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Flip Distance Between Two Triangulations of a Point-Set is NP-complete

Anna Lubiw∗ Vinayak Pathak∗

Abstract

Given two triangulations of a convex polygon, comput-
ing the minimum number of flips required to transform
one to the other is a long-standing open problem. It is
not known whether the problem is in P or NP-complete.
We prove that two natural generalizations of the prob-
lem are NP-complete, namely computing the minimum
number of flips between two triangulations of (1) a poly-
gon with holes; (2) a set of points in the plane.

1 Introduction

Given a triangulation in the plane, a flip operates on two
triangles that share an edge and form a convex quadri-
lateral. The flip replaces the diagonal of the convex
quadrilateral by the other diagonal to form two new
triangles. A sequence of flips can transform any tri-
angulation to any other triangulation—this is true for
triangulations of a convex polygon, and more generally
for triangulations of a point set, and for triangulations
of a polygon with holes.

In this paper we investigate the complexity of com-
puting the flip distance, which is the minimum number
of flips to transform one triangulation to another. This
is particularly interesting for convex polygons, where
the flip distance is the rotation distance between two
binary trees (see below).

The main result of our paper is that it is NP-complete
to compute the flip distance between two triangulations
of a polygon with holes, or of a set of points in the plane.

After submitting this paper, we learned that Pilz [20]
independently proved the same result. The differences
between our proofs are discussed later on.

1.1 Flip distance and rotation distance

Binary search trees are a widely used data structure,
and rotations are the basic operations used to balance
them. Despite the importance of rotations, the com-
plexity of computing the minimum number of rotations
to convert one labelled binary search tree to another,
called the “rotation-distance”, has been open since at
least 1982 [6]. It is not known if the problem is NP-
complete.
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There is a bijection between binary trees with n − 1
labeled leaves and triangulations of an n-vertex convex
polygon. Moreover, a rotation in the tree corresponds
to a flip in the polygon. Thus, computing the rotation
distance between two trees is exactly equivalent to com-
puting the flip distance between two triangulations of a
convex polygon. See [23].

1.2 Generalizations and related work

Flips have been studied in the geometric setting for tri-
angulations of point sets and of polygons. In this con-
text, a convex polygon is equivalent to a point set in
convex position. The former generalizes to simple poly-
gons, and the latter to planar point sets. Both of these
are contained in the most general case of a polygon with
holes (a “polygonal region”), so long as we consider a
point as a one vertex polygonal hole. There is a survey
on flips by Bose and Hurtado [4]. It also covers flips
in the combinatorial setting of maximal planar graphs,
which we will not discuss. Flips are often studied in
terms of the flip graph which has a vertex for every tri-
angulation and an edge when two triangulations differ
by one flip, see e.g., [10].

The foundational result is that the flip graph is con-
nected. This was proved first by Lawson [14] for the
case of point sets. He then re-proved the result [13] by
arguing that any triangulation can be flipped to the De-
launay triangulation, which then acts as a “canonical”
triangulation from which any other triangulation can be
reached. The constrained Delaunay triangulation can
be used in the same way to argue that any polygonal
region has a connected flip graph [2]. For more direct
proofs see [9, 12, 18].

Regarding the number of flips needed to transform
one triangulation to another, flipping via the [con-
strained] Delaunay triangulation takes O(n2) flips—in
fact, a more exact bound is the number of visibility
edges, see [2]. Hurtado, Noy and Urrutia [12] proved
that Ω(n2) flips may be required even for triangulations
of a polygon. For the case of a convex polygon, Sleator
et al. [23] proved that for large values of n, the flip dis-
tance between two triangulations of an n-gon is at most
2n− 10, and that 2n− 10 flips are sometimes necessary.

The problem of computing the exact flip distance be-
tween two given triangulations is especially interesting
for convex polygons, as mentioned above. Lucas [16]
gave a polynomial time algorithm for special cases. The
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best approximation factor is trivially 2, and can be im-
proved in some special cases [15]. Recently it was proved
that the problem is fixed parameter tractable in the flip
distance [5]. Attempts have also been made to com-
pute good upper and lower bounds on the flip distance
efficiently. See, for example, [1, 19, 17, 7].

The more general problem of computing the flip dis-
tance between two triangulations of a point set is stated
as an open problem in the survey by Bose and Hur-
tado [4], and the book by Devadoss and O’Rourke [8,
Unsolved Problem 12]. Hanke et al. [11] proved that the
flip-distance is upper bounded by the total number of
intersections between the overlap of the initial and final
triangulations. Eppstein [10] provided an algorithm to
compute a lower bound on the flip-distance efficiently.
He also showed that the lower bound is equal to the
flip-distance for certain special kinds of point-sets.

2 Triangulations of polygonal regions

Theorem 1 The following problem is NP-complete:
Given two triangulations of a polygon with holes and
a number k, is the flip distance between the two trian-
gulations at most k?

2.1 Proof idea

Note that the problem lies in NP. We prove hardness by
giving a polynomial time reduction from vertex cover on
3-connected cubic planar graphs [3, 24], which is known
to be NP-complete [3, 24].

The idea is to take a planar straight-line drawing of
the graph and create a polygonal region by replacing
each edge by a “channel” and each vertex by a “vertex
gadget”. We then construct two triangulations of the
polygonal region that differ on the channels, and show
that a short flip sequence corresponds to a small vertex
cover in the original graph.

We begin by describing channels and their triangula-
tions, because this gives the intuition for the proof. A
channel is a polygon that consists of two 7-vertex reflex
chains joined by two end edges, as shown in Figures 1(a)
and 1(b). Note that every vertex on the upper reflex
chain sees every vertex on the lower reflex chain and
vice versa. We identify two triangulations of a channel:
a left-inclined triangulation as shown in Figure 1(a); and
a right-inclined triangulation as shown in Figure 1(b).

A channel is the special case n = 7 of the polygons
Hn of Hurtado et al. [12]. They prove in Theorem 3.8
that the flip distance between the right-inclined and left-
inclined triangulations of Hn is (n− 1)2. We include a
different proof in order to generalize:

Property 1 Transforming a left-inclined triangulation
of a channel to a right-inclined triangulation takes at
least 36 flips.

Proof. In any triangulation of a channel, each edge of
the upper reflex chain is in a triangle whose apex lies
on the bottom reflex chain. This apex must move from
lower right (B7) to lower left (B1), in order to trans-
form the left-inclined triangulation to the right-inclined
triangulation. Similarly, each edge of the lower reflex
chain is in a triangle whose apex lies on the upper reflex
chain, and must move from upper left to upper right.
However, one flip can only involve one edge of the up-
per chain and one edge of the lower chain (no other 4
vertices form a convex quadrilateral), and thus can only
move one upper and one lower apex, and only by one
vertex along the chain. Twelve triangles times six apex
moves per triangle divided by two apex moves per flip
gives a lower bound of 36 flips. �

We now show that the number of flips goes down if a
channel has a cap, an extra vertex that is visible to all
the channel vertices, as shown in Figure 1(c).

Property 2 The flip distance from a left-inclined to a
right-inclined triangulation of a capped channel is 24.

Proof. The “canonical” triangulation shown in Fig-
ure 1(d) is 12 flips away from both the left-inclined and
the right-inclined triangulations of a capped channel: To
flip the left-inclined triangulation to the canonical tri-
angulation, flip edges A1B1, . . . , A1B7 followed by edges
A2B7, . . . , A6B7 in that order. Similarly for the right-
inclined triangulation.

For the lower bound, we follow the same idea as
above. In any triangulation, each edge of the upper
[lower] reflex chain is in a triangle whose apex is either
the cap or a vertex of the lower [upper] chain. There
are only two kinds of flips: (1) a flip involving the cap
vertex, an edge of one chain, and a vertex of the other
chain; and (2) a flip involving one edge of each chain.
A flip of type (1) moves the apex of only one triangle,
and moves the apex to or from the cap. If a triangle is
altered by a flip of type (1) then at least two such flips
are required, one to move the apex to the cap and one
to move the apex from the cap. If a triangle is only al-
tered by flips of type (2), then, as above, it costs 3 flips
to get the apex to its destination. Thus the 12 triangles
require at least 24 flips. �

We now elaborate on the idea of our reduction. We
create a polygonal region by replacing each edge in
the planar drawing by a channel, and each vertex by
a vertex gadget. We make two triangulations of the
polygonal region. In triangulation T1 all edge channels
are left-inclined and in T2 all edge channels are right-
inclined. The triangulations are otherwise identical. We
design vertex gadgets so that making a few flips in a ver-
tex gadget creates a cap for a channel connected to it.
Since transforming a channel from left-inclined to right-
inclined is less costly if it is capped, the minimum flip
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(b) A right-inclined channel.
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(e) Narrow (shaded) and wide (dashed) mouths.

Figure 1: Channels

sequence that transforms all the channels is obtained by
choosing the smallest set of vertices that covers all the
edges and using them to cap all the channels. Thus,
intuitively, a minimum flip sequence corresponds to a
minimum vertex cover.

One complication is that we cannot construct a vertex
gadget for a sharp vertex—a vertex of degree 3 where
one of the three incident angles in the planar drawing
is ≥ π. Therefore, we first show how to eliminate sharp
vertices. Let G be our given 3-connected cubic planar
graph. Using a result of Rote and Bárány [21], we can
find, in polynomial time, a strictly convex drawing of
G on a polynomial-sized grid. Strictly convex means
that each face is a strictly convex polygon. Thus the
only sharp vertices of this drawing are the vertices of
the outer face. We replace each sharp vertex v by a
3-vertex chain v1, v2, v3 as shown in Figure 2. We claim
that G has a vertex cover of size ≤ k if and only if
the modified graph has a vertex cover of size ≤ k + t,
where t is the number of vertices on the outer face of
G. This is because any minimum vertex cover of the
modified graph can be adjusted to use either {v1, v3}
(corresponding to v being in the vertex cover of G), or
{v2} (corresponding to v not being in the vertex cover
of G).

⇒
v v1

v2 v3

Figure 2: Eliminating sharp vertices

We remark that Pilz’s independent NP-hardness re-
duction [20] is from general (non-planar) vertex cover.
His construction begins with the same channel gadgets,
but then uses channels that overlap geometrically while
flipping independently.

2.2 Details of the reduction

For the remainder of the proof we will assume that we
have a graph G with vertices of degree 2 and 3, and a
straight-line planar drawing, Γ, of the graph on a poly-
nomial sized grid with no sharp vertices.

We define the narrow and wide mouths of a channel
as shown in Figure 1(e). Any point inside the narrow
mouth but outside the channel can be a potential cap
for the channel. We show below that a vertex outside
the wide mouth does not reduce the flip distance.

We now describe the triangulated vertex gadgets. See
Figures 3(a) and 3(b). Each of the 2 or 3 channels at-
tached to the vertex gadget will have one potential cap.
We place a convex quadrilateral CDEF with diagonal
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CE, called the lock, that separates each channel from
its potential cap. Thus the lock CE must be flipped, or
“unlocked”, in order to cap any channel.

For the degree-2 gadget (see Figure 3(a)), place point
C in the smaller angular sector (of angle < π) between
the two channels, so that C is outside the wide mouths
of both channels. Place points D, E, and F in the
other angular sector, with D inside channel 1’s narrow
mouth and outside channel 2’s wide mouth, E outside
the wide mouth of both channels, and F inside channel
2’s narrow mouth and outside channel 1’s wide mouth.
Triangulate as shown. Thus D is a potential cap for
channel 1 and F is a potential cap for channel 2.

For the degree-3 gadget (see Figure 3(b)), note that
because the vertex is not sharp, the mouth of each chan-
nel exits between the other two channels. We place ver-
tices in the angular sectors as shown in the figure. Place
D inside the intersection of the narrow mouths of chan-
nels 1 and 2, and outside the wide mouth of channel 3.
Place F inside channel 3’s narrow mouth and outside
channel 1 and 2’s wide mouths. Place C and E out-
side the wide mouths of all the channels. Triangulate
as shown. Thus D is a potential cap for both channel 1
and 2 and F is a potential cap for channel 3.

Observe that every channel is blocked from its unique
potential cap by exactly 3 edges. (For example, in Fig-
ure 3(b), channel 1 is separated from its potential cap D
by edges FA, FE, and CE.) Observe furthermore that
for each vertex gadget, the sets of blocking edges of the
channels have one edge in common, namely the locking
edge CE, and are otherwise disjoint. These properties
are crucial for correctness.

We will say that a vertex gadget is locked if the diag-
onal CE exists and unlocked otherwise. We first show
what is possible with unlocked vertex gadgets.

Property 3 If we unlock a vertex gadget then, for each
channel attached to it, there is a sequence of 28 flips
that transforms the channel triangulation and returns
the vertex gadget to its (unlocked) state.

Proof. We first claim that there is a 2-flip sequence
that caps the channel. We enumerate the possibilities
(refer to Figure 3). Note that we handle channels one
at a time, not simultaneously. For the degree-2 gadget:
flip CF followed by CA for channel 1; flip CD followed
by CB′ for channel 2. For the degree-3 gadget: flip FE
followed by FA for channel 1; flip CF followed by CA′

for channel 2; flip ED followed by EA′′ for channel 3.
Once the channel is capped, we can transform the left-
inclined triangulation to the right-inclined triangulation
in 24 flips by Property 2. Then we undo the 2 flips that
capped the channel. The total number of flips is 28. �

Next we give lower bounds on the number of flips.
First, note that the proof of Property 1 carries over to:

Property 4 Transforming a left-inclined triangulation
of a channel to a right-inclined triangulation takes at
least 36 flips even in the presence of other vertices, so
long as the other vertices lie outside the wide mouths at
either end of the channel.

We now consider what happens when we unlock some
vertex gadgets. Let T ′1 be the triangulation obtained
from T1 by unlocking some vertex gadgets. Let T ′2 be the
triangulation obtained from T2 by unlocking the same
vertex gadgets. Let C be the set of channels that have
a locked vertex gadget at both ends. Then:

Property 5 If the vertex gadgets at the ends of the
channels of C remain locked, then the number of flips re-
quired to transform T ′1 to T ′2 is at least 28|E−C|+36|C|.

Proof. Consider a channel of C, with a locked vertex
gadget at both ends. The cap vertices of the channel
are not useable. By construction, the other vertices are
outside the wide mouths of the channel. Therefore, by
Property 4, we need 36 flips to transform it.

Consider the channels with an unlocked vertex gadget
at one end. We only save flips by capping the channel.
To do this, we must flip the two edges that block the
channel from its cap. Because the edges that block one
channel are disjoint from the edges that block any other
channel, we must do two flips per channel, and we must
re-flip those edges to return to the original state. Fi-
nally, by Property 2 it takes at least 24 flips to transform
a capped channel. (Note that the proof of Property 2
carries over even if the channel is capped at both ends.)
The total number of flips is 28 per channel. �

2.3 Putting it all together

Lemma 2 G has a vertex cover of size ≤ k if and only
if the flip distance between the two triangulations T1 and
T2 is ≤ 2k + 28|E|.

Proof. Suppose that G has a vertex cover of size k.
Unlock the corresponding k vertex gadgets. Each edge
channel has an unlocked gadget at one end, so by Prop-
erty 3 we can transform between the two triangulations
of the channel in 28 flips. When all channels have been
transformed, we relock the k vertex gadgets. The total
number of flips is 2k + 28|E|.

For the other direction, suppose that there is a flip
sequence between T1 and T2 of length ≤ 2k + 28|E|.
Let L be the set of vertices whose gadgets are unlocked
in the flip sequence. Let C be the set of edges not
covered by vertex set L. By adding one vertex to cover
each edge of C, we observe that G has a vertex cover
of size |L| + |C|. Thus it suffices to show that |L| +
|C| ≤ k. By Properties 4 and 5 the number of flips is at
least 2|L|+ 36|C|+ 28(|E − C|) ≥ 2|L|+ 28|E|+ 8|C|.
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Figure 3: Gadgets for vertices

By assumption, the number of flips was ≤ 2k + 28|E|.
Therefore 2|L| + 8|C| ≤ 2k, which implies that |L| +
|C| ≤ k, as required. �

The last ingredient of the NP-completeness proof is
to show that the reduction takes polynomial time. We
need the following claim.

Claim 1 The size of the coordinates used in the con-
struction is bounded by a polynomial in n.

Proof. We begin with a straight line drawing of a graph
on a polynomial size grid. Expand the grid, and allocate
a square region around each vertex for the vertex gadget

(Figure 4). Expand each edge to two parallel line seg-
ments. These line segments will become the channel,
but for now, the reflex vertices of the channel are all
collinear, which means that the channel’s wide mouth
is equal to its narrow mouth. The points C,D,E, F of
the vertex gadget go in feasible regions defined by the
wide and narrow mouths (e.g. in the 3-channel gadget,
point D lies in the narrow mouth of channels 1 and 2,
but outside the wide mouth of channel 3). We make the
channels narrow enough so that all the feasible regions
intersect the region allocated to the gadget.

To do this, note that the edges incident to the vertex
corresponding to the gadget in the straight line draw-
ing and their extensions (the dotted lines in Figure 4)
intersect the square at points whose coordinates have
polynomial size. Let S be the set of intersection points
and corners of the square. For the edge corresponding
to channel 1, consider the point p1 where it intersects
the square and find the point p other than itself in S
that lies on the same edge of the square and is closest
to it. Setting A to be the point on the boundary of the
square a distance pp1/3 away from p1 towards p and B
the symmetric point on the opposite side determines the
channel and its width. Do the same thing at the other
end of the edge corresponding to channel 1 and obtain
another width. Finally, pick the narrower of the two op-
tions for channel 1. Since A and B lie on the edge of the
square and their distance to p1 is polynomial, we need
polynomial number of bits to express the coordinates of
A and B as well. Repeat the above for A′, B′, A′′ and
B′′. Since all the possible intersection points between
the upper and lower chains of the channels occur in-
side the square, all the feasible regions have non-empty
intersections with the interior of the square.

Now we pick points C,D,E, F inside the appropriate
regions. Because the boundaries of the feasible regions
are determined by pairs of points on the expanded grid,
the new points can be chosen to have polynomial size
(because solutions to linear programs have polynomial
size as shown in Theorem 10.1 of [22]).

Finally we place the reflex points of each channel.
The feasible region wherein each set of reflex points can
be placed is bounded by lines through pairs of points
already placed. Thus, we can choose reflex points of
polynomial size. �

3 Triangulations of point-sets

We prove the NP-hardness of computing the flip dis-
tance between two triangulations of a point set by re-
ducing from computing the flip distance between two
triangulations of a polygonal region. Given two trian-
gulations T1 and T2 of a polygonal region R with n ver-
tices, we triangulate all the holes and pockets of R the
same way in both triangulations. Next, we repeat each
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Figure 4: Constraints for vertex gadgets.

edge on the boundary of the holes and pockets n2 times
(as shown in Figure 5). This gives two triangulations
T ′1 and T ′2 of a point set. Flip distance between the two
triangulations will be the same as the flip distance be-
tween the original T1 and T2. We use the fact that the
flip distance to the constrained Delaunay triangulation
is at most

(
n
2

)
[2]. Thus the flip distance between T1

and T2 is less than n2, but dismantling a single set of
repeated edges will itself require more flips.

We now describe the details about repeating the
edges. Consider a triangulated hole or a pocket, say,
v1v2v3v4. For each vertex on the boundary, draw the
angle bisector of the angle formed by the two edges in-
cident on that vertex. Thus at v2, we draw the angle
bisector of ∠v1v2v3. Next, we choose n2 equally spaced
points on a polynomially small portion of the bisector
inside the hole. All of these points will have polynomial
sized co-ordinates. Next, we repeat edges as shown in
Figure 5.

Note that flipping a few edges to one of the new ver-
tices will not help because the new vertices behave like
the vertex whose angle bisector they were drawn on.
This intuition is captured in the following lemma, which
then implies the NP-completeness:

Lemma 3 Flip distance between T1 and T2 is equal to
the flip distance between T ′1 and T ′2.

Proof. For each vertex vi on the boundary of a hole,
there is a set of n2 points associated with it. Call the
union of the set together with vi itself the cluster cor-
responding to vi. Define two triangulations to lie in
the same equivalence class if they are the same when
we collapse each cluster into one point.

Figure 5: Repeating edges on the boundary of pockets
and holes.

Flip distance between T ′1 and T ′2 is at most the flip
distance between T1 and T2 because imitating a flip se-
quence that transforms T1 to T2 gives a flip sequence
that transforms T ′1 to T ′2.

But flip distance between T1 and T2 is at most the
flip distance between T ′1 and T ′2 as well. Consider the
smallest flip sequence that transforms T ′1 to T ′2. It has
a length of at most n2. At each step, consider the tri-
angulation obtained by collapsing each cluster into one
point. If this triangulation does not change, ignore the
step. Thus flipping an edge that uses only “old” ver-
tices to one that uses some “new” ones will be ignored.
If the change happens only inside a hole or a pocket,
ignore that step as well. Since the number of flips is at
most n2, the hole is not broken during the flip sequence.
Thus the resulting sequence transforms T1 to T2. �

Theorem 4 The following problem is NP-complete:
Given two triangulations of a point set in the plane,
and a number k, is the flip distance between the trian-
gulations at most k?

4 Conclusion

We have shown that it is NP-complete to compute the
flip distance for triangulations of a polygonal region, or
a point set. The problem remains open for a convex
polygon, or a simple polygon, and also for more combi-
natorial objects such as labelled and unlabelled maximal
planar graphs.
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