
CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Packing Trominoes is NP-Complete, #P-Complete and ASP-Complete

Takashi Horiyama∗ Takehiro Ito† Keita Nakatsuka‡ Akira Suzuki† Ryuhei Uehara§

Abstract

We study the computational complexity of packing puz-
zles of identical polyominoes. Packing dominoes (i.e.,
1 × 2 rectangles) into grid polygons can be solved in
polynomial time by reducing to a bipartite matching
problem. On the other hand, packing 2 × 2 squares is
known to be NP-complete. In this paper, we fill the
gap between dominoes and 2 × 2 squares, that is, we
consider the packing puzzles of trominoes. Note that
there exist only two shapes of trominoes: L-shape and
I-shape. We show that their packing problems are both
NP-complete. Our reductions are carefully designed
so that we can also prove #P-completeness and ASP-
completeness of the counting and the another-solution-
problem variants, respectively.

1 Introduction

Since Golomb introduced the notion of polyominoes,
many puzzles have been considered and solved for poly-
ominoes [5]. Most puzzles are classified into two groups:
the sliding-block puzzles and the packing puzzles (see
Figure 1(a) and Figure 1(b), respectively). The compu-
tational complexity of solving sliding-block puzzles was
a long standing open problem since Gardner introduced
the problem in 1964 [4]. In 2005, it was settled by Hearn
and Demaine [6]: generalized sliding-block puzzles are

(a) (b)

Figure 1: (a) A sliding-block puzzle and (b) a packing
puzzle.

∗Information Technology Center, Saitama University,
horiyama@al.ics.saitama-u.ac.jp

†Graduate School of Information Sciences, Tohoku University,
{takehiro, a.suzuki}@ecei.tohoku.ac.jp

‡Faculty of Engineering, Saitama University,
nakatsuka@al.ics.saitama-u.ac.jp

§School of Information Science, JAIST, uehara@jaist.ac.jp

PSPACE-complete even if all blocks are of size 1×2. On
the other hand, sliding-block puzzles are polynomial-
time solvable if all blocks are of size 1 × 1 (see [7] for
further details). Thus, in this sense, we have no gap for
sliding-block puzzles.

In this paper, we consider packing puzzles, and we
aim to fill this kind of gap. We consider the problem
of so-called identical packing into the two dimensional
plane: Given k identical polyominoes and a polygon P ,
determine whether the k polyominoes can be placed in
P without overlap or not. We note that P may contain
holes. Packing dominoes (i.e., 1 × 2 rectangles) into a
polyomino P (i.e., a polygon made by connecting unit
squares) can be solved in polynomial time by reducing
to a bipartite matching problem. (See [8] for a bipartite
matching algorithm.) On the other hand, packing 2× 2
squares into a polyomino is known to be NP-complete [2,
3]. That is, there exist gaps between dominoes and 2×2
squares: Can you pack trominoes into a polyomino in
polynomial time?

Here, a tromino is a (connected) polygon with three
unit squares. As shown in Figure 2, trominoes have
only two possible types of shapes: L-trominoes and I-
trominoes. We consider the corresponding two prob-
lems, called 3L-packing and 3I-packing. In 3L-
packing, an integer k and a polyomino P are given.
P is given as a set of pairs of integers, corresponding
to the positions (e.g., the centers) of unit squares in P .
The 3L-packing problem is to determine whether k L-
trominoes can be placed in P without overlap or not.
3I-packing is defined in the same manner, so as to pack
I-trominoes.

We prove both problems are NP-complete by giv-
ing reductions from one-in-three 3SAT. The reduc-
tions are carefully designed so that each (valid) pack-
ing of trominoes has one-to-one correspondence with
a (valid) solution of the original instance of one-in-
three 3SAT. Therefore, our reductions also imply the re-
sults for the counting variant and the another-solution-
problem variant of the tromino packing problems. Sim-

(a) (b)

Figure 2: (a) An L-tromino and (b) an I-tromino.

24th Canadian Conference on Computational Geometry, 2012

(a) (b)

Figure 3: (a) Instance Gϕ of 1-in-3 GO, and (b) its valid orientation.

ilar to other ASP-complete problems [10], the another-
solution-problem variant is defined as follows: Given
an instance (k, P) of 3L-packing or 3I-packing and
its (valid) solution s, find a solution s′ of (k, P) other
than s. The counting variants and the another-solution-
problem variants for the 3L-packing and 3I-packing
problems are #P-complete and ASP-complete, respec-
tively.

2 Reduction

To prove the NP-completeness of 3L-packing and 3I-
packing, we introduce a graph orientation problem,
called the one-in-three graph orientation problem (or
1-in-3 GO in short), and give reductions from one-in-
three 3SAT to 3L-packing and 3I-packing via 1-in-3
GO.

2.1 Reduction to 1-in-3 Graph Orientation Problem

We first give a polynomial-time reduction from one-in-
three 3SAT to 1-in-3 GO.

In one-in-three 3SAT, we are given a 3-CNF ϕ con-
sisting of m clauses with n variables, where each clause
Cj contains three literals (variables or their negations).
One-in-three 3SAT is to determine whether there is a
satisfying assignment to the variables so that each clause
in ϕ has exactly one true literal. For example, given
ϕ = (x ∨ y ∨ z)(x ∨ z ∨ w), we have a satisfying assign-
ment (x, y, z, w) = (False, False, False,True).

1-in-3 GO is defined as follows:

Definition 1 1-in-3 GO (One-in-three Graph Orienta-
tion Problem).

An undirected 3-regular graph G = (V,E) is given,
where V can be partitioned into three (disjoint) node-
subsets V`, Vc and Vn consisting of literal nodes, clause

Figure 4: A clause node and its corresponding negated-
clause node.

nodes, and negated-clause nodes, respectively. The ob-
jective is to determine whether we can assign a direction
to each edge so that (1) every literal node in V` has in-
degree 0 or 3; (2) every clause node in Vc has exactly
one inbound edge, i.e., in-degree 1; (3) every negated-
clause node in Vn has exactly one outbound edge, i.e.,
out-degree 1.

Figure 3(a) illustrates the undirected graph Gϕ cor-
responding to an instance ϕ = (x ∨ y ∨ z)(x ∨ z ∨ w).
Note that a node in Gϕ is depicted by a (black or gray)
circle. The upper half of Gϕ consists of n cycles, each
of which corresponds to a variable in ϕ. Each cycle con-
sists of some pairs of literal nodes, and the number of
pairs equals to the number of occurrences of the variable
in ϕ. If a pair of literal nodes is located in the upper half
of its belonging cycle, the left (resp., right) node of the
pair is labeled with a positive (resp., negative) literal.
Otherwise, the left (resp., right) node is labeled with a
negative (resp., positive) literal. The lower half of Gϕ

consists of m gadgets given in Figure 4, where the nodes
labeled with Cj are clause nodes, and those labeled with
Cj are negated-clause nodes. If clause Cj contains three
literals `1, `2 and `3, the clause node labeled with Cj

has exactly three edges connecting with literal nodes la-
beled with `1, `2 and `3. A negated-clause node labeled
with Cj has exactly three edges connecting with literal
nodes labeled with the negated literals `1, `2 and `3.

Therefore, Gϕ contains 8m nodes and 12m edges in

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

(a) (b) (c)

Figure 5: A line gadget and its two ways of packing.

total. We can draw Gϕ within the grid of width O(m)
and height O(n). Thus, we can obtain Gϕ in O(mn)
time.

Figure 3(b) illustrates a valid orientation of the graph
Gϕ in Figure 3(a). Note that the two vertical edges
emanating from a pair of literal nodes have different
orientations, which implies that one is assigned True
and another is assigned False. Also note that the lit-
eral nodes labeled with the same literal have the same
vertical orientation, i.e., there is a consistency on the
assignment to the variables. If a positive literal node
has a downward (resp., upward) edge, its corresponding
variable in ϕ is assigned True (resp., False). Restric-
tion (2) on clause node labeled with Cj guarantees that
exactly one literal in Cj is assigned True.

Thus, valid orientations to Gϕ of 1-in-3 GO have
one-to-one correspondence with satisfying assignments
to ϕ of one-in-three 3SAT. We can easily check 1-in-
3 GO is in NP, in #P and in ASP. Since one-in-three
3SAT is NP-complete [9], #P-complete [1] and ASP-
complete [10], we have the following theorem.

Theorem 1 1-in-3 GO is NP-complete, #P-complete
and ASP-complete.

2.2 Reduction to 3L-packing

Now, we give a polynomial-time reduction from 1-in-3
GO to 3L-packing. An intuitive correspondence be-
tween the two problems can be observed in Figure 5.
We use the gadget in Figure 5(a) as a line gadget. We
can place trominoes on both of the solid and dotted
unit squares. If we pack as many L-trominoes as possi-
ble into this gadget, we have only two ways of packings
as illustrated in Figures 5(b) and (c). We regard the
line gadget in Figure 5(a) as an edge, and the ways of
packings (b) and (c) as two corresponding orientations
of the edge: Packing (b) corresponds to the orientation
from left to right; in contrast, packing (c) corresponds
to the orientation from right to left. The dotted unit
square covered (resp., not covered) by a tromino repre-
sents that the orientation is outbound (resp., inbound).

If we need to bend an edge, we use a corner gadget
in Figure 6(a). Similarly to the case of a line gadget, if
we pack as many L-trominoes as possible into a corner
gadget, we have only two ways of packings. The dotted
unit square covered by a tromino represents that the

(a) (b)

Figure 6: (a) A corner gadget, and (b) a combination
of line and corner gadgets.

(a) (b) (c)

(d) (e)

Figure 7: A cross gadget and its four ways of packings.

orientation is outbound. By combining gadgets as in
Figure 6(b), we can propagate the orientations of edges.

We respectively replace the crossing points of edges,
pairs of literal nodes, clause nodes, and negated-clause
nodes by cross, duplicator, clause, negated-clause gad-
gets, which are defined later. All but the duplicator
gadget are of the same size. (More precisely, the normal
size is 11×11.) The size of a duplicator gadget equals to
that of a combination of two normal-size gadgets, since
we replace two literal nodes by one duplicator gadget.
As a result of the replacement, we can obtain a patch-
work of the gadgets as a polyomino of 3L-packing.

A cross gadget is given in Figure 7(a). There are
four ways, as illustrated in Figure 7(b)–(e), to cover the
crossing unit square in Figure 7(a) by an L-tromino.
Note that the left and right dotted unit squares always
represent the same orientation; so do the upper and bot-
tom dotted unit squares. In contrast, the orientations
of vertical and horizontal directions are independent.

A pair of literal nodes is replaced by a duplicator gad-
get given in Figure 8(a). As mentioned before, the width
of a duplicator gadget equals to that of a combination
of two normal-size gadgets. Apart from the cross gad-
gets, if we pack as many L-trominoes as possible into a
duplicator gadget, we have only two ways of packings.
The two dotted unit squares in the left half of the gad-
get have the same orientation (inbound or outbound);
so do the two dotted unit squares in the right half.

24th Canadian Conference on Computational Geometry, 2012

(a)

(b)

(c)

Figure 8: A duplicator gadget and its two ways of pack-
ings.

(a) (b)

(c) (d)

Figure 9: A clause gadget and its three ways of packings.

A clause node is replaced by a clause gadget given in
Figure 9(a). We have three ways of packing. In every
packing, there are exactly one inbound orientation and
exactly two outbound orientations. We can regard this
gadget as a three-forked road. The tromino covering the
center of the three-forked road indicates which edge has
inbound orientation. A negated-clause node is replaced
by a negated-clause gadget given in Figure 10. Similar
to the case of a clause gadget, we have three ways of
packing. In every packing, however, there are exactly
one outbound orientation and exactly two inbound ori-
entations.

Since the drawing of graph Gϕ is of size O(mn), we
use at most O(mn) gadgets for replacing the elements
in Gϕ. All gadgets consist of constant number of unit

Figure 10: A negated-clause gadget.

squares, which implies a polynomial-time construction
of P for the reduction.

We set the ‘magic number’ k of 3L-packing as |P |/3,
where |P | denotes the number of unit squares in P . This
enforces that no unit squares in P remain uncovered.
All of the above explained packings satisfy this con-
straint. Moreover, there is no other way of packing.
Thus, valid packings to P of 3L-packing have one-to-
one correspondence with valid orientations to Gϕ of 1-
in-3 GO. We can easily check 3L-packing is in NP, in
#P and in ASP, since P is given as a set of the coordi-
nates of all unit squares in P . By Theorem 1, we have
the following theorem.

Theorem 2 3L-packing is NP-complete, #P-
complete and ASP-complete.

2.3 Reduction to 3I-packing

By a similar argument as above, we give a polynomial-
time reduction from 1-in-3 GO to 3I-packing. We use
the gadgets in Figure 11(a)–(f) as line, corner, cross,
duplicator, clause and negated-clause gadgets, respec-
tively. The gadgets in Figure 11(a), (b) and (e) are
straightforward for packing. We note that a crank in
a line gadget (Figure 11(a)) guarantees exactly two
ways of packings, which correspond to two orientations.
These non-trivial gadgets work as follows.

(c) Cross gadget. In general, the cross gadgets are the
most difficult part to design in these kinds of reductions,
as mentioned in [7]. Such situation also occurs in 3I-
packing as you can observe from Figure 11(c) and 12.
We first observe that each of the left and right squares
drawn in dotted line has two ways of packings since it is
close to the corner as in the line gadget in Figure 11(a).
The top and bottom dotted squares also have two ways
since they are close to a three-forked road in the gad-
get. Next, the gadget (or the huge square) contains
127 squares. Thus, the gadget is covered by 43 tromi-
noes, and two squares remain. The remaining squares
can cover two out of the four dotted squares. Carefully
tracing all possible packings, we can check that both of
the top and bottom dotted squares cannot be covered
at the same time, and both of the right and left dotted
squares cannot be covered at the same time. Therefore,
we only have four valid packings shown in Figure 12.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

(a) (b)

(c)

(d)

(e) (f)

Figure 11: Gadgets for the reduction to 3I-packing.

(d) Duplicator gadget. At the center of the gadget in
Figure 11(d), there are three bridges of length 4 join-
ing the right and left parts. Each of the bridges can
be packed in two possible ways by putting a tromino
left or right. As in the cross gadget, since the num-
ber of the squares in the gadget is 106, we can place
two squares at the positions of the dotted squares. use
two squares at the dotted squares. The corners close
to dotted squares force the configuration of trominoes.
Contrary to the case of the cross gadget, these condi-
tions allow us to pack I-trominoes in only two ways as
shown in Figure 13.

(a) (b)

(c) (d)

Figure 12: Four ways of packings for a cross gadget.

(f) Negated-clause gadget. In the negated-clause
gadget given in Figure 11(f), the center rectangle of size
2×4 is critical. We can pack two trominoes in four ways
here, but if they take different heights, we cannot pack
trominoes in the horizontal segment between the left
and right corners. Therefore, there are only two ways
to pack the trominoes into the rectangle. This gives us
three valid packings as illustrated in Figure 14.

The two ways of packings for a line gadget corre-
spond to the orientations of the edge. A clause gadget
has three ways of packings such that exactly one of the
three dotted unit squares gives an inbound orientation.
In contrast, a negated-clause gadget has three ways of
packings such that exactly one of the three dotted unit
squares gives an outbound orientation. Therefore, valid
packings for P in 3I-packing have one-to-one corre-
spondence with valid orientations of Gϕ in 1-in-3 GO.
We thus have the following theorem.

Theorem 3 3I-packing is NP-complete, #P-complete
and ASP-complete.

3 Concluding Remarks

We have studied the computational complexity of pack-
ing problems with L-trominoes and I-trominoes. Our
results fill the complexity gap between packing domi-
noes (i.e., 1 × 2 rectangles) and packing 2 × 2 squares.

We can extend our results to the following problems.

(1) Tromino-Packing (i.e., a mixture variant of packing
trominoes): Given an integer k and a polyomino P ,

24th Canadian Conference on Computational Geometry, 2012

(a)

(b)

Figure 13: Two ways of packings for a duplicator gad-
get.

(a) (b)

(c)

Figure 14: Three ways of packings for a negated-clause
gadget.

determine whether k trominoes can be placed into P
without overlap. Note that we can use both L-trominoes
and I-trominoes in this variant. By constructing new
gadgets, similar arguments establish that this variant is
NP-complete, #P-complete and ASP-complete.

(2) 3L-Cover, 3I-Cover and Tromino-Cover: Given
an integer k and a set S of points in the plane, deter-
mine whether k trominoes can cover all points in S. In

3L-cover and 3I-cover, we are only allowed to use
identical L-trominoes and I-trominoes, respectively. In
tromino-cover, we are allowed to use both shapes.
Trominoes are allowed to mutually overlap each other.

(3) 3L-Unique-Cover, 3I-Unique-Cover and Tromino-
Unique-Cover: Given an integer k and a set S of
points in the plane, determine whether k trominoes can
uniquely cover all points in S, that is, no overlap of
trominoes is allowed.

By converting the gadgets in this paper to the posi-
tions of points (and regarding the set of points as the
set S), we can easily see the correspondence between the
packing and the covering problems. Therefore, all these
variants in (2) and (3) are NP-complete, #P-complete
and ASP-complete.

References

[1] N. Creignou and M. Hermann, Complexity of general-
ized satisfiability counting problems. Information and
Computation, 125, pp. 1–12, 1996.

[2] D. El-Khechen, M. Dulieu, J. Iacono and N. van Omme.
Packing 2 × 2 unit squares into grid polygons is NP-
complete. Proc. 21st Canadian Conf. on Comput.
Geom., pp. 33–36, 2009.

[3] R. J. Fowler, M. Paterson and S. L. Tanimoto. Optimal
packing and covering in the plane are NP-complete. Inf.
Process. Lett., 12(3):133–137, 1981.

[4] M. Gardner. The hypnotic fascination of sliding-
block puzzles. Scientific American, 210:122–130, 1964.
(Also Chapter 7 of Martin Gardner’s Sixth Book of
Mathematical Diversions, University of Chicago Press,
Chicago, 1984.)

[5] S. Golomb. Polyominoes (2nd edition). Princeton Uni-
versity Press, 1994.

[6] R. A. Hearn and E. D. Demaine. PSPACE-complete-
ness of sliding-block puzzles and other problems
through the nondeterministic constraint logic model
of computation. Theoretical Computer Science, 343(1-
2):72–96, 2005.

[7] R. A. Hearn and E. D. Demaine. Games, Puzzles, and
Computation. A K Peters Ltd., 2009.

[8] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm
for maximum matchings in bipartite graphs. SIAM J.
Computing, 2(4):225–231, 1973.

[9] T. J. Schaefer. The complexity of satisfiability prob-
lems. Proc. 10th Ann. ACM Symp. on Theory of Com-
puting, pp. 216–226, 1978.

[10] T. Yato and T. Seta. Complexity and completeness
of finding another solution and its application to puz-
zles. IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences, E86-
A(5):1052–1060, 2003.

