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Abstract

Motivated by problems such as rectangle stabbing in the
plane, we study the minimum hitting set and maximum
independent set problems for families of d-intervals and
d-union-intervals. We obtain the following: (1) con-
structions yielding asymptotically tight lower bounds
on the integrality gaps of the associated natural lin-
ear programming relaxations; (2) an LP-relative d-
approximation for the hitting set problem on d-intervals;
(3) a proof that the approximation ratios for indepen-
dent set on families of 2-intervals and 2-union-intervals
can be improved to match tight duality gap lower
bounds obtained via topological arguments, if one has
access to an oracle for a PPAD-complete problem re-
lated to finding Borsuk-Ulam fixed-points.

1 Introduction

In this work, we examine a family of NP-hard packing
and covering problems. Our study is motivated by the
minimum rectangle stabbing problem, in which we are
given a family H of axis-aligned rectangles in the plane,
and the goal is to find a minimum-cardinality family
of horizontal and vertical lines that intersect (or ‘stab’)
each rectangle in H at least once. Viewing this as a
geometric covering problem, we also consider the related
‘dual’ geometric packing problem of finding a maximum
conflict-free subset, where the goal is to find a maximum
subset of H containing no pair of rectangles that can be
stabbed by a single horizontal or vertical line.

The rectangle stabbing and conflict-free subset prob-
lems have many applications. The rectangles themselves
can be the bounding boxes of arbitrary connected ob-
jects in the plane, so applications need not be limited to
problems involving rectangles. The rectangle stabbing
problem can directly encode the problem of optimally
subdividing the plane into a grid of axis-aligned cells so
as to separate a given family of points, with applications
to fault-tolerant sensor networks [3] and resource allo-
cation in parallel processing systems [7]. The maximum
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conflict-free subset problem, and its higher dimensional
analogues, are relevant to areas such as resource allo-
cation, scheduling, and computational biology [2]. The
properties of certain rectangle stabbing instances are
also of theoretical interest in combinatorics [19].

Given a family H of axis-aligned rectangles, we write
ρ(H) for the minimum cardinality of a family of lines
stabbing it, and α(H) for the maximum size of a conflict-
free subset. It is clear that α(H) ≤ ρ(H). As in many
geometric packing-covering dual problems, there is a
bound in the other direction. In 1994, Tardos proved
that ρ(H) ≤ 2α(H), which is easily seen to be tight [18].
However, all known proofs of Tardos’s result rely on
topological fixed-point theorems, and consequently do
not seem to lead to polynomial-time approximations. In
fact, only a 4-approximation is known for the maximum
conflict-free subset problem [2], despite the fact that we
can establish the optimal objective value to within a fac-
tor of 2 by solving a linear program. Improving upon
this remains an important open problem.

In this paper, we obtain results for generalized ver-
sions of the stabbing and conflict-free subset problems.
We examine the standard linear programming relax-
ations for hitting set and independent set problems in-
volving d-intervals, and establish asymptotically tight
upper and lower bounds on their integrality gaps. These
bounds imply that no LP-relative approximation algo-
rithm can obtain a factor below 2 for either the rectangle
stabbing or the maximum conflict-free subset problems.
Additionally, we establish some interesting theoretical
consequences of topological methods such as Tardos’s.
For example, we show that the maximum conflict-free
subset problem admits a 2-approximation if one has ac-
cess to an oracle for a PPAD-complete problem.

This article proceeds as follows: in the current sec-
tion, we define the generalized problems that we study,
explain the current state of the art, and describe our
contribution. Section 2 contains our integrality gap up-
per and lower bounds, and Section 3 contains algorith-
mic results that depend on PPAD oracles.

1.1 Preliminaries

We begin by defining generalized versions of the rect-
angle stabbing and conflict-free subset problems. For
d ∈ N, a d-interval I is a union of d non-empty com-
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pact intervals I1, . . . , Id ⊂ R. The input to all problems
we consider will be a finite collection H of d-intervals,
represented explicitly. We say that a subset of H is in-
dependent if its members are pairwise disjoint, and a
set X ⊆ R is a hitting set for H if it intersects every
member of H. We define the hypergraph GH = (V,E)
where V = H and E consists of all subsets I ⊆ H
such that there is a point p ∈ R that hits exactly the
intervals in I. Such a point p shall be called a rep-
resentative of the hyperedge I ∈ E, and we let P (H)
denote a set containing an arbitrary representative for
each distinct edge in GH. Note that |P (H)| ≤ 2d|H| as
there are at most 2d|H| interval endpoints. We call GH
a d-interval hypergraph, and observe that d-interval hy-
pergraphs generalize d-regular hypergraphs (which are
obtained when each d-interval in H is simply d points).
We denote by α(H) the maximum size of an indepen-
dent set in H, and denote by ρ(H) the minimum size of
a hitting set for H, in analogy with the usual notation
of α(G) and ρ(G) for the maximum independent set size
and minimum edge cover size of a hypergraph G.

Special cases such as the rectangle stabbing problem
arise when we impose structural restrictions on H. If
{J i}di=1 is a family of disjoint intervals and each d-
interval I = ∪di=1I

i in H satisfies Ii ⊆ J i for all i, then
H is known as a collection of d-union-intervals, and GH
is known as a d-union hypergraph. The term d-track-
interval is sometimes used for the same concept, with
the idea that each d-interval contains a piece from one
of d different ‘tracks’, each of which is a disjoint copy of
R . The rectangle stabbing and minimum conflict-free
subset problems correspond precisely to the minimum
hitting set and maximum independent set problems on
2-union-intervals, but with each ‘track’ mapped onto
a separate Euclidean dimension. In general, one can
think of the hitting set problem for d-union-intervals as
the problem of hitting a family of d-dimensional ‘boxes’
using a minimum number of ‘walls’, each of which is
orthogonal to one of the coordinate axes.

For 1-interval hypergraphs (which are the same as 1-
union hypergraphs), the independent set and edge cover
problems can both be solved in polynomial time via sim-
ple greedy algorithms that perform a left-to-right sweep
across the intervals. However, even for 2-union hyper-
graphs, the independent set and edge cover problems
are both APX-hard. Nagashima and Yamazaki, and in-
dependently Bar-Yehuda et al., have shown the conflict-
free subset problem to be APX-hard [2, 14], even when
the rectangles are all unit squares with integer vertices.
Kovaleva and Spieksma show that the rectangle stab-
bing problem is APX-hard even when each rectangle is
of the form [x, x+ 1]× [y, y] for integers x and y [11].

For a hypergraph G, the relations α(G) ≤ ρ(G) and
ρ(G) ≤ O(log |V |) · α(G) are well known, with the lat-
ter being tight for general hypergraphs. However, us-

ing methods of topological combinatorics, Kaiser proves

that ρ(GH)
α(GH) is upper bounded by d2−d+1 for d-interval

hypergraphs and d2 − d for d-union hypergraphs (for
d ≥ 2), a bound independent of |V | [10]. His result im-
proves upon that of Tardos, who originally established
a tight upper bound for the d = 2 case [18]. In a one-
page paper, Alon shows that an upper bound of 2d2 can
be established without topological methods by applying
Turán’s theorem [1]. The best known lower bounds for

large d are Ω( d2

log d ) and Ω( d2

log2 d
) for d-interval and d-

union hypergraphs respectively [13].

1.2 Overview of Results

We use the term duality gap to denote the quantity

supH
ρ(H)
α(H) , where H ranges over a collection of d-

intervals. In an effort to study various duality gaps,
we examine standard linear programming relaxations
for the hitting set and independent set problems. The
standard LP relaxation for the maximum independent
set problem corresponds to the maximum fractional in-
dependent set problem, and can be written as follows:

max
∑
I∈I

xI

s.t.
∑
I3p

xI ≤ 1 ∀ p ∈ P (H)

xI ≥ 0 ∀ I ∈ H

(1)

A corresponding dual linear program for the minimum
fractional hitting set problem is as follows:

min
∑

p∈P (H)

yp

s.t.
∑
p∈I

yp ≥ 1 ∀ I ∈ H

yp ≥ 0 ∀ p ∈ P (H)

(2)

If α∗(H) is the optimal objective value for (1) and ρ∗(H)
is the optimal objective value for (2), then we have
α(H) ≤ α∗(H) = ρ∗(H) ≤ ρ(H) and can write

sup
H

ρ(H)

α(H)
≤ sup
H

ρ(H)

ρ∗(H)
· sup
H

α∗(H)

α(H)
.

The quantity supH
ρ(H)
ρ∗(H) is called the integrality gap of

the minimum hitting set problem (for d-intervals or d-

union-intervals). Similarly, supH
α∗(H)
α(H) is the integrality

gap of the maximum independent set problem. Since
ρ(H)
ρ∗(H) and α∗(H)

α(H) are always at least 1, both integrality

gaps are a lower bound on the duality gap. For the
case of 1-intervals, we actually have α(H) = ρ(H); both
linear programs have an integrality gap of 1 because the
incidence matrix of GH exhibits the consecutive ones
property and is thus totally unimodular.
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Often, upper bounds on integrality gaps for packing
and covering problems come alongside LP-relative ap-
proximation algorithms. Bar-Yehuda et al. employ the
local ratio technique to obtain a polynomial-time LP-
relative 2d-approximation algorithm for the d-interval
maximum independent set problem, proving that the
integrality gap of maximum independent set for d-
intervals is at most 2d. Their result carries over to the
version in which each element in H has a positive weight
and a maximum weight independent set is desired. In
Section 2, we show that their bound is tight up to an
additive constant by establishing the following:

Theorem 1 For any ε > 0, there exists a collection H
of d-intervals (respectively, d-union-intervals) for which
α∗(H)
α(H) ≥ 2d− 1− ε (respectively, 2d− 2− ε).

Our constructions generalize examples from [5] and [8]
but employ a novel amplification trick.

For both the d-interval and d-union-interval hitting
set problems, we are able to prove that the integrality
gap is exactly d. We show the following:

Theorem 2 There exists a polynomial-time LP-
relative d-approximation for the d-interval hitting
set problem. Accordingly, for any collection H of

d-intervals, ρ(H)
ρ∗(H) ≤ d.

Theorem 3 For any ε > 0, there exists a collection H
of d-union-intervals for which ρ(H)

ρ∗(H) ≥ d− ε.

Theorem 2 uses standard techniques to generalize a 2-
approximation algorithm for rectangle stabbing due to
[7], but Theorem 3 employs a novel construction.

The table below summarizes the known integrality
and duality gap bounds for large d:

d-Interval Lower Bound Upper Bound

Duality Gap Ω( d2

log d ) [13] d2 − d+ 1 [10]

Max-IS Integ. Gap 2d− 1 2d [2]
Min-HS Integ. Gap d d
d-Union

Duality Gap Ω( d2

log2 d
) [13] d2 − d [10]

Max-IS Integ. Gap 2d− 2 2d [2]
Min-HS Integ. Gap d d

We note that for d = 2, Kaiser’s topology-based dual-
ity gap upper bounds of d2−d+1 and d2−d match our
independent set integrality gap lower bounds of 2d − 1
and 2d − 2, but are tighter than the constructive in-
tegrality gap upper bounds of 2d due to Bar-Yehuda

et al. Hence, despite knowing that ρ(H)
α(H) is bounded

above by 3 and 2 for families of 2-intervals and 2-union-
intervals respectively, no polynomial-time approxima-
tion factor below 4 is known for the maximum inde-
pendent set problem on 2-union-intervals. We observe,

however, that Kaiser’s proof can be turned into a 2-
approximation if one has access to an oracle to solve
the topological subproblems that arise. The particular
topological problems in question are closely related to
finding Borsuk-Ulam fixed-points. Unfortunately, the
problem of finding Borsuk-Ulam fixed-points is PPAD-
complete [15] and thus seems unlikely to admit poly-
nomial algorithms unless a major breakthrough occurs.
Nevertheless, we establish the following in Section 3:

Theorem 4 There exists an algorithm for the maxi-
mum independent set problem on 2-intervals (respec-
tively, 2-union-intervals) returning a solution of size at

least α(H)
3 (respectively α(H)

2 ), requiring O(log(α(H)))
calls to an oracle for a PPAD-complete fixed-point prob-
lem, and polynomial time for all other computations.

Despite the fact that Theorem 4 is likely not of practical
value, we find it interesting because it implies that the
2-dimensional maximum conflict-free subset problem is
a natural APX-hard geometric optimization problem
whose best known approximability appears to improve
in the presence of a PPAD oracle. It remains an open
problem to find an alternative method of achieving the
approximation ratios of Theorem 4 while bypassing the
need for a PPAD oracle (of course, this may very well
be impossible, but proving so would separate P from
PPAD, resolving a longstanding open problem).

1.3 Related Work

Many variations and special cases of d-interval stabbing
and independence problems have been studied in a va-
riety of contexts. Kovalena and Spieksma have exam-
ined the special case of the rectangle stabbing prob-
lem in which each rectangle is a horizontal line segment
[11, 12]. They obtain an LP-relative e

e−1 -approximation
for this case, alongside an example showing that the in-
tegrality gap is precisely e

e−1 .
Even et al. explore weighted and capacitated varia-

tions of d-union-interval hitting set [6]. Their results
include a 3d-approximation for a variant in which each
point may only be used to hit a specified number of
d-intervals, but may be purchased multiple times.

Spieksma considers the version of maximum d-
interval independent set where the goal is to select a
single interval from each d-interval such that none in-
tersect [17]. It is shown that a straightforward greedy
procedure yields a 2-approximation.

Some additional hardness results are also known.
Even et al. show that there is a constant c > 0 such
that it is NP-hard to approximate the d-interval hitting
set problem to within c log d [6]. Dom et al. show that
rectangle stabbing is W [1]-hard, even when the input
consists of squares of the same size, implying that the
problem is unlikely to be fixed-parameter tractable in
the optimal objective value ρ(H) [4].
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2 Integrality Gap Bounds

To prove Theorem 1 and establish tight lower bounds
on the integrality gap of the independent set problem,
we rely on an amplification lemma. We shall refer to
the d individual intervals composing a d-interval as its
pieces, and call a piece inert if it is a point. We shall
call H a clique if α(H) = 1, and write r(H) for the rank
of GH—the maximum number of d-intervals intersected
by any point in R. We observe that if H is a clique and
r(H) = p, then a fractional independent set of value
|H|
p can be obtained by simply putting weight 1

p on each
d-interval in H. In some situations, we can do better:

Lemma 5 Suppose that H is a clique, and that H
contains no two inert pieces that intersect and no d-
intervals consisting entirely of inert pieces. Further-
more, suppose that r(H∗) = q, where H∗ is a modi-
fied version of H∗ obtained by deleting all inert pieces.
Then for any N ∈ N, there is a clique H′ of d-intervals

admitting a fractional independent set of value N |H|
Nq+1 .

Proof. We construct H′ by making N copies of each
d-interval in H, and then perturbing all inert pieces in
the resulting family of d-intervals such that no two inert
pieces intersect, while preserving intersections of inert
pieces with non-inert pieces. It is immediate that H′
is still a clique; note that copies of the same d-interval
in H must intersect in H′ because no d-interval consists
entirely of inert pieces. Moreover, r(H′) ≤ Nq + 1, so
we can place a weight of 1

Nq+1 on each d-interval in H′,
yielding a fractional independent set of value N |H|

Nq+1 . �

By taking the limit as N →∞, Lemma 5 yields an inte-

grality gap lower bound of |H|q given a d-interval graph
satisfying the necessary requirements. We note that
the amplification in Lemma 5 also works for d-union-
intervals. We proceed with the proof of Theorem 1:

Proof of Theorem 1. For the case of d-interval
graphs, we exhibit a clique H satisfying the conditions
of Lemma 5 with |H| = 2d − 1 and q = 1. We label
the d-intervals {a0, a1, . . . , a2d−2}. Each d-interval will
have exactly one non-inert piece (a closed interval in R)
and d− 1 inert pieces. We position the non-inert pieces
such that no two intersect, which ensures that q = 1.
Then for all 0 ≤ i ≤ 2d − 2, we position the remaining
d − 1 inert pieces of ai (each of which is a point) on
the non-inert pieces of d-intervals {ai+1, . . . , ai+(d−1)},
where the addition is modulo 2d − 1. This ensures
that an inert piece of ai intersects non-inert pieces in
{ai+1, . . . , ai+(d−1)}, hence ensuring that inert pieces of
{ai−1, . . . , ai−(d−1)} all intersect the non-inert piece of
interval ai. This proves that the construction yields a
clique, from which it follows that the independent set
problem in d-interval graphs has an integrality gap of

|H|
q = 2d− 1. An example of the construction for d = 3

is shown (intervals are vertically separated for clarity):

a0 a1 a2 a3 a4

a3
p

a4
p

a4
p

a0
p

a0
p

a1
p

a1
p

a2
p

a2
p

a3
p

For the case of d-union-intervals, we exhibit a clique
H of size 4d − 4 satisfying the conditions of Lemma 5

with q = 2. This yields an integrality gap |H|q = 2d− 2.
We label the 4d − 4 d-union-intervals by

{ai1, ai2, ai3, ai4}d−1i=1 . We shall say that each inter-
val has its kth piece in the kth track, where each track
is a copy of R. We first explain what happens in
tracks 1 through d− 1, and then explain what happens
in the final track, which is treated differently. For
1 ≤ i ≤ d − 1, all of the pieces in track i are inert
(single points) except for the ith pieces of ai1, ai2, ai3,
and ai4, which are arranged as follows:

ai2 ai4

ai1 ai3

Now, for all j 6= i, the ith pieces of {aj1, a
j
2, a

j
3, a

j
4} are

positioned according to the following rules:

• If j < i, put aj1, a
j
2 in ai1 ∩ ai2; put aj3, a

j
4 in ai3 ∩ ai4

• If j > i, put aj3, a
j
4 in ai1 ∩ ai2; put aj1, a

j
2 in ai3 ∩ ai4

In the last track d, none of the intervals need to be inert.
For all 1 ≤ i ≤ d − 1, the dth pieces of {ai1, ai2, ai3, ai4}
are positioned similarly to the diagram above, but are
permuted to induce the remaining three dependencies
among the d-intervals. Figure 1 illustrates this and pro-
vides an example of the entire construction for d = 4.

Observe that any two d-union-intervals with the same
superscript i must be adjacent in either track i or track
d. For 1 ≤ i < j ≤ d − 1, we check that all 16 de-
pendencies between ai1, a

i
2, a

i
3, a

i
4 and aj1, a

j
2, a

j
3, a

j
4 are

accounted for: In track i, aj3 and aj4 intersect ai1∩ai2; aj1
and aj2 intersect ai3 ∩ ai4. In track j, ai1 and ai2 intersect

aj1 ∩ a
j
2; ai3 and ai4 intersect aj3 ∩ a

j
4. Thus H is a clique.

It is easy to verify that the other conditions of Lemma 5
are satisfied with q = 2, so the proof is complete. �

Next, we provide a polynomial algorithm yielding an
upper bound of d for the integrality gap of the general
d-interval hitting set problem:

Proof of Theorem 2. Let H be a collection of d-
intervals, and let {y∗p : p ∈ P (H)} be an optimal frac-
tional hitting set of weight ρ∗(H) obtained by solving
linear program (2). We demonstrate how to round {y∗p}
to an integral solution of weight at most d ·ρ∗(H). For a
d-interval I in H, let I∗ ⊆ I be any piece of I that is hit
by weight at least 1

d under {y∗p} (one must exist by the
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1
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1
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4 a2
3 a2

4

Figure 1: A clique of 12 4-union-intervals satisfying the conditions of Lemma 5 with q = 2

pigeonhole principle). Then the set C = {I∗ : I ∈ H}
is a set of intervals in R that are each hit by weight at
least 1

d under {y∗p}.
By multiplying solution {y∗p} by d, we obtain a new

fractional hitting set {dy∗p} of weight dρ∗(H) that hits,
with weight at least 1, all elements of C. However,
the incidence matrix for the hitting set problem on 1-
intervals is totally unimodular, so there must exist an
integral hitting set Q of weight at most dρ∗(H) that
hits all of C—one can be found by simply solving lin-
ear program (2) again for C instead of H. Of course,
Q is also a hitting set for H, from which it follows that
ρ(H) ≤ d · ρ∗(H). By simply returning Q, we obtain
a polynomial-time LP-relative d-approximation for the
d-interval hitting set problem, completing the proof. �

We note that the above algorithm also works for the
weighted variant of the minimum hitting set problem,
in which each point p ∈ P (H) is given a positive cost,
and the goal is to compute a minimum cost hitting set.

Finally, we establish Theorem 3 by giving a set of d-
union-intervals with a hitting set integrality gap of d−ε:

Proof of Theorem 3. Fix ε > 0. Choose any integer

t ≥ 2d2

ε and any integer n ≥ 2t
ε . Fix some small δ,

say δ = 0.1. Here, we regard the d tracks {J1, . . . , Jd}
as disjoint copies of R. A d-union-interval I is called
aligned if, for all 1 ≤ k ≤ d, the piece of I in Jk has
the form [ik + δ, jk − δ] for some integers 0 ≤ ik < jk ≤
n. In other words, a d-union-interval is aligned if the
endpoints of all of its pieces each barely miss an integer
point between 0 and n. Let H be the collection of all
aligned d-union-intervals I such that the total length of
all pieces in I is exactly t− 2dδ. Note that |H| is finite.

Let P contain all points of the form i + 0.5 for i ∈
{0, 1, . . . , n − 1} in each of the d tracks, for a total of
dn points. Each d-union-interval in H must contain at
least t points in P , so we can obtain a fractional hitting
set of total weight dn

t by placing a value of 1
t at each

point in P . This shows that ρ∗(H) ≤ dn
t .

Let Q be any feasible integral hitting set for H. We

wish to show that |Q|
ρ∗(H) ≥ d − ε, so we may assume

that |Q| < n. Let bi be the number of points of Q in
J i. By the pigeonhole principle, there must exist an
open interval Ki ⊆ [0, n] in track J i that has integer
endpoints, has length at least n−bi

bi+1 , and contains no
points in Q. Consequently, there is a d-union-interval
K = ∪di=1K

i having total length
∑d
i=1

n−bi
bi+1 that has in-

teger endpoints and is missed by Q in all tracks. How-
ever, Q hits all aligned d-union-intervals having total

length t− 2dδ, and K is missed by Q, so we must have

d∑
i=1

n− bi
bi + 1

< t.

By rearranging this, we obtain

d

(
d∑
i=1

1

bi + 1

)−1
>
d(n+ 1)

t+ d
.

The left side of the above equation is a harmonic
mean. Since an arithmetic mean is always greater than
or equal to the corresponding harmonic mean, we get

1

d

d∑
i=1

(bi + 1) >
d(n+ 1)

t+ d

and hence ρ(H) ≥ |Q| =
∑d
i=1 bi >

d2(n+1)
t+d − d. Divid-

ing by the upper bound we had for ρ∗(H) gives

ρ(H)

ρ∗(H)
>
td(n+ 1)

n(t+ d)
− t

n
>

(
1− d

t+ d

)
d− t

n
,

where the last inequality is due to n+1
n > 1. Since we

chose t and n such that t ≥ 2d2

ε and n ≥ 2t
ε , we get

ρ(H)

ρ∗(H)
>

(
1− d

2d2

ε + d

)
d− t

2t
ε

= d− ε

2 + ε
d

− ε
2
> d−ε,

completing the proof of Theorem 2. �

3 Topology-based algorithms

In this section, we sketch a proof of Theorem 4, illus-
trating how to obtain a 3-approximation (respectively,
a 2-approximation) for the independent set problem on
2-intervals (respectively, 2-union-intervals), supposing
one has access to oracles for PPAD-complete topological
subproblems. We assume familiarity with the complex-
ity class PPAD and its connection to topological fixed-
point theorems; see [15] for background information.

Our approach follows Kaiser’s duality gap upper
bound proof [10], which we outline here. We first con-
sider the case of 2-union-intervals. For concreteness,
we consider a family H of axis-aligned rectangles in the
plane. Let n be an arbitrary positive integer. Kaiser
considers the space Sn×Sn (where Sn is the boundary
of an (n+1)-dimensional unit ball), and associates each
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point x ∈ Sn × Sn to a set of n horizontal lines and
n vertical lines in the plane. Kaiser then constructs a
family of 2n+ 2 real-valued functions hH1 , . . . , h

H
2n+2 on

Sn × Sn having the following properties:

1. If hHi (x) = 0 for all i, then x corresponds to a set
of lines that intersect all rectangles in H.

2. If hH1 (x) = hH2 (x) = . . . = hH2n+2(x) 6= 0 for all
i, then x corresponds to a set of n horizontal lines
and n vertical lines defining a grid from which we
can easily find a conflict-free set of rectangles of
size n+ 1 in polynomial time.

Kaiser then establishes that, for topological reasons,
there must exist a point x ∈ Sn × Sn such that
hH1 (x) = hH2 (x) = . . . = hH2n+2(x) and thus a point
x must exist satisfying item 1 or item 2 above. Tar-
dos’s result that ρ(H) ≤ 2α(H) follows immediately by
setting n = α(H), since then a point where hHi (x) 6= 0
for all i cannot exist, and thus a stabbing consisting of
α(H) horizontal lines and α(H) vertical lines must exist.

Kaiser’s proof can easily be adapted to yield a pro-
cedure P that, given an integer n, finds either a stab-
bing of size 2n or a conflict-free subset of size n + 1,
using polynomial time plus a single call to an ora-
cle for a topological fixed-point problem. To obtain a
2-approximation for the maximum conflict-free subset
problem, it then suffices to find a cutoff point t ∈ N such
that P returns a conflict-free subset S of size t when run
with n = t−1, but returns a stabbing of size 2t when run

with n = t (if this happens, we have |S| ≥ ρ(H)
2 ≥ α(H)

2 ).
Although there may be many cutoff points t, one must

exist in the interval [ρ(H)
2 , α(H)]. One can be found us-

ing only O(log(α(H))) calls to P by running a galloping
binary search that first tries t = 1, t = 2, t = 4, . . . un-
til a stabbing of size 2t is returned, and then binary
searches between t

2 and t to find a cutoff point.
Kaiser’s topological argument employs a result of

Ramos that generalizes the Borsuk-Ulam theorem to
cross products of spheres [16], so procedure P must
invoke calls to an oracle for Ramos-style fixed-points.
Ramos invokes a parity argument that can be adapted,
in a straightforward manner, to show that an appro-
priate computational version of the Ramos fixed-point
problem lies in the complexity class PPAD. Indeed,
Ramos provides a searching algorithm to locate such
fixed-points, although it may be exponential in the
worst case. We also note that, by the discreteness of our
problem, the particular instances that we must solve can
be efficiently represented and have rational solutions.
This establishes Theorem 4 for 2-union-intervals.

For the case of general 2-intervals, Kaiser provides
a related argument that can be adapted in the same
manner to yield a binary search algorithm. In this case,
only an oracle for standard Borsuk-Ulam fixed-points is
required. However, due to changes in how the functions

hHi must be formulated, only a 3-approximation can be
obtained. Still, the integrality gap bounds imply that
this is optimal among all LP-relative approximations.
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