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Abstract

A deflated polygon is a polygon with no visibility cross-
ings. We answer a question posed by Devadoss et
al. (2012) by presenting a polygon that cannot be
deformed via continuous visibility-decreasing motion
into a deflated polygon. In order to demonstrate non-
deflatability, we use a new combinatorial structure for
polygons, the directed dual, which encodes the visibility
properties of deflated polygons. We also show that any
two deflated polygons with the same directed dual can
be deformed, one into the other, through a visibility-
preserving deformation.

1 Introduction

Much work has been done on visibilities of polygons
[6, 8] as well as on their convexification, including work
on convexification through continuous motions [4]. De-
vadoss et al. [5] combine these two areas in asking
the following two questions: (1) Can every polygon be
convexified through a deformation in which visibilities
monotonically increase? (2) Can every polygon be de-
flated (i.e. lose all its visibility crossings) through a de-
formation in which visibilities monotonically decrease?

The first of these questions was answered in the af-
firmative at CCCG 2011 by Aichholzer et al. [2]. In
this paper we resolve the second question in the nega-
tive. We also introduce a combinatorial structure, the
directed dual, which captures the visibility properties
of deflated polygons and we show that a deflated poly-
gon may be monotonically deformed into any deflated
polygon with the same directed dual.

2 Preliminaries

We begin by presenting some definitions. Here and
throughout the paper, unless qualified otherwise, we
take polygon to mean simple polygon on the plane.

A triangulation, T , of a polygon, P , with vertex set V
is a partition of P into triangles with vertices in V . The
edges of T are the edges of these triangles and we call
such an edge a polygon edge if it belongs to the polygon
or, else, a diagonal. A triangle of T with exactly one
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diagonal edge is an ear and the helix of an ear is its
vertex not incident to any other triangle of T .

Let w and uv be a vertex and edge, respectively, of a
polygon, P , such that u and v are seen in that order in a
counter-clockwise walk along the boundary of P . Then
uv is facing w if (u, v, w) is a left turn. Two vertices or
a vertex and an edge of a polygon are visible or see each
other if there exists a closed line segment contained in-
side the closed polygon joining them. If such a segment
exists that intersects some other line segment then they
are visible through the latter segment. We say that a
polygon is in general position if the open line segment
joining any of its visible pairs of vertices is contained in
the open polygon.

(a) (b)

Figure 1: (a) A polygon and (b) its visibility graph.

The visibility graph of a polygon is the geometric
graph on the plane with the same vertex set as the
polygon and in which two vertices are connected by a
straight open line segment if they are visible (e.g. see
Figure 1).

2.1 Polygon Deflation

A deformation of a polygon, P , is a continuous,
time-varying, simplicity-preserving transformation of P .
Specifically, to each vertex, v, of P , a deformation as-
signs a continuous mapping t 7→ vt from the closed in-
terval [0, 1] ⊂ R to the plane such that v0 = v. Ad-
ditionally, for t ∈ [0, 1], P t is simple, where P t is the
polygon joining the images of t in these mappings as
their respective vertices are joined in P .

A monotonic deformation of P is one in which no
two vertices ever become visible, i.e., there do not exist
u and v in the vertex set of P and s, t ∈ [0, 1], with
s < t, such that ut and vt are visible in P t but us and
vs are not visible in P s.

A polygon is deflated if its visibility graph has no edge
intersections. Note that a deflated polygon is in general
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position and that its visibility graph is its unique tri-
angulation. Because of this uniqueness and for conve-
nience, we, at times, refer to a deflated polygon and its
triangulation interchangeably. A deflation of a polygon,
P , is a monotonic deformation t 7→ P t of P such that
P 1 is deflated. If such a deformation exists, then P is
deflatable.

2.2 Dual Trees of Polygon Triangulations

(a) (b)

(c)

Figure 2: (a) A polygon triangulation, (b) its dual tree
and (c) its directed dual. Triangle and terminal nodes
are indicated with disks and tees, respectively.

The dual tree, D, of a polygon triangulation, T , is a
plane tree with a triangle node for each triangle of T , a
terminal node for each polygon edge of T and where two
nodes are adjacent if their correspondents in T share a
common edge. The dual tree preserves edge orderings
of T in the following sense. If a triangle, a, of T has
edges e, f and g in counter-clockwise order then the
corresponding edges of its correspondent, aD, in D are
ordered eD, fD and gD in counter-clockwise order (e.g.
see Figure 2b).

Note that the terminal and triangle nodes of a dual
tree have degrees one and three, respectively. We call
the edges of terminal nodes terminal edges.

An ordered pair of adjacent triangles (a, b) of a poly-
gon triangulation, T , is right-reflex if the quadrilateral
union of a and b has a reflex vertex, v, situated on the
right-hand side of a single segment path from a to b
contained in the open quadrilateral. We call v the reflex
endpoint of the edge shared by a and b (see Figure 3).

The directed dual, D, of a polygon triangulation, T ,
is a dual tree of T that is partially directed such that,
for every right-reflex pair of adjacent triangles (a, b) in
T , the edge joining the triangle nodes of a and b in D
is directed a→ b (e.g. see Figure 2c). Note that if P is
deflated, then for every pair of adjacent triangles, (a, b),
of T one of (a, b) or (b, a) is right-reflex and so every
non-terminal edge in D is directed.

Throughout this paper, as above, we use superscripts

a

b
f

v

u

e

Figure 3: A pair of triangles, a and b, sharing an edge,
e, such that their quadrilateral union has a reflex vertex
and a single segment path from a to b contained in the
open quadrilateral. The reflex endpoint, v, of e is to the
right of the path and so the pair (a, b) is right-reflex.

to denote corresponding objects in associated struc-
tures. For example, if a is a triangle of the triangu-
lation, T , of a polygon and b is a triangle node in the
dual tree, D, of T then aD and bT denote the node cor-
responding to a in D and the triangle corresponding to
b in T , respectively.

3 Directed Duals of Deflated Polygons

In this section, we derive some properties of deflated
polygons and use them to relate the visibilities of de-
flated polygons to paths in their directed duals. We also
show that two deflated polygons with the same directed
dual can be monotonically deformed into one another.
The proofs of Lemmas 1, 3 and 4 are not difficult and
can be found in the full version of this paper [3].

Lemma 1 Let P be a deflated polygon, let a be an ear
of P and let P ′ be the polygon resulting from removing
a from P . Then P ′ is deflated.

Corollary 2 If the union of a subset of the triangles of
a deflated polygon triangulation is a polygon, then it is
deflated.

Lemma 3 If u is a vertex opposite a closed edge, e,
in a triangle of a deflated polygon triangulation, then u
sees exactly one polygon edge through e.

Let u be the vertex of a deflated polygon triangula-
tion, T , and let e be an edge opposite u in a triangle of
T . An induced sequence of u through e is the sequence of
edges through which u sees a polygon edge, f , through
e. This sequence is ordered by the proximity to u of
their intersections with a closed line segment joining u
and f that is interior to the open polygon everywhere
but at its endpoints (e.g. see Figure 4b).

Lemma 4 Suppose u is a vertex opposite a closed non-
polygon edge, e, in a triangle, a, of a deflated polygon
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Figure 4: (a) A node xi of a directed dual and its neigh-
bours xi−1, r and ` in an iteration of the construction of
a visibility path, (b) a deflated polygon triangulation,
T , wherein the induced sequence of the vertex u through
the edge e is (e, f , g, h) and (c) the directed dual, T ,
in which the visibility path of the directed dual starting
with nodes (a, b) is (a, b, c, d, hT ).

triangulation. Let v be the reflex endpoint of e and let
f be the edge opposite v in the triangle sharing e with
a (see Figure 3). Then u sees the same polygon edge
through e as v sees through f .

Corollary 5 If u, v, e and f are as in Lemma 4, then
the induced sequence of u through e is equal to that of v
through f prepended with e.

3.1 Directed Duals and Visibility

A visibility path, (x1, x2, . . . , xn), of the directed dual,
D, of a deflated polygon is a sequence of nodes in D
meeting the following conditions. x1 is a triangle node
adjacent to x2 and, for i ∈ {2, . . . , n}, if xi is a ter-
minal node, then it is xn—the final node of the path.
Otherwise, let the neighbours of xi be xi−1, r and ` in
counter-clockwise order (see Figure 4a). Then

xi+1 =

{
r if edge {xi−1, xi} is directed xi−1 ← xi

` if edge {xi−1, xi} is directed xi−1 → xi

(e.g. see Figure 4c).

Lemma 6 Let (a, b, c) be a simple path in the directed
dual, D, of a deflated polygon triangulation, T , where
a and b are triangle nodes joined by the edge e. Let
u be the vertex opposite eT in aT , let v be the reflex
endpoint of eT and let f be the edge opposite v in bT (see
Figure 4b). Then (a, b, c) is the substring of a visibility
path if and only if fD joins b and c in D.

Proof. Suppose (a, b, c) is the substring of a visibility
path and let x be the neighbour of b not a nor c and
let x′ be the edge of bT not eT nor f . We consider
the case where the neighbours of b are a, x and c in
counter-clockwise order—the argument is symmetric in
the other case. Then (a, b) is right-reflex and so bT has
counter-clockwise edge ordering: eT , x′, f . Then, since
edge orderings are preserved in the directed dual, fD

joins b and c as required. Reversing the argument gives
the converse. �

Corollary 7 Let D, T , a, b, e and u be as in Lemma 6.
The induced sequence of u through e is equal to the se-
quence of correspondents in T of edges traversed by the
visibility path starting with (a, b) in D. The final node of
this visibility path corresponds to the edge u sees through
eT .

Theorem 8 A vertex, u, and edge, g, of a deflated
polygon, P , are visible if and only if there is a visi-
bility path in the directed dual, D, of the triangulation,
T , of P starting on a triangle node corresponding to a
triangle incident to u and ending on gD.

Proof. Assume u sees g. If g is an edge of a triangle,
a, incident to u then (aD, gD) is the required visibility
path. Otherwise u sees g through some edge, e, and
the existence of the required visibility path follows from
Corollary 7.

Assume, now, that the visibility path exists. If its
triangle nodes all correspond to triangles incident to u
then g is incident to one of these triangles and so visible
to u. Otherwise, let e be the first edge the path traverses
from a node, a, corresponding to a triangle incident to
u to a node, b, corresponding to a triangle not incident
to u.

Then, by Corollary 7, the induced sequence of u
through eT corresponds to a visibility path starting with
(a, b) and this visibility path ends on a node correspond-
ing to the edge u sees through e. Since two consecu-
tive nodes of a visibility path determine all subsequent
nodes, these visibility paths end on the same node, gD,
and so u sees g. �
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Figure 5: A plane tree with the following maximal outer
paths: (t7, n5, n1, n2, t1), (t1, n2, n3, t2), (t2, n3, t3),
(t3, n3, n2, n1, n4, t4), (t4, n4, t5), (t5, n4, n1, n5, t6),
(t6, n5, t7).

An outer path of a plane tree, D, is the sequence of
nodes visited in a counter-clockwise walk along its outer
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face in which no node is visited twice. An outer path
is maximal if it is not a proper substring of any other
outer path (e.g. see Figure 5). Note that an outer path,
(x1, x2, . . . , xn), of the directed dual of a polygon tri-
angulation, T , corresponds to a triangle fan in T where
the triangles have clockwise order xT1 , x

T
2 , . . . , x

T
n about

their shared vertex.

Theorem 9 A pair of vertices, u and v, of a deflated
polygon P are visible if and only if, in the directed dual,
D, of the triangulation, T , of P , their corresponding
maximal outer paths share a node.

Proof. The maximal outer paths of u and v share a
node in D if and only if they are incident to a common
triangle in T and, since P is deflated, this is the case if
and only if u and v are visible. �

3.2 Directed Dual Equivalence

In this section, we show that if two deflated polygons
have the same directed dual, then one can be monoton-
ically deformed into the other. First, we fully charac-
terize the directed duals of deflated polygons.
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Figure 6: If (a) the tree with outer path (x1, x2, . . . , xn)
were a subtree of the directed dual of a polygon triangu-
lation, T , then (b) the triangles corresponding to nodes
x1, x2, xn−1 and xn in T would overlap, contradicting
the simplicity of the polygon.

Theorem 10 A partially directed plane tree, D, in
which every non-terminal node has degree three and
where an edge is directed if and only if it joins two non-
terminal nodes of degree three is the directed dual of a
deflated polygon if and only if it does not contain an
outer path, (x1, x2, . . . , xn), with n ≥ 4, such that the
edges from x1 and xn−1 are both forward directed (i.e.
x1 → x2 and xn−1 → xn).

Henceforth, we call such a path an illegal path.

Proof. Suppose D contains an illegal path, (x1, x2, . . . ,
xn). If D is the directed dual of a polygon triangulation,
T , then xT1 , xT2 , xTn−1 and xTn share a common vertex
reflex in both quadrilaterals xT1 ∪xT2 and xTn−1∪xTn (see
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Figure 7: The inductive polygon in the proof of Theo-
rem 10 or a polygon from the inductive deformation in
the proof of Theorem 11.

Figure 6). This contradicts the disjointness of these
quadrilaterals.

Suppose, now, that D has no illegal paths. We prove
the converse with a construction of a polygon triangu-
lation having D as its directed dual. Let b be a ter-
minal node in the subtree of D induced by its non-
terminal nodes. Then b has two terminal neighbours
and one non-terminal neighbour, a. Let D′ be the tree
resulting from replacing a and its terminal neighbours
with a single terminal node, x, connected to b with an
undirected edge. By induction on the number of non-
terminal nodes, there exists a deflated polygon triangu-
lation, T , having D′ as its directed dual.

Assume, without loss of generality, that the edge join-
ing a and b is directed a → b. Let u be the endpoint
of xT pointing in a clockwise direction in the boundary
of T and let (y1, y2, . . . , yn) be the outer path of D
corresponding to the triangles other than bT in T inci-
dent to u (see Figure 7). Note that (yi, yi+1, . . . , yn,
a, b) is an outer path of D and so, by hypothesis, for
all i ∈ {1, 2, . . . , n − 1}, the edge joining yi and yi+1 is
directed yi ← yi+1.

Then, to show that a triangle may be appended to
T to form the required triangulation, it suffices to show
that the sum of the angles at u of the triangles yT1 ,
yT2 , . . . , yTn is less than π, which, in turn, follows from
the backward directedness of the edges of (y1, y2, . . . ,
yn). �

Theorem 11 If the deflated polygons P and P ′ have
the same directed dual, D, then P can be monotonically
deformed into P ′.

Proof. Let b be an ear of the triangulation, T , of P
and let b′ be the triangle corresponding to bD in the
triangulation, T ′, of P ′. By induction on the number of
triangles in T , there is a monotonic deformation t 7→ Qt

from Q = P \ b to Q′ = P ′ \ b′. Note that replacing
bD and its terminal nodes in D with a single terminal
node gives the directed dual, D′, of Q. Then, since Q
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is deflated (Lemma 1) and t 7→ Qt is monotonic, for all
t ∈ [0, 1], Qt is deflated and has directed dual D′.

Let v be the helix of b, let a be the triangle sharing an
edge, e, with b and let u be the reflex endpoint of e. We
need to show that there is a continuous map t 7→ vt that,
combined with t 7→ Q, gives a monotonic deformation
of a polygon with directed dual D. For t ∈ [0, 1], let αt

be the angle of at at ut in Qt and let γt be the sum of
the angles at ut of the triangles, yt1, yt2, . . . , ytn, other
than at of the triangulation of Qt incident to ut (see
Figure 7).

Then, since v may be brought arbitrarily close to u in
a monotonic deformation of P , it suffices to show that
there is a continuous map t 7→ βt specifying an angle
for bt at ut such that, for all t ∈ [0, 1], 0 < βt < π,
αt + βt > π and αt + βt + γt < 2π. The latter two
conditions are equivalent to

π − αt < βt < (π − αt) + (π − γt) .

It follows from Theorem 10 that the outer path (yD
′

1 ,
yD

′

2 , . . . , yD
′

n ) is left-directed and so that γt < π. Then
βt = π − (αt + γt)/2 satisfies all required conditions.

Now, let t 7→ Rt be the monotonic deformation from
a polygon with directed dual D combining t 7→ Qt and
the map t 7→ vt defined by a fixed distance between ut

and vt of r ∈ R>0 and an angle for bt at ut of βt.
Prepending t 7→ Rt with a deformation of P in which

v is brought to the distance r from u and then rotated
about u to an angle of β0; then appending a deformation
comprising similar motions ending at P ′; and, finally,
scaling in time gives a continuous map, t 7→ P t, with
P 0 = P and P 1 = P ′. Since, for all t ∈ [0, 1], Qt is
simple, a small enough r can be chosen such that t 7→ P t

is simplicity-preserving. Then, by the properties of t 7→
βt, t 7→ P t is the required monotonic deformation. �

4 Deflatability of Polygons

In this section, we show how deflatable polygons may
be related combinatorially to their deflation targets and
use this result to present a polygon that cannot be de-
flated. We also show that vertex-vertex visibilities do
not determine deflatability. These results depend on the
following Lemma.

Lemma 12 Let t 7→ P t be a monotonic deformation of
a polygon, P , in general position. Then a vertex and an
edge are visible in P 1 only if they are visible in P .

The proof, which is available in the full version of this
paper [3], uses analytic arguments similar to those used
by Ábrego et al. [1].

A compatible directed dual of a polygon, P , in gen-
eral position is the directed dual of a deflated polygon,
P ′, such that, under an order- and chirality-preserving

bijection between the vertices of P and P ′, a vertex-
edge or vertex-vertex pair are visible in P ′ only if their
correspondents are visible in P . By chirality-preserving
bijection, we mean one under which a counter-clockwise
walk on the boundary of P corresponds to a counter-
clockwise walk on the boundary of P ′.

Theorem 13 A polygon, P , in general position with no
compatible directed dual is not deflatable.

Proof. It follows from Lemma 12 that if P is mono-
tonically deformable to a deflated polygon P ′, then the
directed dual of P ′ is compatible with P . �

Lemma 14 Suppose a polygon, P , in general position
has a compatible directed dual, D. Let P ′ be the deflated
polygon with directed dual D whose vertex-vertex and
vertex-edge visibilities are a subset of those of P under
an order- and chirality-preserving bijection. Then the
unique triangulation, T ′, of P ′ is a triangulation, T , of
P under the bijection and D can be constructed by di-
recting the undirected non-terminal edges of the directed
dual of T .

Proof. Note that T ′ is the visibility graph of P ′. Then,
since P is in general position and has the same vertex
count as P ′, it follows from the vertex-vertex visibility
subset property of P ′ that T ′ triangulates P under the
bijection.

It remains to show that, for every non-terminal edge
of the directed dual of T , either the edge is undirected or
it is directed as in D or, equivalently, that for every pair
of adjacent triangles, a and b, in T corresponding to the
triangles a′ and b′ in T ′, if (a, b) is right-reflex then so is
(a′, b′). Suppose, instead, that (b′, a′) is right-reflex. Let
e′ be the edge shared by a′ and b′, let u′ be the vertex
of a′ opposite e′ and let f ′ be the edge of b′ opposite
the reflex endpoint of e′. Then, by Lemma 4, u′ sees
an edge through f ′ but the corresponding visibility is
not present in P , contradicting the vertex-edge visibility
subset property of P ′. �

Theorem 15 There exists a polygon that cannot be de-
flated.

Proof. We show that the general position polygon, P ,
in Figure 8a has no compatible directed dual and so, by
Lemma 13, is not deflatable. Assume that the directed
dual, D, of a deflated polygon, P ′, is compatible with P .
Then, by Lemma 14, D can be constructed by directing
the undirected non-terminal edges of the directed dual
of some triangulation of P . Up to symmetry, P has a
single triangulation, its directed dual has a single undi-
rected non-terminal edge and there is a single way to
direct this edge. Then we may assume, without loss of
generality, that D is the tree shown in Figure 8b and, by
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Figure 8: (a) A non-deflatable polygon, P , with its only
triangulation, up to symmetry, indicated with dashed
lines and (b) its only candidate for a compatible directed
dual, D, up to symmetry.

Theorem 8, the correspondents of the vertex v and edge
e in P ′ are visible. This contradicts the compatibility
of D. �

Note that, although the non-deflatability of P can
be shown using ad hoc arguments, the combinatorial
technique used here can be applied to other polygons.
See the full version of this paper [3] for examples.

f
u

Figure 9: A deflatable polygon with the same vertex-
vertex visibilities as the non-deflatable polygon shown
in Figure 8a.

Theorem 16 The vertex-vertex visibilities of a polygon
do not determine its deflatability.

Proof. The polygon in Figure 9 has the same vertex-
vertex visibilities as the non-deflatable polygon in Fig-
ure 8a and yet can be deflated by moving the vertex u
through the diagonal f . �

5 Summary and Conclusion

We presented the directed dual and showed that it cap-
tures the visibility properties of deflated polygons. We
then showed that two deflated polygons with the same
directed dual can be monotonically deformed into one

another. Next, we showed that directed duals can be
used to reason combinatorially, via directed dual com-
patibility, about the deflatability of polygons. Finally,
we presented a polygon that cannot be deflated and
showed that the vertex-vertex visibilities of a polygon
do not determine its deflatability.

A full characterization of deflatable polygons still re-
mains to be found. If the converse of Theorem 13 is
true, then the existence of a compatible directed dual
gives such a characterization. We conjecture the follow-
ing weaker statement.

Conjecture 1 The vertex-edge visibilities of a polygon
in general position determine its deflatability.

We conclude, however, by noting that, in light of
Mnev’s Universality Theorem [7], it is unknown if even
the order type of a polygon’s vertex set determines its
deflatability.
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