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Abstract

Given a planar environment consisting of n disjoint axis-
aligned rectangles, we want to query on any two points
and find whether there is a north-east monotone path
between them. We present preprocessing and query al-
gorithms which translate the geometric problem into
a tree traversal problem and present a corresponding
tree structure that gives usO(n log n) construction time,
O(n) space, and O(log n) query time.

1 Introduction

Consider a closed planar environment which consists of
n disjoint axis-aligned rectangular obstacles. We want
to query this environment on any two points s and t
and determine whether a rectilinear north-east mono-
tone path exists between them. In this paper, we mean
rectilinear in the sense that all segments of a path are
axis-aligned and that adjacent segments of a path meet
at right angles. By north-east monotone, we mean that
each path segment extends either above or to the right
of the end of the previous segment (Figure 1).
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Figure 1: An environment with 7 obstacles. From s,
there are north-east monotone paths to t2 and t3, but
not to t1 or t4.

This work is inspired by a single point query algo-
rithm for finding shortest paths in a similar environ-
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ment by Rezende, Lee, and Wu [7]. Given a fixed point
s, they preprocess the environment to allow for queries
on any t. Our main contribution is to allow both s and t
to be specified at query time, extracting only the infor-
mation about north-east monotone path existence. We
summarize our work with the following theorem.

Theorem 1 Given a planar environment consisting of
n disjoint axis-aligned rectangular obstacles, we can
construct, in O(n log n) time, a data structure with size
O(n) with which we can query for the existence of a
north-east monotone path between any two query points
in O(log n) time.

The remainder of this paper details a data structure
and query method to satisfy this theorem. Section 2
covers some preliminary terminology and path construc-
tion techniques. Section 3 contains the main contribu-
tion of this work, showing how we can precalculate so-
called shared paths and use them to answer monotone
path existence queries. As our overall query requires the
ability to perform a planar point location query, Sec-
tion 4 reviews a particularly suitable method. Section 5
brings together the complete query algorithm with some
discussion on possible extensions. Finally, we conclude
in Section 6.

2 Preliminaries

In this section, we will review some construction tech-
niques and lemmas presented in Rezende, Lee, and Wu.
The proofs appear in their original paper.

Definition 1 Let a path π be defined by a sequence of
points p1, p2, ...pk, then π is an xy-path if, for every
adjacent pair of points pi, p(i+1), either p(i+1) is directly
above pi (i.e. p(i+1)x

= pix and p(i+1)y
> piy) or p(i+1)

is directly to the right of pi (i.e. p(i+1)x
> pix and

p(i+1)y
= piy). Following similar rules, we can define

x(−y)-paths, (−x)y-paths, and (−x)(−y)-paths. Ob-
serve that any such path is rectilinear.

Definition 2 A rectilinear north-east monotone path is
an xy-path.

If we assume that no two adjacent segments of a path
are co-linear, we observe that any vertical (horizontal)
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line can intersect such a path through at most a sin-
gle point of one horizontal (vertical) segment or lie co-
linearly with at most one vertical (horizontal) segment.

When constructing xy-paths, we can prefer a direc-
tion of path extension by always travelling in a particu-
lar direction unless we need to route around an obstacle.

Definition 3 An x-preferred xy-path, π, is an xy-path
which extends east, in the +x, direction whenever pos-
sible. Let o be an obstacle with sides left(o), top(o),
right(o) and bottom(o). If π encounters left(o), a ver-
tical segment is added which continues north (in the
+y direction) to the vertex located at the incidence of
left(o) and top(o). From there, a horizontal segment is
added, which resumes travelling east along top(o), and
beyond, until the next obstacle is encountered (see Fig-
ure 2).

π1

π2

Figure 2: Two x-preferred xy-paths, one without, one
with obstacles.

In a similar way, π may be a y-preferred xy-path,
which travels north whenever possible, only travelling
east when moving around an obstacle. x(−y)-paths,
(−x)y-paths, and (−x)(−y)-paths can also be con-
structed with a preference for either of their two com-
ponent directions. For example, an x(−y)-path can be
x-preferred or (−y)-preferred.

Definition 4 Given a point s, if we extend both an x-
preferred xy-path and a (−x)-preferred (−x)y-path from
s, the area above the union of these paths is called the
y-region of s. In a similar fashion, the x-region of s
is the area to the right of the union of the y-preferred
xy-path and the (−y)-preferred x(−y)-path rooted at s.

Definition 5 The xy-region of s is the intersection of
the x-region of s and the y-region of s (Figure 3).

Using these definitions, Rezende, Lee, and Wu give
the following lemma which is of particular interest.

Lemma 2 There is a rectilinear north-east monotone
path from s to t if and only if t lies within the xy-region
of s.

From their lemma, and from the construction of the
xy-region of s, we derive the following additional lemma.

s

t

Figure 3: The complete xy-region of s with point t con-
tained within it.

Lemma 3 If t is in the xy-region of s, then, disregard-
ing all obstacles, a vertical line through t must intersect
the x-preferred xy-path rooted at s somewhere below t,
and a horizontal line through t must intersect the y-
preferred xy-path rooted at s somewhere left of t.

Rezende, Lee, and Wu’s algorithm constructs the xy-
region of s, which is then further refined into a rect-
angular subdivision. When a query point t is given,
they perform a point location on t within the rectan-
gular subdivision. Assuming t lies within the xy-region
of s, their subdivision stores enough information to al-
low them to construct a rectilinear north-east monotone
path between the two points. By Lemma 2, we know
that such a path is possible. Such a path is also a short-
est path, which was the goal of their work, however we
are only interested in the existence of it.

3 Shared Paths

Having seen how xy-paths are constructed around ob-
stacles, we now turn our attention to how multiple paths
will route around the same obstacle.

Lemma 4 Given an x-preferred xy-path π which meets
left(o) for some obstacle o, any other x-preferred xy-
path π′ which meets left(o) will have the same structure
as π from the corner of left(o) and top(o) and beyond.

The proof is apparent directly from construction.
It should be clear that this lemma holds for other
(±x)(±y)-paths, with either component direction as the
preferred direction.

3.1 Shared Path Tree

We can use these shared paths to aid us in identify-
ing the xy-region of any s during query time. As the
construction of x-regions and y-regions are similar, we
will consider only the y-region case. To do so, we will
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pre-calculate paths from the top-left vertex of each ob-
stacle. Then, during query time, all that remains is to
find the first obstacle that an x-preferred xy-path from
s would hit. From that obstacle, we can follow the pre-
calculated xy-path from its top-left vertex. Specifically,
these shared paths will be stored in a tree, which is
constructed in the following way.

Imagine a bounding box that contains all of the obsta-
cles and all of the valid query range for s and t. Along
the right-hand side of this box is a vertical line segment
obstacle, labeled o0, whose top-left vertex is v0. All x-
preferred xy-paths must eventually meet this obstacle.

We sort the remaining obstacles from right to left,
top to bottom, according to their top-left vertices so
that we have a sequence of obstacles o1, ..., on with cor-
responding top-left vertices v1, ..., vn. Notice that on
is the leftmost obstacle, and that v1 is the rightmost
vertex to the left of v0.

Our tree, T , will store v0, ..., vn, with v0 at the root.
Then, processing v1, ..., vn in order starting with v1, we
process each vi in the following way. Let seg(vi) be a
horizontal line segment starting at vi, traveling east in
the +x-direction, and let oj be the obstacle impacted
on the left side by seg(vi). Note that j < i. From
oj , we obtain a pointer to vj , which must already exist
in T . We insert vi into T as a child of vj . Notice that
seg(vi) is the line segment (vix , viy )−(vjx , viy ) and that
viy ≤ vjy . As a result of the insertion method, any
path of vertices in the tree will be ordered with respect
to their x components. See Figure 4 for an example
environment and corresponding T .

Reconstructing an xy-path based on T is simple:
given a pointer to a particular vertex vp1

in the
tree, if vp1

, vp2
, ..., vpk

is the sequence of vertices in
the path from vp1 to the root of the tree, then
seg(vp1), seg(vp2), ..., seg(vpk

) is the sequence of hori-
zontal line segments that make up the xy-path of vp1

1.
Construction of T takes O(n log n) time. We first

sort the vertices in the order given above. Next, for
each of the n obstacles, we maintain a line segment in-
tersection sweepline to find, in O(log n) time, the ob-
stacle which will be hit by a horizontal line segment
leaving the top-left vertex. Insertion into T takes only
O(1) as we acquire the parent pointer directly from the
sweepline structure. T has size O(n) as each top-left
obstacle vertex is inserted exactly once.

3.2 Querying the Shared Path Tree

From Lemma 3, we see that it is sufficient to show that
t is in the y-region of s by testing that t is above the

1We assume that the vertical segments of an x-preferred xy-
path have no width, and as a result, any vertical line through such
a path must impact some horizontal segment. As we will see, we
are only interested in performing vertical line tests on these paths,
so we can disregard the vertical path segments.

x-preferred xy-path rooted at s. Here, we refer only to
that portion of the y-region which is to the east of s,
since no other part of the y-region can contribute to the
xy-region of s. To that end, we will further assume that
t is also east of s.

The first step towards identifying the y-region of s is
to identify the obstacle which a horizontal ray leaving s
in the +x direction would hit. We label that obstacle as
os. We can use a point location data structure to find
this obstacle and return the pointer vs, corresponding
to an entry in T . Section 4 explores this in more detail,
but for now it suffices to assume that we can acquire vs.

With vs, we know that the first segment of the x-
preferred xy-path rooted at s is the horizontal segment
defined by (sx, sy)− (vsx , sy). The remaining segments
of the path are already stored in the tree, and so a simple
query method would be as follows.

Assume that t is north-east of s, otherwise the query
result is ‘no’. Let v(t) be the vertical line through t. If
v(t)x is within the x-interval of the first horizontal line
segment, then we test and return whether t is above it
and we are done.

Otherwise, let vs1 , vs2 , ..., vsk be the path through T
where vs1 = vs and vsk is the root of T . We test v(t)
against each seg(vsi) in order from 1 to k. If v(t)x is not
within the x-interval of a line segment, we advance to
the next segment by following the parent pointer of vsi .
If it is, we test and return whether t is above that seg-
ment, and we are done. Since we construct our environ-
ment such that the root node of T is farther right than
any other input, there must be some segment which v(t)
intersects. See Figure 4 for an example.
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Figure 4: An environment and corresponding shared
path tree showing how s, t1, and t2 interact. Notice
that there is a north-east monotone path from s to t1,
but not from s to t2.

Performance of this query method is dependent on the
height of T . If we consider the case where all obstacles
are arranged in an ascending staircase such that a path
starting with the leftmost obstacle hits every remaining
obstacle on its way east, we see that T has a height
and query time of O(n), which is not sufficient for our
theorem.
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3.3 Augmenting the Shared Path Tree

In order to achieve O(log n) query time on T , we will
need to augment it. The augmentation we will use is
a method first discussed by Cole and Vishkin [3]. This
method was later illustrated by Narasimhan and Smid
[6] in a manner very similar to our own use.

In brief, the vertices in the tree are processed into
groups which have the property that we can follow a
path from any vertex to the root by looking at only
O(log n) groups.

The augmentation adds the following information to
T . For every vertex v, define m to be the number of
vertices in the subtree of v. We define l-value(v) to be
blogmc. We define a group to be a path of vertices that
share the same l-value. The head of this group is the
vertex closest to the root and is called the group parent
for all vertices in the group, a pointer to which is stored
at every v as gpar(v).

From the definitions given, observe the following
properties about groups. Every leaf will have an l-value
of 0 and will belong to a group consisting only of itself,
as its parent’s subtree size and thus its parent’s l-value
must be ≥ 2 and ≥ 1, respectively. We also see that
the root of the tree will have an l-value of blog nc. An
example is given in Figure 5.

Figure 5: A binary tree with grouped nodes indicated.

Note that l-values can only increase as we consider
vertices closer to the root, and that groups must be
paths. Thus, we can traverse from any v to the root of
the tree by following O(log n) gpar pointers.

With the groups configured, we will further augment
T at each group parent by creating an ordered group
array containing all the vertices of its corresponding
group. This array permits us to perform a binary search
on the group while examining the group parent. By
copying the children pointers in the appropriate order,
according to their orientation along the group path, we
can create this array in O(n) time over all groups.

The group number and group parent pointers of each
vertex, and the group arrays associated with each group
parent, can be calculated with a simple post-order
traversal of the tree in O(n) time and requires only O(1)

extra space per vertex. Note that since each vertex ap-
pears in exactly one group array, the total size of all
group arrays is O(n).

3.4 Querying the Augmented Shared Path Tree

Querying the augmented tree has the same goal as in
Section 3.2: to identify the eastern y-region of s and
determine if t is within it.

The initial parts of the query are performed identi-
cally. Again we assume that we have a point location
data structure that allows us to identify the first ob-
stacle to the right of s, labeled os, and which gives us
the corresponding pointer vs into T . From this, we can
define and test the first horizontal line segment of the
x-preferred xy-path at s.

Recall that v(t) is the vertical line through t. If v(t)
does not intersect that first horizontal segment, then
we follow vs into T . We immediately jump to the group
parent of vs, labeled gpar(vs). If v(t) is to the left of
(or at) gpar(vs), then we perform a binary search on the
array of vertices stored there, each of which correspond
to a horizontal line segment in the environment. v(t)
must intersect one of these segments, and we test and
return whether v(t) is above that segment.

If v(t) is to the right of gpar(vs), then we follow
gpar(vs)’s parent pointer, which brings us to some ver-
tex in the next group towards the root of T and repeat
the same procedure, jumping to the group parent, test-
ing the array contents there, and so on. Since we con-
struct our environment such that the root vertex of T
must be farther right than any other input, there must
be a group such that v(t) intersects one of its constituent
vertices.

In performing this query, we need to test at most
O(log n) group parent pointers. In one group, we will
also need to perform a binary search on the array stored
there, for a total query time of O(log n), as required by
our theorem.

4 Finding s

Before we can use T to identify the y-region of s, we
need to identify the first obstacle that an x-preferred
xy-path leaving s will impact.

4.1 Planar Subdivision

Step 1 is to create a horizontal subdivision of the en-
vironment into planar rectangles. Conceptually, this is
accomplished by extending a horizontal ray from each
obstacle vertex away from the obstacle until it strikes
another obstacle or the environment boundary. Every
such ray bisects the space it travels through into two
regions resulting in a subdivision of size O(n) (Figure
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Figure 6: example of a planar rectangular subdivision
of a set of obstacles in enclosing environment. note the
imaginary obstacle along the right-hand side.

6). We call each non-obstacle face of the subdivision a
cell.

Lemma 5 The right-hand boundary of a cell is defined
by a single obstacle.

The subdivision can be constructed using the same
horizontal sweepline used to build T . With each cell,
we store the appropriate pointer into T based on the
obstacle that the cell sees to its right.

4.2 Point Location Query

To find the cell that a particular point falls into, we will
use a Skewer Tree [4], a data structure by Edelsbrunner,
Haring, and Hilbert specifically for point location in a
collection of axis-aligned, non-overlapping rectangles.

Construction of a skewer tree follows a divide and
conquer approach. For a set, S, of rectangles, we place
a vertical line l through the median x-value. We divide
S into three subsets: S1 is the set of rectangles that
lie strictly to the left of l, S2 is the set of rectangles
intersected by l, and S3 is the set of rectangles that lie
strictly to the right of l, so that |S1|+ |S2|+ |S3| = |S|.
We create a node nS in the skewer tree which contains
the definition of l, the size of S2, and a balanced tree
containing the rectangles of S2, sorted by y-value.

If S1 is non-empty, we recurse on S1, attaching the
resulting subtree as the left child of nS . Similarly, if S3

is non-empty, we recurse on S3, attaching the resulting
subtree as the right child of nS .

Every rectangle appears exactly once in the skewer
tree, as it is attributed only to the first node whose
l intersected it and not passed down to deeper levels
of recursion. The skewer tree requires O(n) space and
O(n log n) construction time.

The query time is a bit more interesting. We start
at the root node and check if our query point s is con-
tained within one of the rectangles stored there, which
takes O(log n) time. If it is not, we compare l with sx
and decide whether we will next check the left or right

subtree. We repeat these steps at every level of the tree
until the rectangle containing s is found. The height of
the skewer tree is O(log n), so we need to make at most
that many queries for a total query time of O(log2 n)
time.

We can improve the query time to O(log n) with Frac-
tional Cascading [1, 2, 5, 8]. To help illustrate how, we
will refer to the outer nodes of the Skewer tree as the
line tree, and the trees of rectangles attached to each
node of the line tree as rectangle trees.

Every path through the line tree represents a sequence
of arrays of sorted values. Each array is queried over the
same range of keys, defined by the interval of y-values
covered by the bounding box of the environment.

Considering a single path through the line tree for
now, we will store extra pointers in each of the rectangle
trees so that a query on one tree can return not just the
successor to the search key value in that tree, but in
the next tree in the path as well. If this mechanism is
implemented in every rectangle tree, then we can answer
our query in every tree of the path by performing a
standard binary tree search on the root rectangle tree
in O(log n) time, and then continuing by walking along
O(log n) pointers through the path, each taking O(1)
time.

Because the line tree is a binary tree, we need to
store two sets of additional pointers in each rectangle
tree: one to use if we follow a line tree node’s left child,
and one to use if we follow its right child. See Chazelle
and Guibas [1, 2] for details on how these extra pointers
can be developed in linear time.

5 The Complete Algorithm

We now have all the tools we need to solve our query
problem.

5.1 Construction

The construction phase of the algorithm involves build-
ing both the shared path data structure and a point
location data structure.

When discussing shared path data structures, we have
primarily considered obstacles to the east of our query
point, and the resulting x-preferred xy-paths. We will
relabel that data structure as TE . We also need to
consider obstacles to the north and the associated y-
preferred xy-paths, which we do by creating a second
data structure labeled TN . The algorithms as written
in Section 3.1 for TE can easily be adapted for TN .

While performing the plane-sweeps needed to con-
struct TE and TN , we can also produce the rectangular
planar subdivisions used by the skewer trees.

Total construction time and space for TE , TN , and
the skewer trees, is O(n log n) and O(n), respectively,
as required by our theorem.
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5.2 Query

When a query is made, we are given s and t. Assume
that t is actually north-east of s, otherwise the query
result is ‘no’.

We first perform a point location query on s, iden-
tifying the obstacle to its right. We then follow the
procedure in Section 3.4 to determine whether t is in
the y-region of s.

Using the obstacle above s, we identify the x-region
of s, and again follow the procedure in Section 3.4 to
determine if it contains t. If both return true, then we
know that t is in the xy-region of s, and so by Lemma
2, there is a north-east monotone path from s to t. The
total query time is O(log n), as required by our theorem.

6 Conclusion

In this paper we have discussed a method for deciding
whether there exists a north-east monotone path be-
tween any two query points in the plane. We developed
the concept of shared paths and showed a method for
storing them in a tree, and for augmenting that tree to
allow for quick query time. We also reviewed a suitable
point location query method. Together, these methods
require O(n log n) preprocessing time, O(n) space, and
O(log n) query time.

One problem which remains open is the following. In
the event that a path is found to be possible, we would
like to report one such path in O(log n+k) time, where
k is the number of segments in the reported path, and
is within a constant factor of the minimum number of
segments among all such paths.
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