
CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Tiling Polyhedra with Tetrahedra
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Abstract

When solving an algorithmic problem involving a poly-
hedron in R3, it is common to start by partitioning the
given polyhedron into simplier ones. The most com-
mon process is called triangulation and it refers to par-
titioning a polyhedron into tetrahedra in a face-to-face
manner. In this paper instead of triangulations we will
consider tilings by tetrahedra. In a tiling the tetrahedra
are not required to be attached to each other along com-
mon faces. We will construct several polyhedra which
can not be triangulated but can be tiled by tetrahedra.
We will also revisit a nontriangulatable polyhedron of
Rambau and a give a new proof for his theorem. Fi-
nally we will identify new families of non-tilable, and
thus non-triangulable polyhedra.

1 Introduction and Definitions

One of the fundamental approaches found in computa-
tional geometry is to break a region into smaller or sim-
pler pieces. What is simple depends on the application.
The process of partitioning a closed region into trian-
gles has been abstracted to higher dimensions, yet still
bears the name triangulation. One of the classical appli-
cations of triangulation is the art gallery theorem which
states the fewest number of guards needed to guard a
two dimensional polygonal region.

In this paper we will be concerned with the triangu-
lation of polyhedra, in particular identifying polyhedra
which cannot be triangulated. We will give five known
examples of non-triangulable polyhedra and provide an-
other example to justify a more general type of parti-
tioning which we call tiling by tetrahedra. We will use
the general partition to revisit the analogue of example
5, providing a shorter proof. In doing so we will show
another family of polyhedra which cannot be tiled by
tetrahedra and thus is non-triangulable. Finally we will
introduce more families of non-tilable polyhedra and
pose a generalization to this family.

Definition 1 A triangulation of a polytope P ∈ Rd

is a collection of d-simplices that satisfies the following
two properties:
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1. The union of all these simplices equals P . (Union
Property)
2. Any pair of these simplices intersect in a common
face (possibly empty). (Intersection Property)

In this paper, we restrict ourselves to partitions where
the vertices of each tetrahedron is a subset of the vertex
set of P . For further information on triangulation, we
suggest the texts [2], [3], and [5].

We wish to introduce the concept of tiling by tetrahe-
dra, which weakens the intersection property of trian-
gulation.

Definition 2 A tiling by tetrahedra of a polyhedron
P is a collection of tetrahedra, all of whose vertices are
vertices of P, that satisfies the following two properties:
1. The union of all these tetrahedra equals P. (Union
Property)
2. The intersection of any two tetrahedra (possibly
empty) is a subset of a plane. (Intersection Property)

Remark 1 Figure 1 is an example of a tiling of the
cube which is not a triangulation.

Dissect the cube down the diagonal plane.

Triangulate each
piece so that its
dotted diagonal is
used.

Figure 1: Tiling a cube

2 Non-Triangulable Polyhedra

It was first shown in 1911 by Lennes [4] that not all
three-dimensional polyhedra are triangulable. We will
provide eight other known examples of non-triangulable
polyhedra in this section.

Example 1 (Schönhardt)
A frequently quoted and simple example was given by

Schönhardt [10] in 1927. Schönhardt made a non-convex
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Figure 2: Schönhardt’s twisted triangular prism

twisted triangular prism (Figure 2) by rotating the top
face of a triangular prism so that a set of cyclic diagonals
became edges with interior dihedral angles greater than
180o.

Claim: Schönhardt’s Twisted Triangular Prism cannot
be triangulated.

Proof. Every diagonal of the polyhedron lies outside
the polyhedron. Therefore any tetrahedron containing
four vertices of the twisted triangular prism will contain
at least one edge lying outside the polyhedron. �

Example 2 (Bagemihl)

Figure 3: Bagemihl’s generalization

In 1948, Bagemihl [1] modified Schönhardt’s idea to
construct a nonconvex polyhedron on n ≥ 6 vertices
by replacing one of the twisted vertical edges with a
concave curve and placing n−6 vertices along the curve
so that the interior dihedral angles of the edges to these
vertices are greater than 180o.

Claim: Bagemihl’s Generalization cannot be triangu-
lated.

Proof. If a triangulation exists, then the top triangular
face must be a face of some tetrahedron. For every
vertex v, not on the top face, there is a diagonal from
v to some vertex on the top face which lies outside the
polyhedron. Therefore there is no tetrahedron from the
vertex set which has the top face as a boundary lying
inside the polyhedron. �

Example 3 (Ruppert and Seidel)
Another method of creating non-triangulable poly-

hedra with large number of vertices was presented by
Ruppert and Seidel [9]. They attached a copy of a non-
triangulable polyhedron to another polyhedron. Fig-
ure 4 shows a polyhedron where a copy of Schönhardt’s

Figure 4: Attaching a niche to a cube

non-convex twisted triangular prism, called a niche, is
attached to a face of a cube along a base of the twisted
triangular prism.

Claim: If a niche is attached properly, the union of the
polyhedron and the niche cannot be triangulated.

Proof. It can be arranged that the vertices of the
Schöhardt prism which do not lie on the face of the cube
do not see any vertex of the cube. Since each diago-
nal to the non-attached base of the triangular prism lies
outside the polyhedron, then there must exist a tetrahe-
dron contained inside the non-convex twisted triangular
prism. We know from Example 1 this is not possible, so
no set of tetrahedra triangulates the union. �

Example 4 (Thurston et al.)

Figure 5: Thurston polyhedron

Figure 5 was attributed to Thurston by Paterson and
Yao [7], where 18 non-intersecting square prisms, six
from each pair of parallel faces, are removed from the
cube. It is important to note that this polyhedron was
independently discovered by several people including W.
Kuperberg, Holden, and Seidel.

Claim: Thurston’s polyhedron cannot be triangulated.

Proof. A point in a polyhedron “sees” another point
in the polyhedron if the line segment between the two
points is contained inside the polyhedron. We observe
that each point of a tetrahedron can see each of the
tetrahedron’s vertices. If a polyhedron contains a point
which does not see at least four non-coplanar vertices of
the polyhedron, then it cannot be contained in a tetra-
hedron from the triangulation. In Thurston’s polyhe-
dron, the center of the cube does not see any vertex of
the polyhedron, so it is obviously not in the interior of
a tetrahedron of a triangulation. �
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Example 5: (Rambau)

Figure 6: Twisted prism SC6

Rambau [8] provided another generalization of the
Schönhardt twisted triangular prism. To construct the
Nonconvex Twisted Prism we will first define a right
prism over a convex polygon with n vertices, Cn. Label
the vertices of Cn clockwise as v1, v2, ..., vn. He defines
the right prism over Cn as PCn

= conv{(Cn × {0}) ∪
(Cn × {1})}.

Now pick a point O in the interior of Cn and rotate
Cn clockwise about O by ε, and label the vertices of
Cn(ε), v1(ε), v2(ε), ..., vn(ε), corresponding to the ver-
tices of Cn.The convex twisted prism over Cn is
PCn

(ε) = conv{(Cn × {0}) ∪ (Cn(ε)× {1})}.
The non-convex twisted prism over Cn (Fig-
ure 6) is SCn = PCn(ε) - conv{(vi,0),(vi+1,0),
(vi(ε),1),(vi+1(ε),1)}, for all i ∈ (1, n) taken modulo n.

In [8] Rambau proves:

Theorem 1 For all n ≥ 3, no prism PCn
admits a

triangulation without new vertices that uses the cyclic
diagonals {(vi,0), (vi+1,1)}.

Which implies

Corollary 2 For all n ≥ 3 and all sufficiently small
ε > 0, the non-convex twisted prism SCn

cannot be tri-
angulated without new vertices.

The proof of Theorem 1 is too long to discuss here,
but we will provide a shorter proof in the following sec-
tion for Corollary 2.

3 Tilling by Tetrahedra

Notice that Rambau’s results do not imply that SCn

cannot be tiled with tetrahedra. Rambau uses Theorem
1 to conclude that no triangulation of SCn

exist, but
Figure 1 clearly shows that a tiling by tetrahedra exists
for PC4 , which is not a triangulation. Furthermore, this
shows that there exists such a tiling which uses the cyclic
diagonals of the cube. We prove that:

Theorem 3 There exist a polyhedron which is not tri-
angulable, but can be tiled by tetrahedra.

E F

A
B

CD
E′

F ′

O

Figure 7: A non-triangulable polyhedron which can be
tiled with tetrahedra

Proof. Example 6 will provide this result.

Example 6

Start with a horizontal unit square Q. Let A,B,C
and D be the vertices of Q in counterclockwise order
when we look down at the square from above. Choose
the point O over Q at unit distance from its vertices.
Next add to this arrangement a segment EF , whose
midpoint is O, has length 4, and which is parallel to
AB (assume E is closer to A than to B). Rotate this
segment clockwise (i.e. opposite to the order of the ver-
tices A,B,C and D) around the vertical line through O
by a small angle ε. Let P be a non-convex polyhedron
bounded by Q and by six triangles EAB, EBF , BFC,
CDF , EFC, and EDA.

Finally let P ′ be the image of P under the reflection
around the plane of Q followed by a 90◦ rotation around
the vertical line containing O. Label the images of E
and F as E′ and F ′ respectively.

First notice that P is triangulable as it is the union of
the tetrahedra EABD,EBDF and DBCF . Since the
same holds for P ′ we have that the union of P and P ′

can be tiled by tetrahedra.

Next we show that the union of P and P ′ is not tri-
angulable. Since neither E nor F can see the vertices
E′ and F ′, we have that any triangulation of the union
is the union of triangulations of P and P ′. The poly-
hedron P was constructed so that the dihedral angles
corresponding to the edges EB and FD are concave,
therefore the diagonals AF and EC lie outside of P . It
is easy to see that the triangles ABC and ACD cannot
be faces of disjoint tetrahedra contained in P , thus di-
agonal BD must be an edge of at least one tetrahedron
in any triangulation of P . A similar argument applied
for P ′ gives that the diagonal AC is an edge of at least
one tetrahedron in any triangulation of P ′. Thus the
union of P and P ′ is not triangulable. �

Observation 1 A non-triangulable polyhedron is
tilable only if it contains at least four coplanar vertices
where no three are incident with a common face.
(We wish to thank one of the referees for this helpful
observation)
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Since SCn
does not contain 4 coplanar points, for suf-

ficiently small ε, where no three are incident with a
common face, Remark 1 implies that no tiling exists.
However we wish to provide a shorter proof than that
of Theorem 1 and provide a more general family of non-
tilable polyhedra.

We will look at possible tetrahedra contained inside a
polyhedron and determine if any two interior tetrahedra
intersect. If two tetrahedra intersect in more than a
plane, we can conclude that both tetrahedra cannot be
in the tiling.

Lemma 4 Let two tetrahedra TO and TB share an edge
e and contain two coplanar faces tO and tB respectively
on a plane P . If there exists a plane Q 6= P containing
e such that the fourth vertex O of TO is in the open
halfplane bounded by Q containing tB, and such that the
fourth vertex B of TB is in the open halfplane bounded
by Q containing tO, then TO∩TB is a polyhedron, hence
the interiors of TO and TB are not disjoint.

Figure 8: Edge sharing tetrahedra which cross

Lemma 4 can simply be proven by noticing that the
interior dihedral angle of TO, created by the faces tO and
{E,O}, and the interior dihedral angle of TB , created
by the faces tB and {E,B}, sum to greater than 180o.

Remark 2 We will use Lemma 4 to say TO and TB
cannot both be tetrahedra of a tiling by tetrahedra.

Since each face of a tetrahedron t ∈ T is a triangle, we
say T induces a surface triangulation. Rambau used this
observation in proving Corollary 2 by using Theorem 1.
We will also use this observation to determine which
tetrahedron contains a particular surface triangle as a
face.

Definition 3 An ear of a 2-dimensional triangulation
of a polygon P is a triangle with exactly two of its edges
belonging to P .

Theorem 5 (Meisters [6]) For n > 3, every triangula-
tion of a polygon has at least 2 ears.

It is common to view each triangulation as a tree by
letting each triangle be represented by a dual vertex
where two dual vertices are adjacent if the correspond-
ing triangles share an edge. In this dual tree each ear
is a leaf. We will borrow the terminology of pruning a
leaf, to prune ears of a triangulation.

Definition 4 An ear, E, is pruned by deleting the ear
from the triangulation, leaving the edge which was not
an edge of P as an edge of P ′ = P − E. In doing so,
we delete a vertex of the polygon.

Example 7:
Define an infinite set of polyhedra BCn

(Figure 10) as
follows:

Let the bottom base be a convex polygon on n ver-
tices, Cn, with vertices labeled clockwise as b1, b2, ..., bn.
Define li to be the line containing edge bibi+1 (indices
taken modulo n). Now we will call the closed area
bounded by the lines li, li−1, and li−2, which contains
bi−1bi but does not contain Cn, region Ri (Figure 9).
(Region Ri may be infinite if li and li−2 are parallel or
intersect on the same side of li−1 as the polygon.)
Now define the upper base as the convex polygon Un =
conv{ui, u2, ..., un}, where ui ∈ Ri.

Let B′Cn
= conv{(Cn × {0}) ∪ (Un × {1})}, so that

BCn
= B′Cn

− conv{(bi,0),(bi+1,0),(ui+1,1),(ui+2,1)},
for all i ∈ {1, 2, . . . , n} taken modulo n.

Cn

b1

b2

b3

b4
b5

b6

b7

l2

l1

l3 l4
l5

l6

l7R2

R1

R3

R4 R5

R6

R7

Figure 9: All regions Ri for C7

Theorem 6 The non-convex polyhedron BCn cannot be
tiled with tetrahedra.

Proof. Assume a set of simplices (tetrahedra) S tiles
BCn . The tiling by S induces a triangulation of (Un ×
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Figure 10: BC7

{1}), which we will call T . Now, for every t ∈ T there
exists exactly one s ∈ S such that t is a face of s.
Obviously, the fourth vertex of s must be a vertex of
(Cn × {0}).

Define a sub-polygon to be the convex hull of a subset
of the vertices of a polygon. Let P be the set of sub-
polygons of Un such that every edge of a sub-polygon
p ∈ P is an edge of some t ∈ T .

Let e be an edge of p and let t be a triangle of T inside
p, having e as an edge. We will say p is separating if
every point bi in the open halfplane bounded by the
line containing e which does not contain p, is not in a
tetrahedron of S with t.

Let P ′ ⊆ P so that every p′ ∈ P ′ is separating. P ′ is
not empty since Un is a separating sub-polygon.

Let a minimal separating sub-polygon be the sub-
polygon with the fewest vertices.

Let m ∈ P ′ be a minimal separating sub-polygon with
n vertices. If n > 3, then there is a t ∈ T which is an
ear of m. Let d be the edge of t which is not an edge
of m. Observe that there exists a triangle t′ ∈ T which
has d as an edge and is contained in m.

Remark 3 The construction of Un yields the property
that the line containing the diagonal uiuj (for i < j)
bounds two open halfplanes such that the halfplane con-
taining the vertices uk for i < k < j also contains the
vertices bm for i ≤ m < j and no other vertices from
the polygon Cn.

Let Q be the plane through d, perpendicular to the
plane containing Un. Since m is separating, we can

conclude by Lemma 4 that t′ cannot be in a tetrahe-
dron with any (bi, 0) where bi is in the open halfplane,
bounded by the line containing d, containing t. There-
fore we can prune t so that m − t is a separating sub-
polygon with fewer vertices than m. Thus m is not
a minimal separating sub-polygon. Therefore we can
conclude that the minimal separating sub-polygon is a
triangle.

So there is a t = {ux, uy, uz} ∈ T which is a minimal
separating sub-polygon. Since t is separating, for every
bi outside of t, t is not in a tetrahedron with (bi, 0). By
Remark 3, the only vertices which can exist inside t are
bx, by, or bz, but the segments (bi, 0)(ui, 1) lie outside
the polyhedron by the construction of BCn

. Thus there
exists a surface triangle which is not the face of a tetra-
hedron of S. Therefore there is no set of tetrahedra
which tiles BCn

. �

A closer look at the proof yields that Remark 3 is the
only observation necessary of Un for the proof. Thus we
will define a particular alteration, ACn , of a prism.

Let Cn be the same convex polygon defined in BCn
.

Let An = conv{a1, a2, ..., an}, where the line containing
the diagonal aiaj (for i < j) bounds two open halfplanes
such that the halfplane containing the vertices ak for
i < k < j also contains the vertices bm for i ≤ m < j
from the polygon Cn. Let A′Cn

= conv{(Cn × {0}) ∪
(An × {1})}. The non-convex altered prism over Cn is
ACn

= A′Cn
− conv{(bi,0),(bi+1,0),(ai,1),(ai+1,1)}, for

all i ∈ (1, n) taken modulo n.

Corollary 7 For all n ≥ 3 the non-convex altered
prism ACn

cannot be tiled by tetrahedra, hence it also
cannot be triangulated.

Remark 4 Upon close inspection, it is easy to see that
there is a convex polygon Cn where no rotational cen-
ter yields the observations made in Remark 3. Such an
example is provided on the coordinate plane in Figure
11.

We note that, for small rotations, if the center of ro-
tation lies on a point with a positive or 0 x-coordinate,
then the diagonal (−1, 1)(−3, 1− ε) will not satisfy Re-
mark 3. Similarly, if the center of rotation lies on a
point with a negative or 0 x-coordinate, then the diago-
nal (1,−1)(3,−1 + ε) will not satisfy Remark 3.

Theorem 8 For all n ≥ 3 and all sufficiently small
ε > 0, the non-convex twisted prism SCn

cannot be tiled
by tetrahedra without new vertices.

Proof. It suffices to show that for any Cn, there ex-
ists a sufficiently small ε such that for any diagonal
(vi, 1)(vj , 1) (for i < j) of Cn(ε) there is a plane Q

containing the diagonal (vi, 1)(vj , 1) which bounds two
open halfspaces such that the halfspace containing the
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(2,-1)(1,-1)

(-2,1)

(-3,1-ε)

(3,-1+ε)

O

Figure 11: No rotational center

vertices (vk, 1) for i < k < j also contains the vertices
(vm, 0) for i ≤ m < j and no other vertices from the
polygon Cn × {0}. When constructing Cn(ε) we must
consider the planes through each diagonal. Now, for
any rotational center O, there is some angle of rota-
tion αij where the diagonal vi(αij)vj(αij) lies on a line
parallel to the diagonal vi−1vj−1. Thus, for every SCn

where 0 < εij < αij there exists a plane Q satisfying the

conditions of Lemma 4 for the diagonal (vi, 1)(vj , 1). It
follows that if we let α = min{αij |i, j ∈ (1, 2, 3, ..., n)},
then for every ε, 0 < ε < α, SCn

cannot be tiled by
tetrahedra. �

Example 8: (Nonconvex Twisted Dodecahedron)

Figure 12: Planar representation of DH(ε)

Let two parallel faces of a regular dodecahedron be
the Bottom and Top faces. Let l be the line through the
center of the two parallel faces. Rotate the Bottom face
about l counterclockwise by an angle β ≤ ε, and the Top
face about l clockwise by an angle τ ≤ ε. The nonconvex
twisted dodecahedron DH(ε) (Figure 12) is obtained
by taking the convex hull of the 20 points and then
removing the convex hull of each set of five points which
was the face of the dodecahedron, with the exception of
the Top and Bottom faces.

Theorem 9 For sufficiently small ε the nonconvex
twisted dodecahedron cannot be tiled by tetrahedra.

A generalization of Lemma 4 and the argument used
for Theorem 6 suffice to show Theorem 9 to be true.

Furthermore we believe the previous known techniques
would not be able to show this family of polyhedra is
non-triangulable.

4 Open Problem

The result for DH(ε) motivates a generalization, as
Schönhardt’s twisted triangular prism motivated Ram-
bau’s generalization.

Notice that the position of the Top and Bottom faces
of the regular dodecahedron is the same as the right
pentagonal anti-prism. A n-gonal pentaprism PPn is
bounded by two congruent regular n-gonal bases in the
same position as the right n-sided anti-prism and 2n
pentagonal lateral faces, one adjacent to each edge of a
base. If δ is the interior dihedral angle of the right n-
sided anti-prism, then let the angle between a base and a
lateral pentagon be δ < α < 180. A non-convex twisted
n-gonal pentaprism PPn(ε) is created by twisting the
Top and Bottom faces of PPn as in DH(ε).

Remark 5 DH = PP5 for ε = arccos(−1√
5
).

We leave the reader with this open problem. Is the
non-convex twisted PPn non-tilable by tetrahedra for
all n > 3?
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