that drives Moca.

2 Computing the Generalized Motorcycle Graph

2.1 Computation Inside of Convex Hull CH(G)

To compute M(G) within CH(G) we need to determine
which motorcycle crashes into which trace or wall. (Mo-
torcycles which start on the boundary of CH(G) and do
not move inwards are considered in the second phase of
our algorithm, see Sec. 2.2.) The basic idea is to use a
kinetic triangulation such that every crash event is indi-
cated by the collapse of a triangle in the triangulation.
This approach is motivated by the straight-skeleton al-
gorithm by Aichholzer and Aurenhammer [1]. Thus, we
start by computing the constrained Delaunay triangula-
tion T within CH(G), where the start points of the initial
motorcycles and the endpoints of the walls form the ver-
tices and the walls form the constrained diagonals of T .

In the next step, we insert at each start point pi of an
initially present motorcycle a duplicate vertex qi, which
represents the moving motorcycle. Thus, qi will move
away from pi according to the speed vector vi. (We get
a function linear in t for the movement of qi.) Initially,
qi := pi. We call qi a moving triangulation vertex. We
also regard it as one of k moving triangle vertices if k tri-
angles are incident at qi. (This distinction will be useful
in the complexity analysis, see Sec. 2.3.)

pi
qi

a

b

c

Figure 2: Illustra-
tion of initial split

In general, qi will move into
the interior of precisely one tri-
angle ∆(pi, b, a), and we re-
place ∆(pi, b, a) by the two de-
generate triangles ∆(pi, qi, a) and
∆(pi, b, qi), and by ∆(qi, b, a). (All
triangle vertices are always kept
in counter-clockwise (CCW) or-
der.) If qi moves along the edge
(pi, b) of the non-degenerate trian-
gles ∆(pi, b, a) and ∆(pi, c, b), see
Fig. 2, then we replace these two

triangles by the two degenerate triangles ∆(pi, qi, a) and
∆(pi, c, qi), and by ∆(qi, b, a) and ∆(qi, c, b). Similarly
if both vertices of an edge correspond to start points of
motorcycles and, thus, degenerate triangles are already
present. In any case, this initial split of all moving tri-
angle vertices from their start points results in the gen-
eration of only a constant number of new triangles per
vertex.

We note that we may deviate from these strict rules as



CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

long as the topology is not violated and no wall is altered.
For instance, if qi of Fig. 2 would move into the interior
of ∆(pi, b, a) but rather close to the edge (pi, b) then we
could still use the split depicted if (pi, b) is no wall, thus
avoiding to split off the sliver triangle ∆(pi, b, qi).

We start the event processing after all moving triangu-
lation vertices have been split from their start vertices.
A priority queue maintains a list of collapsing triangles
as events, sorted by their collapse time. The three main
types of events are flip event, crash event, and stop event.
We discuss these events below. After all motorcycles have
stopped moving, no further triangulation vertex moves
and no triangle collapses. Thus, at that point in time
the priority queue is empty and we can continue with the
second part of the algorithm, see Sec. 2.2.

A flip event occurs when the vertex a of the trian-
gle ∆(a, b, c) ends up on the edge (b, c) which is not a
wall, motorcycle trace or edge of CH(G). Within the
quadrilateral formed with its neighbor ∆(b, d, c) on the
other side of the edge (b, c), the diagonal is flipped such
that the triangles ∆(a, d, c) and ∆(b, d, a) are generated,
cf. Fig. 3. As no triangulation vertex changes its speed,
all that remains to do is to update the priority queue by
rescheduling the collapse events of the two triangles.

a

b

c

d

b

c

d

b

c

da a

Figure 3: Handling of flip event.

A crash event occurs when a motorcycle, i.e., a moving
triangulation vertex, reaches the trace of another motor-
cycle or a wall. A crash events manifests itself as a tri-
angle collapse, which is handled similar to a flip event,
except that the moving vertex needs to be halted. Of
course, halting a moving vertex requires to re-schedule
all triangles attached to this vertex. As a special case we
get a vertex collapse if two vertices of a triangle become
coincident. Vertex collapses lead to the removal of the
edge between two vertices and their incident triangles,
and the two vertices are fused to one. This can be seen
as the reverse of the initial split, recall Fig. 2.

A stop event occurs when a motorcycle reaches
CH(G). The handling of this event is very similar in con-
cept to crash events. The only difference is that stopped
motorcycles are awakened again in the second part of the
algorithm.

2.2 Computation Outside of Convex Hull CH(G)

We apply a generalized plane sweep, whose front is given
by increasingly larger copies of CH(G). This can be seen
as a generalization of the approach sketched by Erick-

son [5] for motorcycles whose speed vectors do not span
more than 180◦. As the front advances the common ver-
tex of two neighboring edges of CH(G) moves along their
outwards angular bisector. Hence, the exterior of CH(G)
is partitioned into individual sweep regions by the bisec-
tors, with one region per edge of CH(G).

All motorcycles that start on CH(G) and move away
from it or that were stopped during the first phase, when
reaching CH(G), are stored in cyclic order in a doubly-
linked circular list. This list represents the front of the
sweep. We do not need to maintain the front as a search
tree since the only case where a new motorcycle needs to
be inserted into the front after the initial set-up happens
at a joint crash position of two or more motorcycles; in
this case we have handles to the position, and do not need
to search for the correct insert position.

During the sweep only one type of event needs to be
handled: A crash event occurs when a motorcycle track
intersects the motorcycle track of a neighboring motorcy-
cle, where “neighboring” is defined relative to the sorted
cyclic order of motorcycles in the front of the sweep.
The motorcycle that is second at the intersection posi-
tion is stopped. If two or more motorcycles meet in the
same intersection position p at the same time, they are all
stopped and a new motorcycle that moves further away
from CH(G) is inserted at p. (Recall that a local disc
at p is tessellated into convex slices by the traces of the
motorcycles according to our definition of M(G).)

The priority queue is sorted in increasing order of the
distances of the event positions to CH(G). Hence, all
events are handled in the order as they occur relative
to the front of the sweep, which is not necessarily the
chronological order. In order to compute the distance to
CH(G) we use bisection on CH(G) for determining the
sweep region that contains the event position.

2.3 Complexity Analysis

Complexity of computation inside of CH(G). The ini-
tial constrained Delaunay triangulation within CH(G)
contains O(n) triangles and can be computed in
O(n log n) time [3]. For each of the n initial motorcy-
cles we create two new degenerate triangles in the initial
split. Afterwards, one new motorcycle is only created if
at least two motorcycles have crashed. Hence, the overall
number of motorcycles (resp. moving triangulation ver-
tices) and the number of triangles created at the start
times of all motorcycles are in O(n).

For each initial motorcycle we have to determine the
triangle(s) that the motorcycle runs into. Since at most
a constant number of motorcycles is allowed to share a
starting point, we can determine all those triangles in
O(n) time by means of brute-force searches around each
start vertex. And since the events for only a constant
number of triangles need to be stored in the priority
queue, the priority queue after all initial splits can be



24th Canadian Conference on Computational Geometry, 2012

set up in O(n log n) time.
While flip events do not affect the number of moving

triangulation vertices, every flip may increase the number
of moving triangle vertices by two: Assume that a and d
of Fig. 3 are moving triangle vertices, while b and c do
not move. Since after the flip a, d are counted as moving
triangle vertices for each triangle on either side of (a, d),
the number of moving triangle vertices has increased by
two. Hence, f edge flips increase the number of moving
triangle vertices by at most 2f .

If a crash or stop event occurs for a moving triangu-
lation vertex q then we have to re-schedule all triangles
incident at q. Since we crash or stop a moving triangula-
tion vertex at most once, the overall number of triangles
that need to be re-scheduled equals the overall number of
moving triangle vertices, which is in O(n+ f). Thus, the
complexity of updating the priority queue for handling
all crash and stop events is O((n + f) log n), which also
models the worst-case complexity of the entire first phase
of our algorithm.

Complexity of computation outside of CH(G). The
distance of one event position from CH(G) can be deter-
mined in O(log n) time. The priority queue that stores
the events defined by neighboring motorcycles is initial-
ized in O(n log n) time. The handling of a crash event
takes O(k log n) time, where k denotes the number of
motorcycles stopped. Since each crash reduces the num-
ber of active motorcycles by at least one, the complexity
of handling all crash events is O(n log n). Summarizing,
the total complexity of the second phase of the algorithm
is O(n log n).

One may wonder whether this complexity bound is
tight. Consider n motorcycles which have their start
points on the x-axis and whose speed vectors have pos-
itive y-coordinates. That is, all motorcycles move up-
wards in the direction of the positive y-axis. If the
start points are given in sorted order relative to their
x-coordinates then our plane-sweep algorithm requires
O(n log n) time to compute the motorcycle graph. But
can one do better? Note that if their sorted order is un-
known then a Ω(n log n) bound can be shown by a reduc-
tion to sorting: Assume that n distinct natural numbers
c1, . . . , cn are given. Then we define for each ci a motor-
cycle mi starting at (ci, 0), with velocity (−1, 2−ci). This
guarantees that each motorcycle crashes into the motor-
cycle starting left to it, except for the left-most motorcy-
cle, which escapes. Hence, we can determine the sorted
order of c1, . . . , cn in O(n) time from M(m1, . . . ,mn).

Overall Runtime Complexity. The worst-case complex-
ity is O((n + f) log n), where f denotes the number of
flip events. A flip event requires the area of a trian-
gle to become zero. As all moving triangulation ver-
tices move with constant speeds along rays (until they

stop), the signed area of a triangle can be expressed as
a quadratic polynomial in time and, hence, a single tri-
angle with three moving vertices can collapse at most at
two single points in time. Similarly if one or two vertices
have been stopped. Hence, by an argument similar to
[1, Lem. 5], we get a trivial O(n3) bound on the number
of flip events. This gives O(n3 log n) as total worst-case
complexity. However, note that we are not aware of any
input that leads to ω(n2) flip events. (But one can design
inputs that exhibit Θ(n2) flip events.)

3 Heuristics for Reducing the Number of Flip Events

It is known that a PSLG G and its motorcycle graph
M(G) partition the plane into a set of convex polygons.
Suppose that we overlay M(G) and G, and triangulate
the resulting convex polygons arbitrarily. The edges of
M(G) are called Steiner tracks, and their final points
are called Steiner points. Then each motorcycle would
move along a triangulation edge, and because no other
triangulation edge crosses its track, its movement does
not require any edge to be flipped to let it pass through
the triangulation. Triangulation edges never leave the
convex polygon they were created in because they are
always stopped when their incident vertices hit a Steiner
point. Thus, for this triangulation our algorithm would
be free of flip events.

Of course, the crash positions of the motorcycles are
not known to us. But we can try to approximate a por-
tion of the unknown Steiner tracks, in an attempt to re-
duce the number of flip events by enabling motorcycles
to move along triangulation edges.

If Steiner points are present in the triangulation then
we handle a point collapse between a moving triangula-
tion vertex (motorcycle) and a Steiner point as follows:
We stop the motorcycle at the Steiner point, which is
handled like any other vertex collapse, and restart it with
the same method as used for the initial split.

In our first heuristic we exploit the average track length
of n motorcycles that start from within the unit square,
as established in [8]: for each motorcycle we insert a line
segment (in the direction of its movement) of length c/

√
n

as Steiner track, for some constant c > 0. The second
heuristic inserts Steiner tracks of unlimited length for
c · √n randomly chosen motorcycles. In both heuristics
a Steiner track is terminated at the first intersection if
it crosses a wall or intersects CH(G). A intersection be-
tween Steiner tracks is resolved by adding an additional
Steiner point at the intersection. Due to our choice of the
Steiner tracks one may assume for both heuristics that
at most O(n) points of intersection need to be added to
the input as Steiner points.

Stopping Steiner tracks at walls and CH(G) is done
by running a plane sweep twice, once top-down, once
bottom-up. Walls and the convex hull segments are in-



CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

serted as normal line segments, but each motorcycle is
only inserted in the phase that fits its direction. When a
motorcycle first intersects a wall or convex hull segment,
it is removed and a Steiner point is placed at the intersec-
tion. A third plane sweep is done to resolve intersections
between Steiner tracks, also adding Steiner points at the
intersections.

4 Implementational Issues

4.1 Simultaneous and Out-of-Order Events

A standard problem of any algorithm that uses a kinetic
data structure is the reliable computation of the times
when the structure changes. This problem is known as
“root sorting”, i.e., determining which root of which poly-
nomial occurs first. If root sorting is not guaranteed to
be exact, e.g., due to the use of floating-point arithmetic,
then some form of out-of-order processing of events is
required in order to achieve reliability.

a

b c

d

T1
T2

Figure 4: Simultaneous col-
lapse of two triangles.

We note that our algo-
rithm has to cope with
a second problem in ad-
dition to the handling of
out-of-order events: So
far we have ignored the
fact that events can occur
simultaneously for real-
world data. Consider
Fig. 4, and suppose that the two vertices a and d are
non-moving vertices, while the vertices b and c represent
moving motorcycles that meet the edge (a, d) at the same
time. Further assume that (a, d) is a normal triangulation
edge, rather than a wall or motorcycle trace that would
stop the motorcycles b and c. As the collapse times of
T1 and T2 are identical, it is a matter of chance which
flip event is processed first. If the event associated with
T2 is handled first then we flip the diagonal (b, d) to the
diagonal (a, c), resulting in the triangles ∆(a, b, c) and
∆(a, c, d). If we now happen to choose triangle ∆(a, b, c)
as next triangle to process then that diagonal will just
flip back, and we have ended up in a loop. We empha-
size that this problem occurs both on floating-point and
exact arithmetic.

In order to handle simultaneous and out-of-order
events we employ a strategy described in [10]. Roughly,
a history of all events processed so far allows to detect
a loop. If a loop is encountered then all events of the
loop are considered to occur exactly at the same time
and replaced by a set of events that guarantee progress.

4.2 Numerical Aspects

As noted, the computation of the collapse times is a chal-
lenging problem when using a floating point arithmetic.
While the movement of each motorcycle is described by

a linear function in time t, the signed area of a triangle
with two moving vertices becomes a quadratic function
in t.

Since we keep the vertices of all triangles in CCW or-
der, the signed area of a triangles always is positive until
the triangle collapses. Note, however, that in the case of
a vertex collapse the area of a triangle may be positive
again after the collapse time plus some positive epsilon.
Fortunately, the degree of the polynomial which describes
a vertex collapse can be reduced: We note that the time
of a vertex collapse can also be calculated by a linear
function, as it corresponds to the minimum of a function
modeling the distance of two points moving with constant
speeds along two lines. Similarly, all other events where
a motorcycle is stopped involve triangles where only one
vertex, namely the motorcycle being stopped, is moving.
So the collapse times of events that stop motorcycles can
be obtained by solving linear equations.

5 Experimental Results

We implemented our algorithm and both heuristics for
reducing the number of flip events in C++. Shewchuk’s
Triangle [11] is employed for computing the initial con-
strained Delaunay triangulation.

The following tests were conducted on a Intel Core
i7 X980 CPU clocked at 3.33 GHz, with Ubuntu 10.04.4
LTS and GCC version 4.4.3. The memory usage was lim-
ited to 4.5 GB, and the runtime on each file was limited
to 15 minutes by means of the ulimit command. We
computed generalized motorcycle graphs for both real-
world and contrived data of different characteristics. In
order to avoid unreliable timings and other idiosyncrasies
of small datasets, we only analyze test runs that involved
at least 1 000 motorcycles, resulting in a few thousand
tests covered by our experiments.

The left plot of Fig. 5 shows the runtimes of our code
divided by n log n, where n denotes the number of ver-
tices. The plot shows clearly that the runtime (in sec-
onds) can be modeled by the function c · 10−6 · n log n,
with c ≤ 4 for virtually all of our inputs.

This runtime behavior suggests a linear number of flip
events, which is confirmed by our tests. The right plot
of Fig. 5 shows the number f of flip events divided by n.
As can be seen, we get 2n flip events on average and 0.8n
to 5n flip events for virtually all inputs. The maximum
number of flip events recorded was 39n for an input with
roughly n = 60 000 motorcycles.

A closer inspection of the test results reveals that an
increased runtime of our code is caused by either an ab-
normal runtime of Triangle [11], which is used to compute
the initial constrained Delaunay triangulation, or by an
increased number of flip events, or by a combination of
both. For instance, for most inputs Triangle consumes
about 5–20% of the total runtime, but we witnessed in-



24th Canadian Conference on Computational Geometry, 2012

10−6

10−5

103 104 105

1.5 to 4 ·n log n µs

10−1

100

103 104 105
10−1

100

101

102

103 104 105

0.8 to 5 ·n

Figure 5: Experimental results for our code without Steiner tracks: In all three plots the x-axis corresponds to the
number n of vertices. The left plot shows the runtimes divided by n log n. The middle plot shows the ratio of the
runtimes of our code divided by the runtimes of Moca, and the right plot shows the number of flip events divided
by n.

puts for which it consumed 85% of the total runtime.
The fact that our code truly runs in O(n log n) time for

most data is also confirmed by a comparison with Moca
[8]. The middle plot of Fig. 5 shows the runtimes of
our code divided by the runtimes of Moca. On average,
our code needs about 32% less runtime than Moca. It
is rarely slower than Moca, being at most twice as slow.
However, our code is substantially faster for those inputs
which cause Moca to consume O(n2 log n) time.

Our heuristics for reducing the number of flip events
turned out to be a mixed blessing. While a combination
of both heuristics did indeed manage to reduce the num-
ber of flip events by about 20%, the preprocessing nec-
essary for computing the intersections among the Steiner
tracks and with the walls caused the runtime to increase.
Apparently, performing plane sweeps is significantly more
costly than what our heuristics manage to save by reduc-
ing the number of flips.

We also tested our code with the MPFR library [6] for
multiple-precision computations, and witnessed an aver-
age slow-down by a factor of 25 for an MPFR precision
of 212. (Plots are omitted due to lack of space.)

6 Conclusion

We developed and implemented a triangulation-based al-
gorithm for the computation of generalized motorcycle
graphs. While its theoretical worst-case time complexity
is worse than prior art, our experiments demonstrate that
it runs in O(n log n) time for virtually all inputs. Our
new algorithm is an improvement over Moca as it clearly
outperforms Moca in our runtime tests and its runtime
does not depend on a sufficiently uniform distribution of
motorcycles. Our experiments also show that our algo-
rithm requires only O(n) flip events in practice, and that
this number can be reduced by the use of Steiner tracks.
It remains an interesting problem to come up with more
sophisticated methods to place Steiner tracks. After all,
if the number of flip events could deterministically be re-
duced to O(n) then our algorithm would run in optimal

O(n log n) worst-case time.

References

[1] O. Aichholzer and F. Aurenhammer. Straight skele-
tons for general polygonal figures in the plane. In
A. Samoilenko, editor, Voronoi’s Impact on Modern Sci-
ence, Book 2, pages 7–21. Institute of Mathematics of the
National Academy of Sciences of Ukraine, Kiev, Ukraine,
1998.

[2] S.-W. Cheng and A. Vigneron. Motorcycle graphs and
straight skeletons. Algorithmica, 47:159–182, Feb 2007.

[3] L. Chew. Constrained Delaunay triangulations. Algo-
rithmica, 4(1):97–108, 1989.

[4] D. Eppstein and J. Erickson. Raising roofs, crashing
cycles, and playing pool: applications of a data struc-
ture for finding pairwise interactions. Discrete Comput.
Geom., 22(4):569–592, 1999.

[5] J. Erickson. Crashing motorcycles efficiently. http://

compgeom.cs.uiuc.edu/~jeffe/open/cycles.html.

[6] GNU. The GNU MPFR library. http://www.mpfr.org/.

[7] S. Huber and M. Held. Approximating a motorcycle
graph by a straight skeleton. In Proc. 23rd Canad. Conf.
Comput. Geom. (CCCG 2011), pages 261–266, Toronto,
Canada, Aug 2011.

[8] S. Huber and M. Held. Motorcycle graphs: stochas-
tic properties motivate an efficient yet simple implemen-
tation. ACM J. Experimental Algorithmics, 16:1.3:1.1–
1.3:1.17, May 2011.

[9] S. Huber and M. Held. Theoretical and practical results
on straight skeletons of planar straight-line graphs. In
Proc. 27th Annu. ACM Sympos. Comput. Geom., pages
171–178, Paris, France, June 2011.

[10] P. Palfrader, M. Held, and S. Huber. On computing
straight skeletons by means of kinetic triangulations. In
Proc. ESA’12, to appear Sep 2012.

[11] J. Shewchuk. Triangle: engineering a 2D quality mesh
generator and Delaunay triangulator. In 1st ACM Work-
shop Appl. Comput. Geom., pages 124–133, Philadelphia,
PA, USA, May 1996.


