
CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Competitive Routing on a Bounded-Degree Plane Spanner

Prosenjit Bose∗ Rolf Fagerberg§ André van Renssen∗ Sander Verdonschot∗

Abstract

We show that it is possible to route locally and com-
petitively on two bounded-degree plane 6-spanners, one
with maximum degree 12 and the other with maximum
degree 9. Both spanners are subgraphs of the empty
equilateral triangle Delaunay triangulation. First, in a
weak routing model where the only information stored
at each vertex is its neighbourhood, we show how to find
a path between any two vertices of a 6-spanner of max-
imum degree 12, such that the path has length at most
95/
√

3 times the straight-line distance between the ver-
tices. In a slightly stronger model, where in addition to
the neighbourhood of each vertex, we store O(1) addi-
tional information, we show how to find a path that has
length at most 15/

√
3 times the Euclidean distance both

in a 6-spanner of maximum degree 12 and a 6-spanner
of maximum degree 9.

1 Introduction

A t-spanner of a weighted graph G is a connected sub-
graph H with the property that for all pairs of vertices,
the weight of the shortest path between the vertices in
H is at most t times the weight of the shortest path in
G, for some fixed constant t ≥ 1. The constant t is re-
ferred to as the spanning ratio. The graph G is referred
to as the underlying graph. In our setting, the underly-
ing graph is the complete graph on a set of n points in
the plane and the weight of an edge is the Euclidean dis-
tance between its endpoints (see [9] for a comprehensive
overview of spanners).

In communication networks, in addition to being a
constant spanner, a desirable property is the ability to
route messages on the network such that the total dis-
tance travelled by the message is at most a constant
times the spanning ratio. Inability to route effectively
defeats the purpose of building a spanner in the first
place. Network routing strategies such as Dijkstra’s
algorithm [7] require knowledge of the whole network
topology to compute a short route. In many settings,

∗School of Computer Science, Carleton University. Research
supported in part by NSERC. Email: jit@scs.carleton.ca,

andre@cg.scs.carleton.ca, sander@cg.scs.carleton.ca.
§Department of Mathematics and Computer Science, Univer-

sity of Southern Denmark. Email: rolf@imada.sdu.dk. Partially
supported by the Danish Council for Independent Research, Nat-
ural Sciences.

this assumption is impractical. As such, we focus on lo-
cal routing strategies (see [8] for a discussion of various
models wrt. local routing). In a local routing strategy,
the decision to forward a message depends on informa-
tion stored at the node where the message currently
resides, location of the source, location of the destina-
tion and the contents of a small memory. Typically, the
information stored at a node is the set of direct neigh-
bours.

Formally, an algorithm A is a k-memory routing al-
gorithm, if the vertex to which a message is forwarded
from the current vertex s is a function of s, t, N(s), and
M , where t is the destination vertex, N(s) is the set
of direct neighbours of s and M is a memory of size k,
stored with the message. For our purposes, we consider
a unit of memory to consist of a log2 n bit integer or
a point in R2. Our model also assumes that the only
information stored at each vertex of the graph is N(s).
The algorithm A is d-competitive provided that the to-
tal distance travelled by the message is not more than d
times the Euclidean distance between source and desti-
nation. We refer to the constant d as the routing ratio.

We present the first competitive k-memory routing
algorithm to route on a bounded-degree plane spanner.
Our algorithm routes on a 6-spanner with maximum
degree 12, which is a subgraph of the empty equilateral
triangle Delaunay triangulation [4]. We then present
another competitive k-memory routing algorithm that
routes on a subgraph with maximum degree 9. How-
ever, for this algorithm, we need to slightly enhance our
model by storing a constant number of bits and points
at each vertex (in addition to the neighbourhood of the
vertex) to help guide the routing process.

2 Graphs

The empty equilateral triangle Delaunay triangulation
was one of the first plane graphs that was shown to be
a spanner [6]. It is internally triangulated and has a
spanning ratio of 2. Recently, Bonichon et al. showed
that it is equivalent to the half-θ6-graph [2] and that it
contains a bounded-degree spanner as a subgraph [3].
In this section, we describe the construction of the half-
θ6-graph and two of its bounded-degree subgraphs.

Given a set P of points in the plane, we consider
each point v ∈ P and partition the plane into 6 cones
with apex v, each defined by two rays at consecutive
multiples of π/3 radians from the positive x-axis. We

24th Canadian Conference on Computational Geometry, 2012

label the cones C1, C0, C2, C1, C0 and C2, in counter-
clockwise order around v, starting from the positive x-
axis (see Figure 1a). The cones C0, C1 and C2 are called
positive, while the others are called negative.

C0

C1C2

C1

C0

C2

v

v

a) b)

Figure 1: a) The cones around a vertex v. b) The con-
struction of the half-θ6-graph. In each positive cone, v
connects to the vertex with the closest projection on the
bisector of that cone.

To build the half-θ6-graph, we consider each vertex v
and add an edge between v and the ‘closest’ vertex in
each of its positive cones. However, instead of using the
Euclidean distance, we measure distance by projecting
each vertex onto the bisector of the cone. We call the
vertex in this cone whose projection is closest to v the
closest vertex and connect it to v with an edge (see
Figure 1b). For simplicity, we assume that no two points
lie on a line parallel to a cone boundary.

Given two points a and b such that b lies in a positive
cone of a, we define their canonical triangle Tab to be
the triangle bounded by the cone of a that contains b
and the line through b perpendicular to the bisector of
that cone. For example, the shaded region in Figure 1b
is the canonical triangle of v and its closest vertex. The
construction of the half-θ6-graph can alternatively be
described as adding an edge between two vertices if and
only if their canonical triangle is empty. This property
will play an important role in our proofs.

Each vertex in the half-θ6-graph has at most one in-
cident edge in each positive cone, but it can have an un-
bounded number of incident edges in its negative cones.
We describe two transformations that allow us to bound
the total degree of each vertex. The transformations are
adapted from Bonichon et al. [3].

The first transformation discards all edges in each
negative cone, except for three: the first and last edges
in clockwise order around the vertex and the edge to the
closest vertex (see Figure 2a). This results in a subgraph
with maximum degree 12, which we call G12.

To reduce the degree even further, we note that since
the half-θ6-graph is internally triangulated, consecutive
neighbours of v within a negative cone are connected
by edges. We call the path formed by these edges the

va) b) v

Figure 2: The construction forG12 (a) andG9 (b). Solid
edges are kept, while dotted edges are discarded if no
other vertex wants to keep them.

canonical path. So instead of keeping three edges per
negative cone, we keep only the edge to the closest ver-
tex, but force the edges of the canonical path to be kept
as well (see Figure 2b). We call the resulting graph G9.
Since the half-θ6-graph is planar, both subgraphs are
planar as well. In a previous paper [5], we showed that
G9 is a 6-spanner with maximum degree 9. We give
an adapted version of the proof for the spanning ratio
below.

Theorem 1 G9 is a 3-spanner of the half-θ6-graph.

Proof. We show that for every edge (s, v) in the half-
θ6-graph, there is a path of length at most 3 · |sv| in
G9. This path consists of the edge to the closest vertex,
followed by the edges on the canonical path between the
closest vertex and v. We will refer to it as the approxi-
mation path.

s

v

v0

v1

a

b

c

d

m1 m2

Figure 3: The approximation path.

Let v0 be the closest vertex and let v1, . . . , vk = v
be the other vertices on the approximation path. We
assume without loss of generality that s lies in C0 of v
and that v lies to the right of v0. We shoot rays parallel
to the boundaries of C0 from each vertex. Let mi be
the intersection of the right ray of vi−1 and the left ray
of vi (see Figure 3). Let a and b be the intersections of
the left boundary of C0 of s with the left rays of v and
v0, respectively, and let c be the intersection of this left
boundary with the horizontal line through v. Finally,
let d be the intersection of the right ray of v0 and the left
ray of v. We can bound the length of the approximation

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

path as follows:

|sv0|+
k∑
i=1

|vi−1vi|

≤ |sb|+ |bv0|+
k∑
i=1

|vi−1mi|+
k∑
i=1

|mivi|

= |sb|+ |bv0|+ |ab|+ |dv| {by projection}
= |sb|+ |ab|+ |av|
≤ |sc|+ 2 · |cv|

The last inequality follows from the fact that v0 is
the closest vertex to s. Let α be ∠csv. Some basic
trigonometry gives us that |sc| = 2√

3
· sin

(
α+ π

3

)
· |sv|

and |cv| = 2√
3
· sin(α) · |sv|. Thus the approximation

path is at most 2√
3
·
(
sin
(
α+ π

3

)
+ 2 sin(α)

)
times as

long as (s, v). Since this function is increasing in [0, π3],
the maximum is achieved for α = π/3, where it is 3.
Therefore every edge of the half-θ6-graph can be ap-
proximated by a path that is at most 3 times as long
and the theorem follows. �

Note that the part of the approximation path that
lies on the canonical path has length at most 2 · |cv| =
4√
3
·sin(α) · |sv|. This function is also increasing in [0, π3]

and its maximal value is 2, so the total length of this
part is at most 2 · |sv|.

Since the half-θ6-graph is a 2-spanner, this shows that
G9 is a 6-spanner. Bonichon et al. [3] also showed that
all edges on the canonical path are either first or last in
their respective negative cones, making G9 a subgraph
of G12. Hence G12 is a 6-spanner as well.

3 Routing on G12

We now turn our attention to finding a competitive path
from a current vertex s to a given destination t in G12.
In a previous paper, we showed that it is possible to
route competitively on the half-θ6-graph [4].

Theorem 2 ([4], Corollary 4.1) Let u and w be two
vertices with w in a positive cone of u. There exists a
0-memory routing algorithm on the half-θ6-graph with
routing ratio

i) 2 when routing from u to w,

ii) 5/
√

3 = 2.886 . . . when routing from w to u.

and this is best possible for deterministic local routing
schemes.

Next we present a slightly modified version of the
routing algorithm for the half-θ6-graph. The difference
lies in the fact that the original algorithm does not keep
state. However, the same proofs can be used to show

t

sa b

X1
X2

X0

C1

C0

C2

a) b)

t

s

C1 C2

v

l1
l2

Figure 4: a) The points and regions involved in negative
routing. b) The projected length of an edge.

that the stateful version in this paper finds a path with
the same routing ratio.

Before we can describe the actual algorithm, we need
a few definitions. We assume without loss of generality
that t lies in C0 or C0 of s. If t lies in C0, the cones
around s split Tts into three regions, which we call X0,
X1 and X2, as shown in Figure 4a. Formally, let X0 =
C0∩Tts, X1 = C1∩Tts and X2 = C2∩Tts. Further, we
let a be the corner of Tts that is on the boundary of C1

and b the corner on the boundary of C2. For brevity,
we use “an edge in X0” to denote an edge incident to s
with the other endpoint in X0.

We also need the concept of the projected length of an
edge onto a neighbouring cone. For an edge (s, v) in C0,
the neighbouring cones of s are C1 and C2. Let ~e1 and
~e2 be unit vectors parallel to the boundary of C0 with
C1 and C2, respectively. Since ~e1 and ~e2 are linearly
independent, the vector ~sv can be uniquely written as
l1 · ~e1 + l2 · ~e2. We define the projected length of (s, v)
on C1 as l1 and on C2 as l2 (see Figure 4b).

Our algorithm distinguishes three cases and keeps
track of a preferred side, which is one of the positive
cones, or undefined. The preferred side is stored as state
in the message. If t lies in a positive cone of s, we are in
case A. If t lies in a negative cone of s and no preferred
side has been set yet, we are in case B. If t lies in a
negative cone of s and a preferred side has been set, we
are in case C. The algorithm works as follows on the
half-θ6-graph.

• In case A, follow the unique edge in the positive
cone containing t.

• In case B, if there are edges in X0, follow an ar-
bitrary one. Otherwise, if there is an edge in the
smaller of X1 and X2, follow that edge. Otherwise,
follow the edge in the larger of X1 and X2 and set
the other as the preferred side. At least one of these
edges must exist [4].

• In case C, if there are edges in X0, follow the one
with the largest projected distance on the preferred
side. Otherwise, follow the edge in the positive cone
that is not on the preferred side. Again, at least one
of these edges must exist [4].

24th Canadian Conference on Computational Geometry, 2012

This algorithm constructs a path between two vertices
in the half-θ6-graph. To approximate this path in G12

and G9, we simulate each step of the algorithm. Note
that we can decide which case we are in based solely
on the coordinates of s and t and whether the preferred
side has been set. The following five headlines refer
to original steps of the algorithm on the half-θ6-graph,
and the text after a headline describes how to simulate
that step in G12. We discuss modifications for G9 in
Section 4.

Follow an edge (s, v) in a positive cone. If the edge
is still there, we simply follow it. If it is not, the edge
was removed because s is on the canonical path of v
and it is not the closest, first or last vertex on the path.
Since G12 is a supergraph of G9, we know that all of the
edges of the canonical path are kept and every vertex on
the path originally had an edge to v in the same positive
cone. Therefore it suffices to search the canonical path
for any vertex with an edge in this positive cone and
follow this edge. Since the edges connecting v to the
first and last vertices on the path are always kept, the
edge we find in this way must lead to v.

This method is guaranteed to reach v, but we want
to find a competitive path to v. Therefore we will use
exponential search along the canonical path: we start
by following the shorter of the two edges of the canoni-
cal path incident to s. If the endpoint of this edge does
not have an edge in our positive cone, we return to s
and travel twice the length of the first edge in the other
direction. We keep returning to s and doubling the max-
imum travel distance until we find a vertex x that does
have an edge in our positive cone. If x is not the clos-
est to v, by the triangle inequality, following its edge to
v is shorter than continuing our search until we reach
the closest and following its edge. So for the purpose of
bounding the distance travelled, we can assume that x
is closest to v. Let d be the distance between s and x
along the canonical path. By using exponential search
to find x, we travel at most 9 times this distance [1] and
afterwards we follow (s, x). From the spanning proof,
we know that d ≤ 2 · |sv| and d + |xv| ≤ 3 · |sv|. Thus
the total length of our path is at most 9 · d + |xv| =
8 · d+ (d+ |xv|) ≤ 16 · |sv|+ 3 · |sv| = 19 · |sv|.

Determine if there are edges in X0. In the regular
half-θ6-graph we can look at all our neighbours and see if
any of them lie in X0. However, in G12, these edges may
have been removed. Fortunately, we can still determine
if they existed in the original half-θ6-graph. To do this,
we look at the first and last vertex along the canonical
path in this cone. If these vertices do not exist, s did not
have any incoming edges in this cone, so there can be no
edges in X0. If first and last are the same vertex, this
was the only incoming edge to s from this cone, so we

simply check if its endpoint lies in X0. The interesting
case is when first and last exist and are distinct. If either
of them lies in X0, we have our answer, so assume that
both lie outside of X0. Since they cannot have t in their
positive cone, they must lie in one of two regions, which
we call S1 and S2 (see Figure 5a).

t

s

X1
X2

X0

a) b)

t

s

S1 S2

v

a

Figure 5: a) Possible regions for the first and last vertex.
b) A vertex v in X1.

If both first and last lie in the same region (say S1),
there can be no edge in X0, since any vertex on the
canonical path between them in X0 would lie in C0 of
the last vertex. This would prevent the last vertex from
having an edge to s, which is a contradiction.

On the other hand, if first lies in S1 and last in S2,
both X1 and X2 have to be empty, since s was the
closest vertex to both. Thus if there are no vertices in
X0 (different from t and s), t must have an edge to s,
which gives us an edge in X0. On the other hand, if
there are vertices in X0, the same holds for the topmost
vertex in X0, so in either case there must be an edge
in X0. This shows that we can check whether there
was an edge in X0 in the half-θ6-graph using only the
coordinates of the first and last vertex.

Follow an arbitrary edge in X0. If the half-θ6-graph
has edges in X0, we simulate following an arbitrary one
of these by first following the edge to the closest vertex
in the negative cone. If this vertex is in X0, we are done.
Otherwise, we follow the canonical path in the direction
ofX0 and stop once we are inside. This traverses exactly
the approximation path of the edge, and hence travels
a distance at most 3 times the length of the edge.

Determine if there is an edge in X1 or X2. Since
these regions are symmetric, we will consider only the
case for X1. It is contained in a positive cone of s, so
it contains at most one edge incident to s. If the edge
is still there, we can simply test whether it is in X1 or
not. However, if s does not have a neighbour in this
cone, we need to find out whether it used to have one
in the original half-θ6-graph and if so, whether it was
in X1. Since this step is only needed in case B after we

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

determine that there are no edges in X0, we can use this
information to guide our search. Specifically, we know
that if we find an edge, we should follow it.

Therefore we simply attempt to follow the edge in
this cone. If there is a vertex v in X1 and the edge
(s, v) was removed (see Figure 5b), we must encounter
the closest vertex after travelling at most 2 · |sv| along
the canonical path. Since all edges in X1 have length at
most |as|, we use exponential search, travelling at most
2 · |as| from s. Once we explored both sides of the path
to a distance of 2 · |as| without encountering a vertex
with an edge in the correct positive cone, we return to
s and conclude that there was no edge in X1. If we do
find such a vertex, we test whether its edge leads into
X1 and follow it if it does. If the edge does not lead into
X1, either the edge of s in C1 had its endpoint outside
of X1, or s did not have an edge in C1. Either way, we
return to s and conclude that there was no edge in X1.

If there was an edge in X1, we travelled the same
distance as if we were simply following the edge: at most
19 · |sv|. If we return to s unsuccessfully, we travelled
at most 20 · |as|: 9 times 2 · |as| during the exponential
search and 2 · |as| to return to s.

Follow the edge in X0 with the largest projected dis-
tance on the preferred side. In the half-θ6-graph, we
have sufficient information about our neighbours to sim-
ply compute their projected distances. However, a lot
of these edges might have been removed in the construc-
tion of G12. To help find the correct edge, we first prove
the following property.

t

s

v

R0

R1

R2

R3

Figure 6: Situation around the first vertex in X0.

Lemma 3 In the half-θ6-graph, the first or last edge in
X0 in counter-clockwise order around s has the largest
projected distance on the preferred side.

Proof. We consider only the case where the preferred
side is C1. The case for C2 is analogous. Let v be the
endpoint of the first edge in X0 in counter-clockwise or-
der around s. The lines through v parallel to the bound-
aries of C0 partition X0 into four regions. In counter-
clockwise order, starting at the top, we call these R0,
R1, R2 and R3 (see Figure 6). Now let us consider the
possible locations of other vertices on the canonical path
in this negative cone of s.

Since v has an edge to s, R0 must be empty. There
can also be no neighbours of s in R1, as these would
have come before v in the counter-clockwise ordering
around s. Finally, for vertices in R2, v will always be
closer than s, so there can be no neighbours of s in R2

either. Thus all other vertices of the canonical path
must either be outside X0 or in R3. Since the projected
distance of (s, v) is at least as large as the projected
distance to any vertex in R3, (s, v) has the largest pro-
jected distance among all edges in X0. �

To follow this edge, we first follow the edge to the
closest vertex. If this lands us in X0, we then follow the
canonical path towards the preferred side and stop at
the last vertex on the canonical path that is in X0. If
the closest is not in X0, we follow the canonical path
towards X0 and stop at the first or last vertex in X0,
depending on which side of X0 we started on. This fol-
lows the approximation path of the edge, so the distance
travelled is at most 3 times the length of the edge.

Routing ratio. This shows that we can simulate the
routing algorithm on G12. Note that in contrast to
the routing algorithm on the half-θ6-graph, we main-
tain state in the message. We need to store not only
the preferred side, but also information for the expo-
nential search, including distance travelled. The exact
routing ratios are as follows.

Theorem 4 Let u and w be two vertices with w in a
positive cone of u. There exists an O(1)-memory routing
algorithm on G12 with routing ratio

i) 19 · 2 = 38 when routing from u to w,

ii) 19 · 5/
√

3 = 54.848 . . . when routing from w to u.

Proof. As shown above, we can simulate every edge fol-
lowed by the algorithm by travelling at most 19 times
the length of the edge. The only additional cost is in-
curred in case B, when we try to follow an edge in the
smaller of X1 and X2, but this edge does not exist. In
this case, we travel an additional 20 · |as|, where a is
the corner closest to s. Fortunately, this can happen at
most once during the execution of the algorithm, as it
prompts the transition to case C, after which the algo-
rithm never returns to case B. Looking at the original
proof for the routing ratio [4], we observe that in the
transition from case B to C, there is 2 · |as| of unused
potential. Since we are trying to show a routing ratio
of 19 times the original, we can charge the additional
20 · |as| to the 38 · |as| of unused potential. �

4 Routing on G9

In this section, we explain how to modify the described
simulation strategies so that they work for G9, where

24th Canadian Conference on Computational Geometry, 2012

the first and last edges are not guaranteed to be present.
We discuss only those steps that rely on the presence of
these edges.

Follow an edge (s, v) in a positive cone. Because the
first and last edges are not always kept, we cannot guar-
antee that the first vertex we reach with an edge in this
positive cone is still part of the same canonical path.
Therefore our original exponential search solution does
not work. Instead, we need to store one bit of infor-
mation at s, namely in which direction we have to fol-
low the canonical path to reach the closest vertex to v.
Knowing this, we just follow the canonical path in this
direction until we reach a vertex with an edge in this
positive cone. This vertex must be the closest, so it
gives us precisely the approximation path and therefore
we travel at most 3 · |sv|.

Determine if there are edges in X0. In G12, this test
was based on the coordinates of the endpoints of the
first and last edge. Since these might be missing in G9,
we store the coordinates of these vertices at s. This
allows us to perform the check without increasing the
distance travelled.

Determine if there is an edge in X1 or X2. As in
the positive routing simulation, we now know where to
go to find the closest. Therefore we simply follow the
canonical path in this direction from s and stop when
we reach a vertex with an edge in the correct positive
cone, or when we have travelled 2 · |as|. If there is an
edge, we follow exactly the approximation path, giving
us 3 times the length of the edge. If there is no edge,
we travel 2 · |as| back and forth, for a total of 4 · |as|.

Routing Ratio. Since the other simulation strategies
do not rely on the presence of the first or last edges, we
can now analyze the routing ratio obtained on G9.

Theorem 5 Let u and w be two vertices with w in a
positive cone of u. By storing O(1) additional informa-
tion at each vertex, there exists an O(1)-memory routing
algorithm on G12 and G9 with routing ratio

i) 3 · 2 = 6 when routing from u to w,

ii) 3 · 5/
√

3 = 8.660 . . . when routing from w to u.

Proof. The simulation strategy for G12 followed the
approximation path for each edge, except when follow-
ing an edge in a positive cone. Since our new strategy
follows the approximation path there as well, our new
routing ratio is only 3 times the one for the half-θ6-
graph. Note that this is still sufficient to charge the
additional 4 · |sa| travelled to the transition from case
B to C. Since G9 is a subgraph of G12, this strategy
works on G12 as well. �

5 Conclusion

We presented two competitive O(1)-memory routing al-
gorithms for bounded-degree subgraphs of the half-θ6-
graph. To the best of our knowledge, these are the
first competitive routing algorithms on bounded-degree
plane spanners. The first strategy works on G12 and
achieves a routing ratio of 19 times the routing ratio on
the half-θ6-graph. The second algorithm works on G9

as well as G12 and reduces the routing ratio to 3 times
the original. However, it achieves this only by storing
information at vertices. Note that this routing ratio is
optimal for the positive case, as the spanning ratio of 6
is tight for both graphs.

An interesting open problem is whether the routing
ratio for the negative case can be improved, or if, as
for the half-θ6-graph, we can find a matching lower
bound. And is it possible to improve the routing ra-
tio on G12 without storing information at the vertices?
Or does there exist a 0-memory routing algorithm for
these graphs? It would also be interesting to see if there
are other bounded-degree plane spanners that are eas-
ier to route on or allow better routing ratios. For ex-
ample, a slight modification transforms G9 into a plane
6-spanner with maximum degree 6 [3]. Is it possible to
route competitively on that graph as well?

References

[1] R. A. Baeza-Yates, J. C. Culberson, and G. J. E. Rawl-
ins. Searching in the plane. Information and Computa-
tion, 106(2):234–252, 1993.

[2] N. Bonichon, C. Gavoille, N. Hanusse, and D. Ilcinkas.
Connections between theta-graphs, Delaunay triangula-
tions, and orthogonal surfaces. In WG, pages 266–278,
2010.

[3] N. Bonichon, C. Gavoille, N. Hanusse, and L. Perkovic.
Plane spanners of maximum degree six. In ICALP (1),
pages 19–30, 2010.

[4] P. Bose, R. Fagerberg, A. van Renssen, and S. Verdon-
schot. Competitive routing in the half-θ6-graph. In
SODA, pages 1319–1328, 2012.

[5] P. Bose, R. Fagerberg, A. van Renssen, and S. Verdon-
schot. On plane constrained bounded-degree spanners.
In LATIN, pages 85–96, 2012.

[6] P. Chew. There are planar graphs almost as good as
the complete graph. Journal of Computer and System
Sciences, 39(2):205–219, 1989.

[7] E. W. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik, 1:269–271, 1959.

[8] X. Li. Wireless Ad Hoc and Sensor Networks. Cambridge
University Press, 2008.

[9] G. Narasimhan and M. Smid. Geometric Spanner Net-
works. Cambridge University Press, 2007.

