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Abstract

We present a new type of query on spatiotemporal data,
termed ”exclusion persistence”. When bulk updates are
made to stored spatial data, all previous versions remain
accessible. A query returns the most recently observed
data intersecting the query region, while permitting the
exclusion of any subset of previous versions in areas
where data overlaps. We propose several solutions to
this new problem defined on a set of N points. For an
axis-aligned rectangular exclusion persistence query, we
give a 2-dimensional linear-space data structure that, af-

ter m updates, answers the query in O(
√

mN
B +m2+ K

B )

I/Os, where B is the number of points fitting in one disk
block, and K is the number of points in range.

1 Introduction

In most large scale earth observation systems, data is
gathered in short duration surveys of significantly sized
regions. To maintain up-to-date representations of the
covered area, successive surveys are performed. Sur-
veys normally cover different areas, resulting in overlap
as shown in Figure 1. These types of surveys usually
observe a massive number of data points for each up-
date. Queries are expected to return data intersect-
ing the query region from the most recent survey where
overlap occurs. The survey areas can be represented as
overlapping polygonal regions, where the newest data in
overlapping regions replaces older data.

When searching for up-to-date information, various
search options are possible. If the data is obtained from
multiple sources, we may wish to exclude all information
obtained from an unreliable source, or restrict search
only to those data sources we trust. A search that ex-
cludes all data in a specific time period is useful if un-
correctable errors are known to occur in data observed
during that period. Lastly, we may simply wish to ex-
amine the region as it was in some period before the
present time.

Given point data that maps to d-dimensional space,
we consider search on N data points added over the
course of m updates. Normally, N � m and we can
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assume that m < logN . This is a reasonable assump-
tion under all known earth observation applications; for
instance, LIDAR surveys can contain tens of millions of
points per update [5].

Figure 1: Overlapping updates and a query rectangle
R, showing Q = (R, 5, {3}) where the query time tq =
t5, the excluded points index set Te = {3}, and d =
2. Areas of overlap have multiple distinct accessible
versions.

2 Exclusion Persistence

These problems do not map cleanly to any existing
model of persistence as described by Tarjan et al [4]. To
resolve the issue, we define the idea of ”exclusion persis-
tence”. If we assume that new data in a spatial region
replaces older data in the same region, we can apply
exclusion persistence to support the types of searches
described above.

A data structure supporting exclusion persistence
maintains updates independent of one another, and
searches performed on the structure can omit any subset
of past updates from consideration. Formally, we have
m sets of d-dimensional data points S1...Sm, contained
in bounding regions B1...Bm and added to the structure
at times t1...tm, respectively.
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Figure 2: The 2m possible versions in exclusion per-
sistence with m = 5 updates, with the circled version
matching the example query from Figure 1.

Figure 3: Subregions for rectangular regions grow
quadratically in the worst case, as shown with m = 5.

We make the simplifying assumption that data is ob-
served at a single time epoch, representing the time pe-
riod the update covers. Given a convex query region

R to search, and a set Te of time epoch indices whose
matching data sets are excluded from consideration, we
define an exclusion persistence range search as follows.

An exclusion persistence range query is defined as
Q = (R, q, Te), which asks to find all points inter-
secting R whose time epoch ti ≤ tq, and whose time
epoch index i 6∈ Te. The result of such a query is
the union of data contained in queried regions Ci over

all non-excluded updates i, i.e.
q⋃

i=1
i 6∈Te

Ci ∩ Si, where

Ci = (Bi ∩R) \ (Bi ∩ (
q⋃

j=i+1
j 6∈Te

Cj).

This search will return all data in the valid sets added
on or before tq intersected by R, returning only the
newest data (whose time epoch ti ≤ tq, and whose time
epoch index i 6∈ Te) in areas where bounding regions
overlap. As any set may be excluded for a given query,
however, older data sets are still accessible and must be
maintained.

Informally, the problem can be summarized as fol-
lows. We have m updates, each of which is a spatial re-
gion Bi containing a set of data points Si added to our
structure at a time ti. We assume that new data takes
precedence over old data, meaning that in areas where
multiple regions overlap, we only return data from the
newest set. A structure not supporting any form of per-
sistence could thus simply delete all data falling within a
new region Bi before adding Si to the structure. While
partial persistence allows us to ignore all data newer
than the query time, an exclusion persistence search has
the ability to ignore any of the updates at the searcher’s
discretion.

While storing B points per disk block in the I/O
model [7], is there a linear space data structure using

O((N
B )

d−1
d + K

B ) I/Os to answer an exclusion persistence
range search returning K points? If not, what tradeoffs
are possible? Henceforth, we restrict the query region
R to an axis-aligned rectangle.

3 Näıve Solutions

Two näıve solutions are possible. The first is to sim-
ply store each update completely independently, search
all appropriate data sets independently, and remove ex-
cluded data after the fact. In such a scenario, efficiency
can be obtained by storing each update in an optimal
linear-space structure such as the Priority R-Tree [3].
While this means that only linear storage space is re-
quired overall, searches will be highly redundant. As we
store no information about where overlap occurs, we re-
turn data from old updates even if they are completely
covered by newer ones. In the worst case, each update
region completely covers the previous, leaving us with a

worst case of O(m(N
B )

d−1
d + mK

B ) search I/Os.
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The second näıve approach is to use full persistence
to store every possible combination of sets as a different
version, and simply search the appropriate one. This
gives the desired search I/Os, but to cover all possi-
ble combinations the storage requirement increases by
a factor of 2m−1. This is evident by virtue of the fact
that m updates can be combined to produce 2m possible
versions, as shown in Figure 2, and that any given data
point will be part of half those combinations. For N
points, this requires O(2m−1N

B ) disk blocks of storage,
as each data point is stored in 2m−1 versions.

4 Convex Regions Approach

Neither of the näıve solutions is acceptable; näıve linear
storage has highly redundant searches, and full persis-
tence is wasteful of space no matter what the value of
m is. An improved solution is to store the updates or
sets of points independently, and split data into subsets
based on spatial overlap of the updates. We do this
to avoid the problem of näıve linear storage, splitting
old updates according to how newer ones cover them.
We first consider the restricted case when all updates
have a bounding region consisting of a convex polygon;
our results are dependent on an upper bound f on the
number of faces per polygon.

Let a 2-d structure solving this problem be defined as
follows. In memory, we store an index of the m regions
covering the m data sets. We also store, for each polyg-
onal subregion created from the intersection of these
m regions, a stack of pointers to data structures on
disk. Each structure is guaranteed to contain data cov-
ering the subregion, meaning that only the topmost non-
excluded structure of the stack must be searched. The
structures on disk are any linear-space data structure
supporting range search in O((N

B )
1
2 + K

B ) I/Os (e.g. a
Priority R-Tree [3]). A range search determines (in main
memory) which sub-regions are intersected, follows the
pointer from the stack to the most recent non-excluded
data structure in each intersected sub-region, and per-
forms an I/O-efficient range search independently on
each structure.

As the sub-regions are distinct, there is no redun-
dancy in this range search. The overall search cost is
reasonable for small m; an exclusion range search re-
quires O((mN

B )
1
2 + m2 + K

B ) I/Os in the worst case, as
shown in Theorem 2. The m2 term will not dominate

unless m > 3

√
N
B . Our initial proof in Theorem 2 re-

quires that the regions be axis-aligned rectangles, but
Theorem 6 extends the result to f -sided convex polyg-
onal regions.

Lemma 1 Given xi ∈ R>0 such that
m∑
i=1

xi = N , then

m∑
i=1

√
xi has a maximum value of

√
mN when xi = N

m∀i.

Proof. Define a function C =
m∑
i=1

√
xi. As xi ∈ R>0

and
m∑
i=1

xi = N , this can be written as C =
m−1∑
i=1

√
xi +√

N −
m−1∑
i=1

xi. For all xi where 1 ≤ i ≤ m − 1, we

take the partial derivative ∂C
∂xi

= 1
2
√
xi
− 1

2

√
N−

m−1∑
i=1

xi

.

We find the critical values of C by setting each partial
first derivative to zero, resulting in simultaneous equa-

tions xi = (N −
m−1∑
i=1

xi)∀i. A unique solution exists

where xi = N
m∀i. The second derivatives are ∂2C

∂xi∂xj
=

− 1

4

√
N−

m−1∑
i=1

xi

3 ∀i 6= j, and ∂2C
∂x2

i
= −1

4
√
xi

3 − 1

4

√
N−

m−1∑
i=1

xi

3 .

As these second derivatives are negative for all values
of xi, this critical value is a global maximum. In short,
C is maximized when xi = N

m∀i, and has a value of
m∑
i=1

√
N
m = m

√
N
m =

√
mN . �

Theorem 2 Assuming we have N 2-dimensional data
points from m updates, where each update is covered
by an axis-aligned rectangle, there exists a data struc-
ture that can perform a rectangular exclusion persistence
range search in O((mN

B )
1
2 + m2 + K

B ) I/Os.

Proof. With m overlapping rectangles, the maximum
number of intersections between their subregions and
a horizontal or vertical line is 2m − 1; the number of
subregions intersecting each side of the query rectangle
R is, therefore, linear in m. Figure 3 shows that in
the worst case the number of subregions is quadratic
in m, meaning that at most O(m2) subregions can be
covered by R. For each of these O(m2) subregions, we
store a stack of pointers to linear space optimal I/O-
efficient structures on disk storing data covering that
subregion. At most one of these structures is searched
for each subregion intersecting R. The geometric index
structure describing each of the O(m2) subregions is
assumed to be in main memory, so the I/O cost to find
the intersected subregions is zero.

Our range search is an aggregate of range searches
over the intersected subregions, with each subregion i
containing xi points. The subregions intersecting the
sides require O(

√
xi

B + 1 + bKi

B c) I/Os to return Ki

points. Subregions entirely contained by the search re-
quire O(1 + bKi

B c) I/Os. The worst case occurs when
all N points are distributed among the n1 subregions
intersected by the sides of R and none are in the n2 sub-
regions contained by R (see the illustration in Figure 4).

This gives a total cost of O(
n1∑
i=1

√
xi

B +n1+n2+ K
B ) I/Os

to return K points, and
n1∑
i=1

xi = N . Lemma 1 shows
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that
n1∑
i=1

√
xi

B has a maximum value of
√

n1N
B , as in the

worst case,
n1∑
i=1

xi = N . As n1 is O(m) and n2 is O(m2),

the total search cost is O((mN
B )

1
2 + m2 + K

B ) I/Os. �

Figure 4: A worst case query on m = 4 subregions
intersecting O(m) subregions with the potential to be
empty. Here, n1 = 12 and n2 = 0.

While the rectangular case is useful, we can gener-
alize. We still require that the query region R be an
axis-aligned rectangle, but the regions defining the data
sets can be any convex polygon of at most f sides.

Theorem 3 The intersection of m overlapping convex
polygons with at most f sides will produce at most fm2

subregions.

Proof. By the definition of convexity, a line intersect-
ing a convex polygon can intersect at most two of its
sides. When adding a new f -sided polygon to a set of
i−1 polygons, each side of the ith polygon can intersect
at most two sides from each previous polygon. These
intersections partition each new side into 2(i− 1) + 1 =
2i−1 line segments. Each of these line segments can be-
long to at most two subregions, and the addition of the
ith polygon can create at most one new subregion for
each segment. The addition of the ith polygon to the set
therefore creates at most f(2i−1) = 2if−f subregions.
A set of m polygons therefore has an upper bound of
m∑
i=1

2if−f = 2f(m(m+1)
2 )−mf = fm2+mf−mf = fm2

subregions. �

Lemma 4 A straight line passing through a set of m
convex polygons can intersect at most 2m−1 subregions.

Proof. A straight line passing through a convex poly-
gon begins intersecting that polygon at one point, and

stops intersecting it at another. A straight line passing
through a set of m polygons therefore has at most 2m
intersections where it begins or stops passing through a
polygon. The straight line intersects a new subregion if
and only if one of those 2m intersections occurs, and the
last such intersection denotes where the line stops inter-
secting any of the m polygons; as such, it can intersect
at most 2m− 1 subregions. �

Lemma 5 The sides of a rectangular query region R
intersect O(m) subregions of a set of m convex polygons.

Proof. Lemma 4 shows that a straight line can inter-
sect at most 2m− 1 subregions from a set of m convex
polygons. Each side of R is a straight line, and as such
the sides of R can only intersect at most 8m− 4 subre-
gions. �

Theorem 6 Assuming we have N 2-dimensional data
points from m updates, where each update is covered
by a convex region with at most f sides, there exists a
data structure that can perform a rectangular exclusion
persistence range search in O((mN

B )
1
2 +fm2 + K

B ) I/Os.

Proof. Lemma 5 shows that O(m) subregions will in-
tersect the sides of the query region R, and Theorem 3
shows that O(fm2) subregions can be contained by a
query. The proof of Theorem 2 therefore applies to the
general case, giving the desired I/O bound. �

5 Algorithms

Our convex regions solution to exclusion persistence
range search consists of a spatial partitioning of 2-
dimensional space into subregions, with each subregion
having a stack of pointers to spatial data structures on
disk. Each pointer is given a time stamp denoting what
update added its data. Space not covered by any update
is treated as a subregion with an empty stack. Figure 5
illustrates the structure, demonstrating a simple inser-
tion.

Algorithm 2 shows an implementation of exclusion
persistence range search. The repeat-until loop finds the
top non-excluded time epoch on the stack for each sub-
region. Lines 9-14 of Algorithm 2 are invoked at most
once per subregion. We apply the entire query region
R to each intersected subregion at line 13 for simplicity,
as each structure only contains data within its subre-
gion. The subregion shape could force a range search on
highly clustered data, which is still linear space optimal.
While our analysis of worst case range search requires
axis-aligned rectangular query regions, Algorithm 2 can
also be used with general polygonal queries. Algorithm
2 provides the correct exclusion persistence range search
result by specifying Te such that i ∈ Te∀ti > tq.



CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Algorithm 1: Insert(P ,S,R,t,j)

Input : A convex regions data structure P , a set
S of new data points to be inserted, a
convex shape R that contains S, a time
epoch t associated with S, the index j for
time epoch t

Output: An updated convex regions data
structure P that includes S

1 begin
2 Use polygonal differences to find all subregions

Pi of P that intersect R;
3 for each subregion Pi ∈ P contained by R do
4 Search S for the points Si that fall within

Pi;
5 Keeping Si in memory, delete the points in

Si from S;
6 Bulk-load Si into a new linear-space data

structure Di stored on disk;
7 Push a pointer to Di stamped with time

(t, j) onto the stack for Pi;

8 for each subregion Pi ∈ P intersecting the edges
of R do

9 Update P with new subregions Pk formed
by the intersections of Pi and R;

10 for each pointer p in the stack for Pi, from
the bottom to the top do

11 Follow the pointer p to its data
structure Di, storing the time stamp
(ti, `) in memory;

12 for each new subregion Pk do
13 Search Di for the set of points Sk

that fall within Pk; Bulk-load Sk

into a new linear-space data
structure Dk stored on disk;

14 Push a pointer to Dk stamped with
time (ti, `) onto the stack for Pk;

15 Delete Di;

16 for each new subregion Pk do
17 Search S for the points Sk that fall

within Pk;
18 Keeping Sk in memory, delete the points

in Sk from S;
19 Bulk-load Sk into a new linear-space

data structure Dk stored on disk;
20 Push a pointer to Dk stamped with time

(t, j) onto the stack for Pk;

Our data structure has an update cost dependent on
the data structures used for the subregions. Our anal-
ysis requires a linear-space spatial data structure sup-

porting range search in O(
√

N
B + K

B ) I/Os, such as the

Algorithm 2: Search(P ,R,Te)

Input : A convex regions data structure P , a
query region R, a set Te of time epoch
indices to be excluded

Output: A set K of points found by the exclusion
persistence query

1 begin
2 Use polygonal differences to find all subregions

Pi of P that intersect R;
3 for each subregion Pi ∈ P intersecting R do
4 repeat
5 Pop the top pointer pk from the stack

for Pi;
6 Let (tk, j) = the time stamp for pk;

7 until j 6∈ Te or the stack for Pi is empty ;
8 if j 6∈ Te then
9 Follow pk to its data structure Dk;

10 if Pi is contained by R then
11 Add all points in Dk to K;
12 else
13 Si = a range search on Dk over R;
14 Add the points in Si to K;

15 Push all popped pointers pk back onto the
stack for Pi with their respective time
stamps (tk, j);

bkd-tree [6] or Priority R-Tree [3]. From Theorem 2.4
of [3] we know that such a structure can be bulk-loaded
in O(N

B logM/B
N
B ) I/Os. This leads to the following

theorem:

Theorem 7 Using Algorithm 1, the total insertion cost
of m updates into a convex regions data structure re-
quires O(mN

B logM/B
N
B ) I/Os, where N is the total

number of points after all updates.

Proof. In the worst case, an update S that is inserted
into a structure that previously contained N−|S| points
intersects subregions containing O(N) of those points.
Each of the intersected subregions must be split, re-
quiring new data structures to be created. Loading
the affected structures will require O(N) I/Os. Struc-
tures must also be created for the |S| points from the
new update, for a total of j structures. Each new
structure Di, containing xi points, can be bulk-loaded

in O(xi

B logM/B
xi

B ) I/Os. As
j∑

i=1

xi ≤ N , creating j

structures containing a total of O(N) points requires
O(N

B logM/B
N
B ) I/Os, which dominates the cost. �

Figure 5 illustrates the result of the insertion process
described in Algorithm 1. A new update is added to
the set, intersecting one previously existing subregion
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and the uncovered space. This results in data from the
first update being repartitioned, and part of that data
covered by a portion of the new update. Some of the
resulting subregions are non-convex, but the previously
proven search bounds apply regardless.

Figure 5: Subregions arising from m = 2 and m = 3
intersecting regions, with the data stored in each version
of each subregion.

6 Conclusion

We have presented the exclusion persistence problem in
spatiotemporal queries, along with a 2-dimensional so-
lution. For a set of N data points collected over a series
of m updates, where each update is bounded by a con-
vex region of at most f sides, our linear space solution
requires O((mN

B )
1
2 + fm2 + K

B ) I/Os in the worst case
to perform an exclusion persistence range search, with
K points reported in range. While relaxing the space
requirement on the subregion structures could improve
search cost as shown by Afshani et al [1][2], this would
lead to the overall storage requirement becoming non-
linear. Experimental validation of the data structure
remains to be done.

Several interesting open problems remain. Is a linear
space data structure supporting exclusion persistence
range search in O((N

B )
1
2 + K

B ) I/Os possible? What
worst case search complexity (in the I/O model) is pos-
sible for general convex query regions R in place of rect-
angles? Is there a non-trivial linear space data structure
storing d-dimensional points that can efficiently answer
exclusion persistence search queries? What I/O search
complexity arises when data updates are described by
non-convex boundaries?
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